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A theoretical framework is developed for the phenomenon of non-Gaussian normal diffusion that has experi-
mentally been observed in several heterogeneous systems. From the Fokker-Planck equation with the dynamical
structure with largely separated time scales, a set of three equations is derived for the fast degree of freedom,
the slow degree of freedom, and the coupling between these two hierarchies. It is shown that this approach
consistently describes “diffusing diffusivity” and non-Gaussian normal diffusion.
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I. INTRODUCTION

Diffusion is characterized in such a way that a spatial scale
l and the duration time t are related to each other as l2 ∼ tν ,
where l2 can be defined as the mean square displacement
of a diffusing particle or the square of spatial extension of
a probability distribution of an ensemble of such particles.
ν stands for a positive diffusion exponent: the cases ν > 1
and ν < 1 are termed superdiffusion and subdiffusion, respec-
tively. These are called the phenomena of anomalous diffusion
[1] and form an integral part of various research areas in
sciences. On the other hand, the case ν = 1, i.e.,

l2 = 2D0 t (1)

with D0 being a diffusion coefficient, describes normal dif-
fusion that has been discussed in the context of Brownian
motion [2]. It can be understood in terms of random walk
of a particle in a homogeneous medium. The corresponding
probability distribution of the walker’s position is Gaussian,

pG (x, t ) = 1√
4πD0 t

exp

[
− x2

4D0 t

]
(−∞ < x < ∞, 0 � t )

(2)
in the one-dimensional model, where the initial position is
taken to be at the origin, and accordingly l2 in Eq. (1) is
identified with the variance of the displacement with respect to
this distribution. Such a classical phenomenon is ubiquitously
observed in nature.

About two decades ago, however, remarkable discoveries
were experimentally made [3,4]. It has been manifested that
normal diffusion occurs in heterogeneous colloidal systems
near glass transition in spite of the fact that the probabil-
ity distribution of particle displacement is non-Gaussian. In
particular, the authors of Ref. [3] have pointed out that the
observed non-Gaussian distribution is described by a sum of
two Gaussians reasonably well.

Later, further results were reported on experiments by use
of colloidal beads on lipid bilayer tubes and in porous me-
dia created by entangled actin filaments [5], liposomes in
nematic solutions of aligned actin filaments [6], and moisture-
absorbing polymer films in the environment with controllable
humidity [7]. In each of these systems, the probability distri-
bution of particle displacement is again non-Gaussian and is
well fitted by Laplacian

p (x, t ) = 1√
4D0 t

exp

(
− |x|√

D0 t

)
, (3)

which also gives rise to normal diffusion in Eq. (1). A
characteristic feature is the presence of a cusp at x = 0, in
consistency with the experimental observations [5–7].

Recently, some attempts have been made to theoretically
describe the phenomenon of non-Gaussian normal diffusion
[8–10]. The basic idea is as follows. Because of hetero-
geneities of the media, the diffusion coefficients exhibit slow
spatial, temporal, or spatiotemporal variations. Thus, D0 in
Eq. (2) may not be a fixed constant but a value of realization of
the random variable D, obeying a certain probability distribu-
tion � (D). This concept is called “diffusing diffusivity,” and
� (D) is referred to as the diffusivity distribution. That is, the
Gaussian distribution in Eq. (2) should actually be regarded as
a conditional probability distribution with a given value of D:

pG(x, t ) ≡ pG(x, t | D). (4)

Then, the observed distribution of particle displacement is
interpreted as the ensemble average

p (x, t ) =
∫ ∞

0
dD pG(x, t | D) � (D). (5)
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Since pG(x, t | D) is assumed to be Gaussian in Eq. (2), use
of the exponential distribution as � (D) [8],

� (D) = 1

D0
exp

(
− D

D0

)
, (6)

in Eq. (5) gives rise to Eq. (3). In this approach, D0 in Eq. (3)
is now the average of D:

D0 = 〈D〉 =
∫ ∞

0
d D D � (D). (7)

As noticed in Refs. [9,10], this corresponds to superstatistics
[11,12]. The authors of Ref. [9] have generalized the above-
mentioned formulation to the case when time t in Eqs. (1)–(3)
is replaced by tν (together with introduction of the generalized
diffusivity, D∗) in order to cover anomalous diffusion. In the
language of scaling, pG(x, t | D0) = (1/

√
D0 t ) FG(x/

√
D0 t )

is generalized to pG(x, t | D∗) = (1/
√

D∗ tν ) FG(x/
√

D∗ tν ),
where FG is the Gaussian scaling function given by FG(s) =
(1/

√
4π ) exp (−s2/4).

In the theoretical description mentioned above, the proba-
bility distribution of particle displacement for each value of
realization of D is still assumed to be Gaussian in Eq. (2)
leading to normal diffusion. In other words, the form of
� (D) in Eq. (6) strictly depends on this point. It is known in
mathematics [13] that a class of infinitely divisible probability
distributions is wide. Therefore, experimental justifications of
either pG(x, t | D) or � (D) in Eq. (6) are desired. Although
the Gaussianity of pG(x, t | D) seems natural in view of the
central limit theorem, strictly speaking it is not clear if particle
displacements are independent and identically distributed. We
will come back to this point in Sec. IV.

Here, we make an attempt to extract as much informa-
tion as possible about the hierarchical dynamics underlying
non-Gaussian normal diffusion from the property of the joint
probability distribution,

P (x, D, t ) = p (x, t | D) � (D), (8)

by using the Fokker-Planck equation. We develop a method of
adiabatic separation to explicitly describe the hierarchies.

This paper is organized as follows. In Sec. II, a general
discussion is developed about the Fokker-Planck theory of
two degrees of freedom that are characterized by largely
separated time scales. There, separation of such a kinetic
equation into the equations for the fast degree of freedom,
the slow degree of freedom, and the coupling between these
two hierarchies is established. Then, in Sec. III, the theoretical
framework presented in Sec. II is applied to the phenomenon
of non-Gaussian normal diffusion. The roles of diffusing dif-
fusivity are revealed. Finally, Sec. IV is devoted to concluding
remarks, including additional experimental arguments about
Eq. (6) and its generalization.

II. HIERARCHICAL FOKKER-PLANCK EQUATION

To treat the particle displacement X and diffusivity D as
the random variables, let us define a two-tuple:

X =
(

X1

X2

)
=

(
X
�

)
. (9)

In this notation, � denotes

� = ln (D/D̃) (10)

with D̃ being a positive constant that cancels the dimensional-
ity of D. This variable may be useful since D is non-negative.
Without loss of generality, D̃ can be set equal to unity,

D̃ = 1, (11)

and we will work in this unit.
Let d2x P̃ (x, t ) be the probability of X being realized in

x = (x1, x2)T and x + dx = (x1 + dx1, x2 + dx2)T at time t .
We require that the probability distribution, P̃ (x, t ), obeys the
Fokker-Planck equation in the following general form [14,15]:

∂ P̃

∂ t
= −

2∑
i=1

∂

∂xi
(Ki P̃) +

2∑
i, j=1

∂2

∂xi ∂x j
(σi j P̃ ), (12)

where σ = (σi j ) is a positive semidefinite matrix, that is,
symmetric with all of its eigenvalues being non-negative. We
mention that a kinetic approach to description of the diffusiv-
ity distribution has been examined in Ref. [8]. However, in
contrast to that approach, here we are considering the Fokker-
Planck equation for the joint distribution.

It is convenient to change x2 [i.e., the realization of � in
Eq. (10)] to the original diffusivity variable, D, and therefore
∂/∂ x2 = D ∂/∂ D. Likewise, the probability distribution be-
comes (1/D) P̃ (x, ln D, t ), where 1/D is the Jacobian factor.
This is the one to be identified with the joint probability
distribution in Eq. (8). Thus, Eq. (12) is explicitly written as
follows:

∂ P

∂ t
= − ∂

∂ x
(K1 P) − D

∂

∂ D
(K2 P) + ∂2

∂ x2
(σ11 P)

+ 2D
∂2

∂ x ∂ D
(σ12 P) + D

∂

∂ D

[
D

∂

∂ D
(σ22 P)

]
, (13)

where Ki’s and σi j’s are the functions of (x, D, t ), anew.
Now, we proceed into introduction of the hierarchical

structure. X and D are the fast and slow variables, respec-
tively, and this justifies the decomposition in Eq. (8). The
point is that the fast degree of freedom is significantly influ-
enced by the slow degree of freedom, whereas the slow degree
of freedom is independent of the fast degree of freedom. This
may be analogous to the Born-Oppenheimer approximation
[16] that is widely applied to the problems in quantum chem-
istry of molecules. Thus, we set

K2 = K2(D), (14)

σ22 = σ22(D). (15)

Then, substituting Eq. (8) into Eq. (13) with Eqs. (14) and
(15), we have

� (D)
∂ p (x, t | D)

∂ t

= −� (D)
∂

∂ x
[K1(x, D, t ) p (x, t | D)]

− D
∂

∂ D
[K2(D) p (x, t |D) � (D)]
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+ �(D)
∂2

∂ x2
[σ11(x, D, t ) p (x, t | D)]

+ 2D
∂

∂ D

{
� (D)

∂

∂ x
[σ12(x, D, t ) p (x, t | D)]

}

+ D
∂

∂ D

{
D

∂

∂ D
[σ22(D) p (x, t | D) � (D)]

}
. (16)

Based on the implementation of the hierarchical structure
mentioned above, this equation is separated as follows:

∂ p (x, t | D)

∂ t
= − ∂

∂ x
[K1(x, D, t ) p (x, t | D)]

+ ∂2

∂ x2
[σ11(x, D, t ) p (x, t | D)] (17)

for the fast variable that is referred to here as the conditional
Fokker-Planck equation, and

− ∂

∂ D
[K2(D) p (x, t |D) � (D)]

+ 2
∂

∂ D

{
� (D)

∂

∂ x
[σ12(x, D, t ) p (x, t | D)]

}

+ ∂

∂ D

{
D

∂

∂ D
[σ22(D) p (x, t | D) � (D)]

}
= 0 (18)

for the slow variable and the coupling between the hierarchies
through σ12. Equation (18) immediately leads to

− K2(D) p (x, t |D) � (D) + 2� (D)
∂

∂ x
[σ12(x, D, t )

×p(x, t | D)]+D
∂

∂ D
[σ22(D) p (x, t | D) � (D)]=c (x, t ),

(19)

where c (x, t ) is a certain function. Integrating Eq. (19)
with respect to x and using the normalization condition,∫ ∞
−∞ dx p (x, t |D) = 1, we have

−K2(D) � (D) + D
∂

∂ D
[σ22(D) � (D)] =

∫ ∞

−∞
dx c (x, t ),

(20)

provided that

σ12(x, D, t ) p (x, t | D) → 0 (x → ±∞) (21)

is naturally required [see Eq. (44) below]. Taking the integra-
tion of Eq. (20) over D and using the notation in Eq. (7), we
have

−〈K2(D)〉 − 〈σ22(D)〉 =
∫ ∞

0
dD

∫ ∞

−∞
dx c (x, t ), (22)

where the following condition has been imposed:

D σ22(D) � (D) → 0 (D → 0, ∞). (23)

This condition will in fact turn out to be satisfied [see
Eq. (40) below]. Since the left-hand side in Eq. (22) is

supposed to be finite [see Eqs. (40) and (43)], we have to set

c (x, t ) = 0 (24)

in order to avoid the divergence on the right-hand side in
Eq. (22). Moreover, we can further separate Eq. (19) with
Eq. (24). In fact, it can be rewritten as{

−K2(D) � (D) + D
∂

∂ D
[σ22(D) � (D)]

}
p (x, t | D)

+
{

2
∂

∂ x
[σ12 (x, D, t ) p (x, t | D)]

+ D σ22(D)
∂ p (x, t | D)

∂ D

}
� (D) = 0, (25)

from which the following equations are derived:

−K2(D) � (D) + D
∂

∂ D
[σ22(D) � (D)] = 0, (26)

2
∂

∂ x
[σ12 (x, D, t ) p (x, t | D)]+D σ22(D)

∂ p (x, t | D)

∂ D
= 0.

(27)

It is noted that this procedure is consistent since Eq. (26) is
precisely equal to Eq. (20) with Eq. (24).

Consequently, we obtain three key equations: Eq. (17) as
the conditional Fokker-Planck equation for the fast degree of
freedom, Eq. (26) for the slow degree of freedom, and Eq. (27)
for the coupling between these two hierarchies.

III. NON-GAUSSIAN NORMAL DIFFUSION

We are now in a position to apply the framework devel-
oped in Sec. II to the phenomenon of non-Gaussian normal
diffusion in view of diffusing diffusivity. Our purpose is to
determine K and σ in terms of the particle displacement and
diffusivity. More specifically, we wish to clarify under what
conditions the joint probability distribution in Eq. (8) with the
Gaussian in Eq. (2) with Eq. (4) and the diffusivity distribution
in Eq. (6) can be the solutions of Eqs. (17), (26), and (27).

First, let us analyze the conditional Fokker-Planck equation
(17). Since the location of the peak of the Gaussian in Eq. (2)
[with Eq. (4)] does not change in time, the drift term is absent:

K1 = 0. (28)

Substituting Eqs. (4) and (28) into Eq. (17), we have

− 1

2 t
+ x2

4D t2
= σ11(x, D, t )

(
x2

4D2 t2
− 1

2D t

)

− x

D t

∂ σ11(x, D, t )

∂ x
+ ∂2σ11(x, D, t )

∂ x2
.

(29)

This equation has a solution

σ11 = D, (30)

as expected.
Second, doing a manipulation similar to the above for

Eq. (26), we find that

K2(D) = D
d σ22(D)

d D
− D

D0
σ22(D) (31)
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is derived, using the diffusivity distribution in Eq. (6).
Finally, substituting Eq. (4) with Eq. (2) and a general

value, D, into Eq. (27), we obtain

∂ σ12(x, D, t )

∂ x
− x

2 D t
σ12(x, D, t )

+
(

x2

8 D t
− 1

4

)
σ22(D) = 0. (32)

To analyze this equation, here we make an assumption that the
hierarchical structure is stationary. That is,

σ12 = σ12(x, D). (33)

Then, in order for Eq. (32) with Eq. (33) to hold at any
time t > 0, the following equations must simultaneously be
satisfied:

∂ σ12(x, D)

∂ x
− 1

4
σ22(D) = 0, (34)

− x

2 D t
σ12(x, D) + x2

8 D t
σ22(D) = 0. (35)

These two equations are consistent with each other, and the
solution is found to be σ12(x, D) = (x/4) σ22(D). The odd
parity of σ12(x, t ) comes from the fact that the relevant
part of the Fokker-Planck operator in Eq. (13) should have
even parity, but this quantity is combined with the first-order
derivative in x. This is consistent with the even-parity nature
of the probability distributions in Eqs. (2) and (3). If the
analysis would separately be made in the cases x < 0 and
x > 0, ∂ x/∂ x = ∂ (−x)/∂ (−x) = 1. So, it may be useful
to employ the one-dimensional analog of the radial coordi-
nate variable, |x|, and to define ∂/∂ |x|. Then, the solution is
given by

σ12(x, D) = |x|
4

σ22(D). (36)

This indicates that the strength of the coupling between the
hierarchies increases as |x| becomes larger. It is also noted
that Eq. (36) in fact satisfies the requirement in Eq. (21) with
p (x, t | D) being the Gaussian.

Still it is necessary to determine K2(D) and σ22(D). This
can be done as follows. So far, we have found that the matrix,
σ , has the form

σ =
(

D (|x|/4) σ22(D)

(|x|/4) σ22(D) σ22(D)

)
. (37)

Since this 2 × 2 matrix has to be positive semidefinite, the
conditions

tr σ = D + σ22(D) � 0, (38)

detσ = D σ22(D) − x2

16
σ 2

22(D) � 0 (39)

have to be satisfied. Equation (38) is reasonable. On the other
hand, Eq. (39) seems problematic since it implies that x and
D might not be independent but constrained, in general. This
point can be overcome if σ22(D) has the form

σ22(D) = 16

L2
D, (40)

where L is a positive constant. Then, Eq. (39) gives rise to

|x| � L. (41)

Therefore, if L is large enough, then the problematic point
mentioned above will practically be resolved. A physical sig-
nificance of L is as follows. From Eqs. (2) and (3), Eq. (41)
implies

√
D t 
 L, (42)

which puts a constraint on the upper bound of the elapsed
time, t , given the values of D and L. In general, this is a
complicated issue since D is distributed according to � (D).
One possible way to overcome it is to set a cutoff, Dmax, as
in Ref. [8]. This is natural from the experimental viewpoint,
and, in this way, the upper bound of the elapsed time in
measurement can be evaluated. We also note that Eq. (40)
justifies the condition in Eq. (23). Finally, substituting Eq. (40)
into Eq. (31), we have

K2(D) = 16

L2
D

(
1 − D

D0

)
. (43)

In addition, we also have

σ12(x, D) = 4

L2
|x| D, (44)

from Eqs. (36) and (40). Equations (40) and (43) assure that
the left-hand side in Eq. (22) is finite, as supposed.

To summarize, we have determined all of the quantities
responsible for non-Gaussian normal diffusion: Eqs. (28) and
(30) for the fast degree of freedom, Eqs. (40) and (43) for
the slow degree of freedom, and Eq. (44) for the stationary
coupling between these two hierarchies.

IV. CONCLUDING REMARKS

We have formulated a theoretical framework for describ-
ing an exotic phenomenon of non-Gaussian normal diffusion
based on the stochastic process and the Fokker-Planck theory,
in which both the particle displacement and diffusivity are
treated as the random variables. Taking advantage of the large
separation of time scales in the dynamics, we have developed
a discussion that enables us to reveal the hierarchical structure
underlying the phenomenon. We have determined all of the
system-specific quantities in consistency with the joint proba-
bility distribution of the particle displacement and diffusivity
proposed in the literature.

This paper is a generalization of Ref. [17], in which only
the stationary solution of the Fokker-Planck equation with a
hierarchical structure is discussed.

The form of the joint probability distribution in Eq. (8)
with Eqs. (4) and (6) is, as mentioned in Sec. I, a basic
premise, and it is desirable to directly measure either the
conditional Gaussian distribution in Eqs. (2) and (4) or the
diffusivity distribution in Eq. (6), experimentally. Actually,
the exponential diffusivity distribution has been inferred in the
system of RNA-protein particles in cellular cytoplasm [18],
in spite of the fact that the diffusion property observed there
has been subdiffusion, not normal diffusion. A description of
such a probability distribution by use of the maximum entropy
method is discussed in Ref. [19].

042136-4



FOKKER-PLANCK APPROACH TO NON-GAUSSIAN … PHYSICAL REVIEW E 102, 042136 (2020)

We wish to mention an interesting discussion presented in
recent works in Refs. [20,21] about exponential distributions
such as the Laplacian in Eq. (3). It is based on the large
deviation theory for continuous time random walks [22] with
subordinations, where the number of a walker’s jumps is ran-
dom [1], corresponding to diffusing diffusivity.

Our final comment is on the claim made in Ref. [8]
that the diffusivity distribution in Eq. (6) may have a
power-law correction, � (D) = N Dα exp (−D/D0), where α

is a positive constant and N = 1/[Dα+1
0 	 (α + 1)] is the

normalization constant. In this case, Eq. (31) changes as

K2(D) = D dσ22(D)/d D − (D/D0 − α) σ22(D). A discus-
sion similar to that in Sec. III can be made also in such a case.
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