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Computational statistical mechanics of a confined, three-dimensional Coulomb gas
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The thermodynamic properties of systems with long-range interactions present an ongoing challenge, from
the point of view of both theory as well as computer simulation. In this paper we study a model system, a
Coulomb gas confined inside a sphere, by using the Wang-Landau algorithm. We have computed the configura-
tional density of states, the thermodynamic entropy, and the caloric curve, and compared with microcanonical
Metropolis simulations, while showing how concepts such as the configurational inverse temperature can be
used to understand some aspects of thermodynamic behavior. A dynamical multistability behavior is seen at low
energies in microcanonical Monte Carlo simulations, suggesting that flat-histogram methods can in fact be useful
and complementary alternatives to traditional Metropolis simulation in complex systems.
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I. INTRODUCTION

The thermodynamics of charged particles remains a chal-
lenging subject, in large part due to the long-range nature of
the interaction which breaks some assumptions of classical
statistical mechanics, mainly that of additivity of the inter-
action energy of macroscopic subsystems [1]. While exact
results are common for the two-dimensional Coulomb poten-
tial [2,3], the situation in three dimensions for the unscreened
Coulomb potential is not as clear, even after the use of com-
puter simulation techniques.

One interesting phenomenon in long-range interacting sys-
tems is the origin of non-Maxwellian velocity distributions,
not only in plasmas but in model systems such as the Hamil-
tonian mean-field model in nonequilibrium conditions [4,5].
In such long-range systems different mechanisms have been
proposed to explain these distributions, such as Tsallis’s
nonextensive statistical mechanics [6,7], superstatistics [8],
and others. For an isolated system, the velocity distribution
of its components is governed by properties of the interac-
tion potential, more precisely by its configurational density of
states (CDOS), as, for instance, shown by Ray and Graben [9]
in small systems. Therefore, it makes sense to gain some
understanding of the behavior of this CDOS for long-range
potentials.

In the field of condensed matter physics, on the other
hand, the computation of the CDOS for systems with complex
interactions (such as proteins) using Monte Carlo methods in
generalized ensembles has recently emerged as a promising
alternative [10,11] to molecular dynamics simulations. Nev-
ertheless, we are not aware of a calculation of the CDOS for
pure Coulomb systems in the literature.

In this paper, we focus on the thermodynamics of a very
simple model system, where charged particles interacting via

*sergio.davis@cchen.cl

the unscreened Coulomb potential are confined inside a spher-
ical region. We present a computation of the CDOS using
the Wang-Landau algorithm [12], and from this we determine
its equilibrium thermodynamic properties in the canonical
and microcanonical ensembles. This spherical geometry is
a useful approximation to some relevant configurations of
high-density, high-temperature plasmas such as in inertial
confinement, where there is interest in modeling the behavior
of plasma confined in a small, spherically symmetric regions
such that highly energetic ions are able to reach the condi-
tions of temperature and density needed to produce nuclear
fusion [13,14].

This paper is organized as follows. Section II defines the
interaction energy and the choice of natural units. Sections III
and IV review the microcanonical formalism in terms of the
configurational degrees of freedom, and the implementation
of Monte Carlo methods, while Sec. V presents the main
results. Finally we close with some concluding remarks in
Sec. VI.

II. DESCRIPTION OF THE MODEL

We will consider a group of N = N+ + N− charged parti-
cles in three dimensions. The N particles are divided exactly
into two equal groups of N+ = N− = N/2 with charge q+ = e
and q− = −e, respectively, in order to have exact neutrality. In
this system, the Hamiltonian is

H (R, P) = K (P) + �(R) =
N∑

i=1

p2
i

2mi
+ �(r1, . . . , rN ), (1)

where R = (r1, . . . , rN ) and P = (p1, . . . , pN ) are the coordi-
nates and momenta of all particles, respectively, K = K (P) is
the classical (nonrelativistic) kinetic energy,

K (P) :=
N∑

i=1

p2
i

2mi
,
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TABLE I. Parameters in physical units for the choice of r0 equal
to the Bohr radius.

Description Symbol Reference value

Length unit r0 0.529 Å
Energy unit φ0 = e2/(4πε0r0) 27.211 eV
Temperature unit T0 = φ0/kB 315774 K
Number of particles N 210
Confining radius R 146 Å
Particle density n = N/( 4

3 πR3) 8.05 × 1024 m−3

Debye length at T = T0 λD 137.1 Å

and � = �(R) is the electrostatic potential energy, given by

�(r1, . . . , rN ) = 1

2

N∑
i=1

∑
j �=i

qiq j

4πε0|r j − ri| . (2)

The potential energy can be expressed in natural units by
defining a natural length unit r0. We can write

�(r1, . . . , rN ) = φ0

2

N∑
i=1

∑
j �=i

σiσ j

ri j
, (3)

with σi = ±1 and the distance between particles i and j being
ri j := |r j − ri| in units of r0. With these changes, the model
now resembles a long-range Ising-type interaction but with
mobile “spins.” The unit of energy corresponds to

φ0 := e2

4πε0r0
. (4)

At this point, we will introduce two modifications to the
model. First, in order to “soften” the interaction at very short
distances, we have corrected the interparticle distance ri j as

ri j → max(ri j, r0),

which avoids the singular behavior at ri j = 0, making the
potential energy bounded. As shown originally by Fisher and
Ruelle [15], this truncation of the Coulomb potential is one
mechanism able to restore stability. Second, because our aim
is to describe an isolated, finite-size system, the particles are
confined inside a sphere of radius R, so that |ri| < R.

In the following we use N = 210 particles and a confining
radius R = 276 r0. We have chosen this number of particles
as a practical tradeoff between computational efficiency and

detail of the description, considering that larger systems can
be described by thinking in terms of a coarse graining using
so-called superparticles, in which one particle represents a
larger unit of charge and mass.

For reference, the values of some parameters of interest in
plasma physics are given in Table I, for the choice of r0 equal
to the Bohr radius, r0 = 0.529 Å. In this case, the system is
denser than magnetic confinement plasmas but less dense than
inertial fusion plasmas [16]. Because the Debye length λD ∼
0.94R is of the order of the radius of the confining sphere,
most of the system is contained within the Debye sphere and
we do not expect much screening of the charges.

III. MICROCANONICAL THERMODYNAMICS

For a system with a Hamiltonian given by Eq. (1), because
the form of the kinetic energy is universal, the CDOS becomes
the key quantity for the thermodynamics in steady states.
We will consider a steady state S described by the ensemble
function ρ(E ), such that

P(R, P|S) = ρ[H (R, P)]. (5)

In such an ensemble, the expectation of any function g(H )
of the energy can be computed as

〈g〉S =
∫

dRdP g[H (R, P)] P(R, P|S)

=
∫

dRdP g[K (P) + �(R)]ρ[K (P) + �(R)]. (6)

Let us at this point introduce the density of states 	K (k) of
the classical ideal gas:

	K (k) :=
∫

dP δ[K (P) − k], (7)

with δ the Dirac delta function, and the configurational density
of states D(φ), defined in our case by the multidimensional
integral

D(φ) :=
∫

dRδ[φ − �(R)]

=
∫
S(R)

dr1, . . . , drN δ[φ − �(r1, . . . , rN )], (8)

where
∫
S(R) denotes integration over the region |ri| < R for

i = 1, . . . , N . Using these densities of states, we can rewrite
the 6N-dimensional integral in Eq. (6) as a two-dimensional
integral:

〈g〉S =
∫

dRdP g[K (P) + �(R)]ρ[K (P) + �(R)]

=
∫

dR
∫

dk

{∫
dPδ[k − K (P)]

}
g[k + �(R)]ρ[k + �(R)]

=
∫

dk 	K (k)
∫

dφ

{∫
dRδ[φ − �(R)]

}
g(k + φ)ρ(k + φ)

=
∫

dk dφ 	K (k)D(φ)g(k + φ)ρ(k + φ), (9)

where k and φ are integration variables that go through all allowed values of K (P) and �(R), respectively.
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The density of states of the classical ideal gas can be
computed exactly as

	K (k) =
∫

d p1 . . . d pN δ

(
N∑

i=1

p2
i

2mi
− k

)
= 	0 k

3N
2 −1,

(10)
where 	0 = 	0(N,V ) is a constant the exact value of which
plays no role in the statistical properties at constant volume
and number of particles. It is given by

	0 =
(

V

h3

)N (2π )3N/2

�
(

3N
2

) N∏
i=1

(mi )
3/2,

where h is Planck’s constant [17]. In the following we will
focus on the microcanonical ensemble, representing a system
with fixed energy H = E , and given by

P(R, P|E ) = δ[E − H (R, P)]

	(E )
, (11)

with 	(E ) the density of states, defined as

	(E ) :=
∫

dRdPδ[E − H (R, P)]

= 	0

∫
dR

∫
dk δ[E − k − �(R)]k

3N
2 −1

= 	0

∫
dR[E − �(R)]

3N
2 −1

+ , (12)

and where expectations are computed by

〈
g
〉
E = 1

	(E )

∫
dRdPδ[E − H (R, P)]g(R, P). (13)

This ensemble is important for at least two reasons. On
the one hand, the microcanonical ensemble is the appropriate
description for an isolated system with constant volume and
number of particles, but it also can be taken as the basis for
the thermodynamics of any generalized ensemble. In fact, the
expectation on any generalized ensemble S of the form in
Eq. (5) is given by Eq. (6), which can be written as

〈g〉S =
∫

dRdPP(R, P|S) · g(R, P)

=
∫

dRdPρ[H (R, P)] · g(R, P)

=
∫

dE

{∫
dRdPδ[E − H (R, P)]g(R, P)

}
ρ(E )

=
∫

dEρ(E ) × {	(E )〈g〉E }

=
∫

dEP(E |S)
〈
g〉E , (14)

that is, generalized ensemble expectations can be computed
from microcanonical expectations and the distribution of en-
ergy of the ensemble:

P(E |S) = ρ(E )	(E ).

The microcanonical configurational distribution is ob-
tained by integration of Eq. (11) over the momenta:

P(R|E ) =
∫

dPP(R, P|E )

=
∫

dP
[
δ[E − K (P) − �(R)]

	(E )

]

=
∫

dK	K (K )
δ[E − K − �(R)]

	(E )

= 	K [E − �(R)]

	(E )
. (15)

Replacing the definition of 	K in Eq. (10) we have

P(R|E ) = 1

η(E )
[E − �(R)]

3N
2 −1

+ , (16)

where [x]+ = x for x >= 0 and zero otherwise. The normal-
ization constant η(E ) is given by

η(E ) =
∫

dR[E − �(R)]
3N
2 −1

+ = 	(E )

	0
. (17)

Using the CDOS it is possible to write the microcanonical
probability density of φ as

P(φ|E ) = 〈δ(φ − �)〉E = 1

η(E )
[E − φ]

3N
2 −1

+ D(φ). (18)

The entropy S(E ) can also be expressed [18] in terms of
η(E ) in Eq. (17):

S(E ) = kB ln 	0 + kB ln η(E ). (19)

By differentiation with respect to E , it follows that the
microcanonical inverse temperature β(E ), defined as

β(E ) := 1

kBT (E )
= 1

kB

∂S(E )

∂E
= ∂

∂E
ln η(E ), (20)

can be computed as

∂

∂E
ln η(E ) = 1

η(E )

∂

∂E

(∫
dφD(φ)[E − φ]

3N
2 −1

+

)

= 1

η(E )

∫
dφD(φ)

∂

∂E

(
[E − φ]

3N
2 −1

+
)

= 1

η(E )

∫
dφD(φ)[E − φ]

3N
2 −1

+

(
3N − 2

2(E − φ)

)

=
〈

3N − 2

2(E − φ)

〉
E

, (21)

which gives us the kinetic estimator of the inverse tempera-
ture:

βK (φ) := 3N − 2

2(E − φ)
, (22)

such that 〈βK 〉E = β(E ). In a similar way as the microcanon-
ical inverse temperature β(E ) is defined in terms of the full
density of states [either 	(E ) or η(E )], it is possible to define
an inverse temperature from the CDOS, namely, the configu-
rational inverse temperature, as

βD(φ) := ∂

∂φ
lnD(φ), (23)
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for which it holds that 〈βD〉E = 〈βK〉E = β(E ). This can be
seen from the conjugate variables theorem [19,20] applied to
the potential energy distribution in Eq. (18):〈

∂ω

∂φ

〉
E

= −
〈
ω(φ)

∂

∂φ
ln P(φ|E )

〉
E

= 〈ω(φ)[βK (φ) − βD(φ)]〉E , (24)

for ω = ω(φ) an arbitrary, differentiable function of φ. For the
choice ω(φ) = 1, we have

〈βK〉E = 〈βD〉E . (25)

IV. COMPUTATIONAL METHODS

For the calculation of the density of states, in this case
D(φ), several methods exist. One of the most widely known is
the Wang-Landau procedure [12], in which a Markov process
is performed in configuration space according to the transition
probability

pacc(R → R′) = min

(
1,

D[�(R)]

D[�(R′)]

)
,

which is the probability of accepting a “move” from config-
uration R to R′. This process achieves a flat distribution of
potential energies as the Markov chain dynamics converges to
the generalized ensemble:

ρ(φ) ∝ 1/D(φ).

Because the value of D(φ) is not known a priori, the proce-
dure starts with an initial guess (usually uniform) and updates
it for every visited potential energy φi using the rule

D(φi ) → D(φi) f .

In the traditional Wang-Landau algorithm, as implemented
in this paper, the factor f is decreased from an initial value
f = e = 2.718 28...following the rule fi+1 = √

fi so that it
converges to 1.

Microcanonical simulations at constant total energy E , in
the ensemble defined by Eq. (16), can be performed via Monte
Carlo Metropolis as proposed by Ray [21], in which the ac-
ceptance probability becomes

pacc(R → R′) = min

(
1,

[
E − �(R′)
E − �(R)

] 3N
2 −1

)
, (26)

instead of the usual

pacc(R → R′) = min(1, exp(−β�φ)), (27)

employed in canonical Metropolis simulation. Note that, for
|�φ| 
 E − � where �φ = �(R′) − �(R), we can provide
the following convenient approximation:[

E − �(R′)
E − �(R)

] 3N
2 −1

=
[

E − �(R) − �φ

E − �(R)

] 3N
2 −1

=
[

1 − �φ

E − �(R)

] 3N
2 −1

= exp

[
3N − 2

2
ln

(
1 − �φ

E − �(R)

)]

≈ exp{−βK [�(R)]�φ}. (28)

FIG. 1. Logarithm of the configurational density of states D(φ)
for a Coulomb system confined to a sphere, for energies � between
−535 φ0 and 950 φ0, as computed by the Wang-Landau algorithm
(blue circles) and fitted by Eq. (29) (orange solid line). The black
dashed line indicates φ = 0, the value above which the curvature
changes.

This means that, for small proposed displacements, micro-
canonical Metropolis sampling can be treated as a canonical
Metropolis sampling with variable inverse temperature, given
by βK in Eq. (22). In the case of vanishing potential energy
fluctuations, the microcanonical ensemble predictions coin-
cide with the canonical predictions at β = β(E ).

V. RESULTS

For the system of N particles interacting via � in Eq. (3)
inside a sphere of radius R, the logarithm of the CDOS cal-
culated using the Wang-Landau algorithm is shown in Fig. 1.
Wang-Landau simulations were performed independently on
eight overlapping subintervals of energy (with an overlap of at
least ten units of energy) and the CDOS was joined together
based on the matching of the overlapping regions. For each
subinterval, the Wang-Landau simulation reached a factor
f − 1 = 10−10 or smaller, and accordingly the error bars for
the logarithm of the CDOS are much smaller than the circles
in Fig. 1.

It can be seen that the CDOS is asymmetrical, having a
cusp exactly at φ = 0 at which the derivatives are different
left and right. These left and right regions can be described by
the simple empirical model

lnD(φ) =
{

a + A(φ + b)α, if φ < 0,

a + Abα − Bφα, if φ � 0,
(29)

with parameters a = −596.0357, b = 626.8341, A =
44.9553, B = 5.3482, and α = 0.5731.

Regarding the size dependence of the density of states,
if we consider the ansatz where the configurational inverse
temperature, being an intensive quantity, only depends on the
potential energy per particle in the thermodynamic limit, we
can write

lim
N→∞

βD(φ) = g(φ/N ) (30)
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FIG. 2. Rescaled logarithm of the configurational density of
states for different system sizes at the same particle density: N = 104
(red circles), N = 210 (blue squares), and N = 420 (green stars).

where g is an appropriate function describing the system.
Then, it would follow by integration in φ that

lim
N→∞

lnD(φ) =
∫

dφ g(φ/N ) = NG(φ/N ) + ζ (N ). (31)

This dependence on the system size is shown in Fig. 2,
where we plot 1

N lnD(φ) as a function of φ/N for three dif-
ferent sizes, N = 104, 210, and 420. We see that the general
dependence in Eq. (31) seems to hold approximately.

The configurational inverse temperature βD, defined in
Eq. (23), is shown in Fig. 3. A discontinuity at φ = 0 can be
seen, reflecting the change in curvature of the CDOS. Because
βD < 0 for φ > 0, an interesting fact arises, namely, that no
macroscopic state S is compatible with strictly positive poten-
tial energies. For instance, in the microcanonical ensemble at
energy E this would imply

〈βD〉E = 〈βK 〉E < 0, (32)

FIG. 3. Configurational inverse temperature βD (φ) (blue solid
line) obtained from the CDOS in Fig. 1. The black dashed line
indicates the discontinuity at φ = 0.

FIG. 4. Caloric curve T (E ) for a Coulomb system confined to
a sphere, for energies E between −535 φ0 and 950 φ0 units. Blue
circles represent microcanonical Metropolis simulations, while red
squares indicate canonical Metropolis simulations. The solid blue
line and the red line with crosses are the microcanonical and canon-
ical predictions, respectively, based on the CDOS in Fig. 1. The
horizontal dashed line corresponds to the temperature T = 0.5 T0 at
E = 0.

which contradicts the definition of

βK (φ) = 3N

2(E − φ)
> 0.

A consequence of this contradiction is the fact that the poten-
tial energies tend to “pile up” towards φ = 0 for high enough
total energies, as can be seen in the lower panel of Fig. 6 for
energies up to E = 3000 φ0. In other words, despite the fact
that microscopic states with φ even above 900 φ0 do exist, as
shown by the CDOS in Fig. 1, they are in practice suppressed
in the microcanonical ensemble and in any generalized en-
semble. By using Eqs. (14) and (25), we see that in general

〈βK 〉S =
∫

dEP(E |S)〈βK 〉E =
∫

dEP(E |S)〈βD〉E = 〈βD〉S,

(33)

FIG. 5. Total entropy for a Coulomb system confined to a sphere,
for energies E between −535 φ0 and 950 φ0.
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FIG. 6. Upper panel: Potential energy histograms from micro-
canonical Monte Carlo simulation, from left to right going from
E = −200 φ0 to 200 φ0. The solid lines are the corresponding prob-
ability densities predicted using Eq. (18). Lower panel: Potential
energy histograms for microcanonical simulation for total energies
(from left to right) between E = 200 φ0 and 3000 φ0, showing the
concentration of the distribution mass towards φ = 0.

so P(φ < 0|S) → 0 would imply 〈βD〉S < 0 and therefore
〈βK 〉S < 0, which goes against the positivity of kinetic energy.

Thermodynamical properties

Using the microcanonical Monte Carlo method defined by
the acceptance probability in Eq. (26), we have computed the
caloric curve T (E ) by collecting the average

β(E ) = 1

kBT (E )
=

〈
3N − 2

2(E − �)

〉
E

,

and compared with the predictions of Eqs. (21) and (18) with
the CDOS in Fig. 1. This caloric curve is shown in Fig. 4, to-
gether with independent canonical Monte Carlo simulations,
using the acceptance probability in Eq. (27) instead.

Complete equivalence between both ensembles is seen,
despite the fact that a transition seems to occur between
two branches with nearly constant specific heat, around

FIG. 7. Upper panel: Potential energy as a function of Monte
Carlo steps in the microcanonical ensemble, for E = −450 φ0.
Lower panel: Histogram of the potential energy collected in the
same simulation. The dashed black line indicates the most probable
potential energy, given by Eq. (34). Due to the dynamic multistabil-
ity phenomenon observed, the convergence of the histogram to the
correct distribution (red solid line) given by Eq. (18) is much slower
than for other energies.

T ∗ = 0.5 T0, the temperature corresponding to E = 0. The
continuous behavior of the caloric curve is verified in the
microcanonical entropy S(E ) = kB ln η(E ), shown in Fig. 5.
The entropy is monotonically increasing with E without any
“backbending,” thus despite the discontinuity of the configu-
rational inverse temperature there is no evidence in this system
of a first-order phase transition, as is sometimes the case in
long-range interacting [1] and small systems [22].

In order to assess the accuracy of the CDOS com-
puted using the Wang-Landau algorithm beyond averages,
we computed the microcanonical potential energy distribu-
tions according to Eq. (18) for several total energies, and
compared them with empirical histograms collected from mi-
crocanonical Monte Carlo simulation. These results are shown
in Fig. 6. We can see that, in all cases, the CDOS is capa-
ble of describing correctly the shape of the potential energy
fluctuations, at least above E = −200 φ0. In the lower branch
of the caloric curve, however, an interesting phenomenon of
dynamical multistability is observed in the microcanonical
Monte Carlo simulation, as shown for E = −450 φ0 in Fig. 7.
In this case, even when the simulation starts from the most
probable potential energy, given by the condition

∂

∂φ
ln P(φ|E )

∣∣∣∣
φ=φ∗

= 0,

that is,

βK (φ∗) = βD(φ∗), (34)

which has solution φ∗ = −534.231 φ0 for E = −450 φ0

(shown as the black dashed line in Fig. 7), the system tran-
sits between several macroscopic states, with considerable
lifetimes. This effect resembles the behavior of glasses [23]
and proteins [24], which commonly have a complex potential
energy landscape that makes direct sampling difficult. The
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dynamical multistability phenomenon reduces the efficiency
of microcanonical sampling for low energies, as we have to
wait much longer times for the system to explore the different
macroscopic states with the correct frequency, thus requiring
extremely long simulations to collect reliable statistics.

VI. CONCLUDING REMARKS

We have computed thermodynamic properties of a sys-
tem of unscreened charged particles confined into a spherical
region by using one of the well-established flat-histogram
methods, the Wang-Landau algorithm. Our system, while con-
ceptually simple, is still challenging from the point of view
of computational statistical mechanics, as we have shown in
direct microcanonical Metropolis sampling. We have deter-
mined the thermodynamics of the system; in particular, we
report the configurational density of states, the full thermo-
dynamic entropy, the caloric curve, and the microcanonical

potential energy distributions. We observe a possibly second-
order phase transition at E = 0, the precise nature and order
of which remain to be clarified by further analysis.

The shape of the configurational inverse temperature
easily explains a concentration of the potential energy dis-
tribution mass around � = 0 at high total energies, which
makes most states with � > 0 inaccessible from the micro-
canonical ensemble. On the other hand, the presence of a
dynamical multistability phenomenon complicates the direct
microcanonical sampling at low energies, highlighting the
usefulness of the generalized-ensemble approaches to com-
putational statistical mechanics.
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