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Phase transitions in the classical exchange-anisotropic Kitaev-Heisenberg model
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The Kitaev model on the honeycomb lattice has been receiving substantial attention due to the discovery
of quantum spin liquid state associated with this model. Consequently, its classical partners such as the
Kitaev-Heisenberg (KH) model and associated phase transitions become concerned. Specifically, an intermediate
Kosterlitz-Thouless (KT) phase engaged in the transition from the high-temperature (T) disordered state to the
low-T sixfold degenerate state is predicted in the isotropic KH model [Phys. Rev. Lett. 109, 187201 (2012)], but
so far no sufficient experimental proof has been reported. In this work, we consider an essential extension of
this KH model on the honeycomb lattice by including the Kitaev exchange anisotropy that is non-negligible in
realistic materials. The associated phase transitions are thus investigated using the Monte Carlo simulations. It
is found that such an anisotropy will result in a degradation of the sixfold degeneracy of the ground state in the
isotropic KH model down to the fourfold or twofold degenerate ground state, and the finite-T phase transitions
will also be modified remarkably. Interestingly, the intermediate KT phase can be suppressed by this Kitaev
exchange anisotropy. This work thus provides a more realistic description of the physics ingredient with the
KH model and presents a possible explanation on absence of the intermediate phase in real materials where the
Kitaev exchange anisotropy can be more or less available.
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I. INTRODUCTION

During the past few years, the Kitaev model on the honey-
comb lattice hosting a quantum spin liquid ground state has
attracted a great deal of attention due to its important role in
basic physical research and its candidate platforms including
the iridates A2IrO3 (A = Li, Na) and related α-RuCl3 [1–7].
Consequently, the corresponding classical Kitaev-Heisenberg
(KH) model with the Heisenberg term available in real ma-
terials is also concerned, which exhibits fascinating physics
and emergent phenomena attributing to the honeycomb lattice
symmetry and competition between the spin-anisotropic Ki-
taev and isotropic Heisenberg exchange interactions [8,9].

For examples, the ground-state phase diagram in the
exchange parameter space exhibits several distinct phases
including: the ferromagnetic phase with spin configuration
shown in Fig. 1(a), the antiferromagnetic (AFM) stripy phase
in Fig. 1(b), the zigzag phase in Fig. 1(c), and the AFM Néel
phase in Fig. 1(d) [10–13]. The appearance of these phases
adds novel physics to such highly frustrated systems on one
hand, and on the other hand they can be used to explain the
emergent phenomena observed in real materials. One case
is iridates A2IrO3 whose magnetic properties should be de-
scribed by this KH model with involved contributions of these
phases [14–17].
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Indeed, earlier calculations based on the isotropic ver-
sion of this KH model, i.e., the Kitaev and Heisenberg
exchanges are isotropic, suggest that the competition between
the nearest-neighbor AFM Kitaev and ferromagnetic (FM)
Heisenberg exchanges is responsible for stabilizing the zigzag
state observed experimentally in Na2IrO3 [10], while further
neighboring and off-diagonal exchanges play an important
role in determining the magnetisms of Li2IrO3 [4]. More-
over, the long-range zigzag state is rather fragile and can be
replaced by a spin-glass state due to tiny impurity doping
[18,19], which has been reproduced by the Monte Carlo (MC)
simulations on the modified KH model [20,21]. Both the dis-
ordered Kitaev and Heisenberg exchanges caused by magnetic
substitution are suggested to be responsible for the doping
effects such as fragile zigzag state.

In addition, interesting phase transitions and critical be-
haviors of the isotropic KH model have been theoretically
uncovered, contributing a great deal to the development of
statistical mechanics [22,23]. For example, the finite-size scal-
ing analysis revealed that a critical Kosterlitz-Thouless (KT)
phase with continuously variable exponents is sandwiched by
a low-temperature (T) ordered phase and a high-T disordered
phase [12,24], and this intermediate KT phase and its con-
nection with experimental observations in realistic materials
have been often discussed. The phase transition of this KH
model is rather similar to that of the six-state clock model
to some extent, attributing to the sixfold degeneracy of the
ordered phases in the two models [25].

With continuous attention to the phase transitions and crit-
ical behaviors for this isotropic KH model, strong interest
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FIG. 1. Spin configurations in (a) the ferromagnetic order, (b) the
stripy order, (c) the zigzag order, and (d) the Néel order. Solid and
empty circles represent the up spins and down spins, respectively.
(X, Y, Z) denote the three bonds of the honeycomb lattice.

goes to the transition behaviors of some modified KH models
in order to better fit realistic physics. Along this line, one
such modification refers to the so-called anisotropic Kitaev
exchange. In fact, it is noted that the isotropic Kitaev ex-
change should be an ideal extreme for a realistic system, and
commonly the exchange should be anisotropic, although the
anisotropy may be strong or weak. For example, the exchange
anisotropy may be induced in A2IrO3 by tiny ion substitution
and/or uniaxial strain. The honeycomb lattice distortion, as
reported in Li-doped Na2IrO3, can also certainly result in the
so-called Kitaev exchange anisotropy [26]. More importantly,
so far no explicit evidence with the existence of this inter-
mediate KT phase, to our best knowledge, has been reported
experimentally, raising concern with the reason why this well-
defined intermediate KT phase predicted in the isotropic KH
model is absent in real materials. While the possible reason is
connected with the impact of inevitable defects and inhomo-
geneity, what is the underlying mechanism for such defects or
inhomogeneity? Is the exchange anisotropy as induced by the
inhomogeneity the possible reason? Indeed, an involvement
of such Kitaev exchange anisotropy may change the ground
state and the stability of the intermediate KT phase, and an
extensive investigation of this anisotropic KH model becomes
urgently needed.

In fact, the present work will show that the sixfold degener-
acy of the ordered phase in the isotropic KH model would be
degraded down to fourfold or even twofold degeneracy with
increasing Kitaev exchange anisotropy. This change is ex-
pectable and similar prediction was given in our earlier work
on the exchange-anisotropy induced variation of the phase
transitions in the anisotropic triangular Ising model [27]. In
such sense, the phase transitions and critical behaviors of the
exchange-anisotropic KH model should be checked, and in
particular the stability of the intermediate KT phase should be
discussed carefully, besides additional ingredients of physics
to understand those experimentally observed but not yet well
understood phenomena.

In this work, we start from such a classical KH model with
Kitaev exchange anisotropy, i.e., the exchange-anisotropic
KH (EAKH) model, and investigate the ground-state and
relevant phase-transition behaviors in the parameter space.
A major outcome is the disappearance of the intermediate
KT phase predicted by the isotropic KH model. The phase
transition from the high-T paramagnetic state to the low-T
fourfold degenerate state is straightforward at finite temper-
ature, thus explaining the absence of such intermediate KT
phase in experimental observation. One believes that this work
may be a substantial step towards an understanding of more
emergent physics with the classical KH model.

II. THE EAKH MODEL AND METHOD OF SIMULATIONS

We first present the EAKH model as a generalized version
of the original isotropic KH model. The ground states will be
calculated in this section, while the phase diagram and phase
transitions will be presented in Secs. III and IV, respectively,
for two different schemes, i.e., the simple scheme and ex-
tended scheme to be addressed below. These two schemes can
be used to investigate various phase transitions and relevant
critical properties.

A. The EAKH Model

The Hamiltonian of the proposed EAKH model can be
written as

H = −2JK

⎛
⎝∑

〈i j〉X

Sx
i Sx

j +
∑
〈i j〉Y

Sy
i Sy

j + μ
∑
〈i j〉Z

Sz
i Sz

j

⎞
⎠

+ JH

∑
〈i j〉

SiS j, (1)

where the first term is the Kitaev interaction with subscripts
(X, Y, Z) denoting the three bonds (depicted in Fig. 1) of the
honeycomb lattice, Si = (Sx

i , Sy
i , Sz

i ) represents the Heisen-
berg spin with unit length on site i and three components along
the cubic axes x, y, and z of the IrO6 octahedra. Factor μ is the
anisotropy factor (0 < μ < 2) measuring the Kitaev exchange
anisotropy defined along the z axis. The second term is the
Heisenberg interaction between the nearest-neighbor spins
[2]. Here it is noted that the Heisenberg exchange anisotropy
may be considered too. Nevertheless, one can see that such an
anisotropy hardly affects the degeneracy of these states and
thus is not considered here for simplicity, although it could be
also available in real materials.

It is known that the isotropic KH model exhibits the sixfold
degenerate ground state, and accessing one of the six possible
states at low T is attributed to the competition between the
Kitaev exchange JK and Heisenberg exchange JH , in which
the spins are oriented along one of the cubic directions which
is spontaneously chosen by the system. When the Kitaev
exchange anisotropy is introduced, the sixfold degeneracy of
the ground state is decreased to a fourfold or twofold one,
depending on the value of μ, i.e., the spins in the ground
state are in-plane or out-of-plane oriented. As a matter of
fact, the ground state and corresponding phase boundaries can
be determined by comparing the total energy terms of these
phases as functions of JK , JH , and μ. These calculations are
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TABLE I. Internal energies as functions of α and μ in the possi-
ble ground states.

Fourfold degenerate Twofold degenerate

Néel AF state EN
xy = 2JK − 3JH EN

z = 2μJK − 3JH

Stripy state ES
xy = −2|JK | − JH ES

z = −2μ|JK | − JH

Zigzag state EZ
xy = −2|JK | + JH EZ

z = −2μ|JK | + JH

Ferromagnetic state EF
xy = −2JK + 3JH EF

z = −2μJK + 3JH

straightforward and the results are summarized in Table I. For
the fourfold degenerate states, the energy terms per site are
(EN

xy, ES
xy, EZ

xy, and EF
xy) for the Néel state, the stripy state,

the zigzag state, and the ferromagnetic state, respectively,
noting the superscripts (N, S, Z, F) standing for the four states
and the subscript xy for the in-plane spins. For the twofold
degenerate states, these energy terms are (EN

z , ES
z , EZ

z , EF
z ), re-

spectively, noting the subscript z standing for the out-of-plane
spins.

B. Monte Carlo simulation

Subsequently, we investigate the finite-T phase transition
and critical behaviors of the EAKH model based on the Monte
Carlo (MC) simulations on various lattices with a total number
of sites equal to N = 2 × L × L using the over-relaxation
[28], heat-bath [29], and temperature-exchange methods
[30]. Typically, the initial 5 × 105 MC steps (over-relaxation
sweeps) are discarded for equilibrium consideration and an-
other 5 × 105 MC steps are retained for statistical averaging.
We take an exchange sampling after every 10 MC steps, and
perform a heat-bath sweep per 10 MC steps.

Following the earlier work [24], the order parame-
ters for describing these states can be defined, respec-
tively, as MF = ∑

i (SiA)/N for the ferromagnetic state
[Fig. 1(a)], MS = ∑

i (SiA − SiB + SiC − SiD)/N for the stripy
state [the four sublattices are shown in Fig. 1(b)], MZ =∑

i (SiA + SiB − SiC − SiD)/N for the zigzag state [Fig. 1(c)],
and MN = ∑

i (SiA − SiB)/N for the Néel state [Fig. 1(d)].
Furthermore, the corresponding susceptibilities and Binder’s
cumulants are also calculated to estimate the transition tem-
peratures [31].

III. PHASE TRANSITIONS TO THE STRIPY STATE
AND NÉEL STATE

Following the earlier work, our major attention first goes
to a simple scheme for the exchanges, for the convenience
of comparison and discussion. In this simple scheme, a ratio
factor α(0 < α < 1) is introduced to measure the relative
magnitudes of ferromagnetic exchange JK and AFM ex-
change JH , satisfying relation JK = α and JH = 1 − α [3].
The EAKH model is thus discussed within this scheme,
including the as-generated phase transitions in the (α,μ) pa-
rameter space and the associated critical behaviors.

In the absence of exchange anisotropy, i.e., μ = 1, the
ground state favors the two-sublattice AFM Néel state for
0 < α < 1/3, and the AFM stripy state for 1/3 < α < 1.
Subsequently, the degeneracy of the ground state is mainly

FIG. 2. Ground-state phase diagram of the EAKH model for the
simple scheme.

determined by parameter μ, as shown in Fig. 2 where the
calculated ground-state phase diagram is presented. In details,
for a fixed μ, the critical line α = 1/(2 + μ) differentiates
the Néel state and the stripy state, noting that the competi-
tion between the Kitaev exchange and Heisenberg exchange
determines the ground state. Moreover, the degeneracy of the
ground stripy (Néel state) stabilized for α > 1/(2 + μ)[α <

1/(2 + μ)] is degraded down to the fourfold (twofold) de-
generacy for μ < 1 and the twofold (fourfold) degeneracy for
μ > 1. It is noted that the zigzag state and FM state cannot
be stabilized within this simple scheme, while they can be the
ground states within the extended scheme to be discussed in
Sec. IV.

A. Phase transition to the stripy state

The stripy state occupies the region of α > 1/(2 + μ)
in the phase diagram. Following the earlier work [24], the
histogram method is used to investigate the discreteness of
the order parameter, considering the fact that the projections
preserve the cubic symmetry of the model and well reflect the
orientation of the order parameter. The corresponding results
are shown in Fig. 3 where the simulated projection patterns of
the stripy order parameter MS on the (111) plane for α = 0.55
are presented. It is seen that for μ = 1, i.e., the isotropic
cases, the sixfold peaked pattern is observed, as shown in
Fig. 3(a), demonstrating the sixfold degeneracy of the stripy
phase with order parameter aligned along one of the cubic

FIG. 3. The low-T distribution of the projections of the stripy
order parameter on the (111) plane for α = 0.55 for (a) μ = 1, and
(b) μ = 0.8.
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FIG. 4. Binder cumulant Bs as a function of T for different sys-
tem size L for α = 0.55 for (a) μ = 1, and (b) μ = 0.8. The log-log
plots of the order parameter mS as a function of L log(mS) vs log(L)
at various temperatures for (c) μ = 1, and (d) μ = 0.8. The solid
curves indicate the linear behavior that corresponds to a power-law
dependence mS ∼ L−η/2.

axes. For the anisotropic cases, e.g., by setting μ = 0.8, the
stripy order with the spins oriented along the z axis cannot be
stabilized anymore, resulting in the fourfold peaked pattern of
the distribution function of stripy order, as clearly shown in
Fig. 3(b).

The critical temperature Tc for the stripy state, at which
the long-range order is destroyed, can be estimated from the
crossing of Binder’s fourth-order cumulant Bs for different lat-
tice sizes L, noting that the Bs(T ) curves for different L usually
intersect at the critical point for continuous phase transitions.
The simulated results for μ = 1 and μ = 0.8 are plotted in
Figs. 4(a) and 4(b), respectively. It is clearly shown that the
critical point Tc significantly shifts toward the high-T side
when the Kitaev exchange anisotropy is induced, attributed to
the reduced degeneracy, noting Tc = 0.12 ± 0.006 for μ = 1
(isotropy) and Tc = 0.212 ± 0.006 for μ = 0.8 (anisotropy).

Subsequently, we investigate the critical behavior of the
phase transition using the finite-size scaling analysis and pay
particular attention to the cases for T > Tc, considering the
fact that the long-range ordered state is developed at T ∼
Tc. Similarly, a two-dimensional complex order parameter,
mS = ∑6

j=1 |Mj,S|exp(ιθ j ) with θ j = πn j/3, n j = 0, . . . , 5 is
defined to characterize the six possible ordered states (the or-
der parameters of the Néel, zigzag, and FM states are similarly
defined by parameters mN , mZ , and mF , respectively) [32].
The evaluated data are plotted in Figs. 4(c) and 4(d) using
the log-log plots of mS as functions of L for various T at
μ = 1 and μ = 0.8, respectively. One sees immediately the
distinctly different behaviors right above Tc between the two
cases μ = 1 and μ = 0.8: the well-defined linear dependence
in a relatively wide T range above Tc for μ = 1, the isotropic
model, but no such range exists for μ = 0.8, the anisotropic
model. We address this difference below.

It is well known that for a KT phase, the order parameter
follows the power-law dependence of lattice size L, i.e., mS ∼
L−η/2, making the linear dependence of log(mS ) on log(L).
This linear dependence is one of the intrinsic characters for the
existence of a KT phase, often used to identify the existence of
an intermediate KT phase in the present model. Therefore, for
the μ = 1 case, the linear log(mS ) ∼ log(L) behavior in the
T window from T = Tc ∼ 0.12 to T = 0.15 is clearly iden-
tified. Furthermore, for a KT phase, the critical exponent η

should be a T-dependent continuous variable. Our fitting of the
data between T = 0.12 and T = 0.15, i.e., in the T window
�T = T − Tc = 0.03, does show the continuous variation of
exponent η from η1 = 0.112 (T = 0.12) to η2 = 0.21 (T =
0.15), constituting the two boundary values for this KT phase.
Our results thus confirm the existence of the intermediate KT
phase for the μ = 1 case on one hand. On the other hand, the
two boundary values, η1 = 0.112 and η2 = 0.21, agree well
with the six-state clock model where η1 = 1/9 and η2 = 1/4
revealed theoretically [33]. Here, without loss of generality,
the linear behavior is identified when the calculated R square
for the best linear fitting satisfies R2 > 0.995.

Then we turn to the anisotropic case with μ = 0.8. Indeed,
at the critical point Tc = 0.212, the linear log(mS ) ∼ log(L)
behavior remains true, as shown in Fig. 4(d). The best-fitted
critical exponent at Tc is estimated to be η = 0.12, only
slightly deviating from η1 = 1/9. Nevertheless, beyond the
critical point Tc, the power law is clearly broken and the
linear log(mS ) ∼ log(L) behavior is no longer available. Here
it is clearly identified from Fig. 4(d) that the data at T =
0.218 begin to deviate from the linear dependence, noting
Tc = 0.212 and �T = T − Tc = 0.006. At T = 0.224 and
�T = T − Tc = 0.012, the log(mS ) ∼ log(L) curve becomes
seriously curved. To this end, one can conclude that the inter-
mediate KT phase existing in the isotropic KH model (μ = 1)
is completely suppressed by the induced Kitaev exchange
anisotropy (μ = 0.8).

B. Phase transition to the Néel state

The suppression of the intermediate KT phase by the Ki-
taev exchange anisotropy, as revealed above for the stripy
state as the ground state, is also applicable to the cases of
other ground states. Here we show the results on the Néel
ground state. The fourfold degenerate Néel state occupies the
region of μ > 1 and α < 1/(2 + μ) in the phase diagram.
Figure 5(a) shows the calculated Binder’s cumulant BN as
a function of T for various L at α = 0.1 and μ = 1.2. The
critical point for this continuous phase transition is estimated
to be Tc = 0.304 ± 0.006. This estimated Tc is also confirmed
by the log-log plots of order parameter mN as a function of
L, as shown in Fig. 5(b). Specifically, the linear behavior is
observed around Tc where the critical line is characterized
by η = 0.13. However, the data at other temperatures (dashed
curves) show remarkable deviation from the linear behavior,
demonstrating again the absence of the intermediate phase in
the EAKH model with the fourfold degenerate ground state.

In short, it is suggested that the critical behavior for the
phase transitions from the high-T disordered phase to the
low-T long-range order depends on the degeneracy of
the ground state, which can be effectively modulated by the
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FIG. 5. For α = 0.1 and μ = 1.2, (a) Binder cumulant BN as a
function of T for different L, and (b) the log-log plots of mN as a
function of L at various temperatures.

exchange anisotropy available in real materials [34,35]. Un-
like the isotropic KH model or the six-state clock model, the
reported intermediate KT phase does not exist in the EAKH
model, most likely attributing to the degeneracy reduction of
the ground state. As a matter of fact, the phase transition to
the twofold degenerate stripy state or Néel state has also been
investigated based on the same method, and the intermediate
phase is excluded, while the corresponding results are not
shown here for brevity.

IV. PHASE TRANSITIONS TO THE ZIGZAG
STATE AND FM STATE

Beyond this simple scheme, one needs to investigate a
more extended scheme where the magnitudes of JK and JH

are defined by a more general relation. This extension follows
the experimental observations and becomes of high concern.
In fact, a zigzag state was experimentally reported below the
critical point in Na2IrO3 and such a state seems not available
in the simple scheme discussed above. However, it can be also
potentially explained by this EAKH model by defining the
exchange parameters in a more general way as JK = −Asinϕ

and JH = Acosϕ [36]. In this work, we call this definition the
extended scheme.

It should be mentioned that the simple scheme can be
somehow covered by setting the value of ϕ with JK = −Asinϕ

and JH = Acosϕ in the 3π/2 < ϕ < 2π window, correspond-
ing to the simple scheme with JK = α and JH = 1 − α in the
0 < α < 1 window. In this sense, the two schemes address
the two slightly different aspects of the same EAKH model,
allowing us to investigate all the possible phases, including
the zigzag state and FM state here. For example, setting
ϕ = 11π/16 and A = 1, the experimentally reported zigzag
ground state can be reproduced. If the anisotropy factor is set
as μ = 0.8, the state degeneracy is degraded from the sixfold
to the fourfold.

The log-log plots of the simulated order parameter mZ as a
function of L at various T are presented in Fig. 6(a). A linear
behavior is observed at the critical point Tc = 0.292 where
the critical line is characterized by η = 0.125. Similarly, the
power-law relationship between mZ and L is not available
at other temperatures, demonstrating again the direct phase
transition from the high-T disordered state to the low-T zigzag
state, without any intermediate KT phase. To our best knowl-
edge, no sufficient experimental results have been reported

FIG. 6. The log-log plots of (a) mZ for ϕ = 11π/16, and (b) mF

for ϕ = 9π/8 as a function of L at various temperatures for μ = 0.8.

to confirm the intermediate phase in the honeycomb lattice
iridates. It was suggested that this absence is partially ascribed
to the existence of defects and inhomogeneities. Certainly,
these defects and inhomogeneities would at least introduce
the deviation of the local Kitaev exchange from the isotropic
property, disabling the sixfold degeneracy of the ground state
[37,38].

We can also discuss the phase transition to the FM state
for integrity of this work, and present the simulated results
in Fig. 6(b) where the log-log plots of mF as a function of
L at various T for ϕ = 9π/8 and μ = 0.8 are plotted. In
this case, the fourfold degenerate FM ground state is favored
and the data show a linear behavior only in the very narrow
T range around Tc = 0.438 with critical exponent η = 0.13,
further confirming the earlier conclusion that no intermediate
KT phase is available.

Finally, we tend to compare the present work with the
phase transition in related models such as the q-state clock
model. As reported earlier, the critical properties of the
isotropic KH model are in agreement with the six-state clock
model, i.e., the intermediate KT phase has its critical exponent
η variable continuously from 1/9 to 1/4 [33,39]. However,
earlier work clearly revealed that there is only one transition
from the high-T disordered phase to the low-T long-range
phase, indicating the absence of any intermediate phase for
q < 5 [40,41]. To some extent, the finite-T phase transition to
the fourfold degenerate state in the present EAKH model may
be related to the transition in the four-state clock model or the
four-state Potts model [40,42]. It should be mentioned that
the critical behavior of phase transition toward the fourfold
degenerate state seems to be much more complicated than
a simple extension [34], which deserves further investiga-
tion in the future. Moreover, the phase diagrams of extended
KH models including extra bond-dependent anisotropic terms
have been discussed in earlier works [43–47], but the critical
behaviors remain to be further clarified.

Given these discussions, we believe that our work shows
the significance of the exchange anisotropy that does result in
a degradation of the sixfold degeneracy of the ground state
in the isotropic KH model to the fourfold degenerate state
and suppresses the intermediate phase. This effect can be an
important clue for future study.

V. CONCLUSION

In conclusion, we have studied the phase transitions in
the classical KH model with additional Kitaev exchange
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anisotropy. The sixfold degeneracy of the ground state in the
isotropic model is degraded to a fourfold or a twofold one
by the introduced anisotropy, resulting in the suppression of
the critical intermediate phase. This property is available in
all the finite-T phase transitions to the fourfold degenerate
phases including the stripy phase, the Néel phase, the zigzag
phase, and the ferromagnetic phase, which may serve as
one of the reasons for the missing of intermediate phase in
experiments.

ACKNOWLEDGMENTS

The work is supported by the Natural Science Founda-
tion of China (Grants No. 51971096 and No. 51721001), the
Science and Technology Program of Guangzhou (Grant No.
2019050001), the Natural Science Foundation of Guangdong
Province (Grant No. 2019A1515011028), and the Science and
Technology Planning Project of Guangzhou in China (Grant
No. 201904010019).

[1] A. Kitaev, Ann. Phys. 321, 2 (2006).
[2] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205

(2009).
[3] J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev. Lett.

105, 027204 (2010).
[4] J. G. Rau, E. K.-H. Lee, and H.-Y. Kee, Phys. Rev. Lett. 112,

077204 (2014).
[5] A. Banerjee, P. Lampen-Kelley, J. Knolle, C. Balz, A. A. Aczel,

B. Winn, Y. H. Liu, D. Pajerowski, J. Q. Yan, C. A. Bridges, A.
T. Savici, B. C. Chakoumakos, M. D. Lumsden, D. A. Tennant,
R. Moessner, D. G. Mandrus, and S. E. Nagler, npj Quant.
Mater. 3, 8 (2019).

[6] J. Wang, B. Normand, and Z.-X. Liu, Phys. Rev. Lett. 123,
197201 (2019).

[7] J. S. Wen, S. L. Yu, S. Y. Li, W. Q. Yu, and J. X. Li, npj Quant.
Mater. 4, 12 (2019).

[8] L. Janssen, E. C. Andrade, and M. Vojta, Phys. Rev. Lett. 117,
277202 (2016).

[9] G. W. Chern, Y. Sizyuk, C. Price, and N. B. Perkins, Phys. Rev.
B 95, 144427 (2017).

[10] J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev. Lett.
110, 097204 (2013).

[11] Y. Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale, W.
Ku, S. Trebst, and P. Gegenwart, Phys. Rev. Lett. 108, 127203
(2012).

[12] C. C. Price and N. B. Perkins, Phys. Rev. Lett. 109, 187201
(2012).

[13] J. Oitmaa, Phys. Rev. B 92, 020405(R) (2015).
[14] X. Liu, T. Berlijn, W.-G. Yin, W. Ku, A. Tsvelik, Y.-J. Kim, H.

Gretarsson, Y. Singh, P. Gegenwart, and J. P. Hill, Phys. Rev. B
83, 220403(R) (2011).

[15] F. Ye, S. X. Chi, H. Cao, B. C. Chakoumakos, J. A. Fernandez-
Baca, R. Custelcean, T. F. Qi, O. B. Korneta, and G. Cao, Phys.
Rev. B 85, 180403(R) (2012).

[16] J. Reuther, R. Thomale, and S. Rachel, Phys. Rev. B 90,
100405(R) (2014).

[17] S. C. Williams, R. D. Johnson, F. Freund, S. Choi, A. Jesche, I.
Kimchi, S. Manni, A. Bombardi, P. Manuel, P. Gegenwart, and
R. Coldea, Phys. Rev. B 93, 195158 (2016).

[18] S. Manni, Y. Tokiwa, and P. Gegenwart, Phys. Rev. B 89,
241102(R) (2014).

[19] H. Lei, W.-G. Yin, Z. Zhong, and H. Hosono, Phys. Rev. B 89,
020409(R) (2014).

[20] E. C. Andrade and M. Vojta, Phys. Rev. B 90, 205112 (2014).
[21] W. P. Cai, Z. R. Yan, R. M. Liu, M. H. Qin, M. Zeng, X. B. Lu,

X. S. Gao, and J.-M. Liu, J. Phys.: Condens. Matter 29, 405806
(2017).

[22] S. S. Zhang, Z. T. Wang, G. B. Halász, and C. D. Batista, Phys.
Rev. Lett. 123, 057201 (2019).

[23] P. S. Anisimov, F. Aust, G. Khaliullin, and M. Daghofer, Phys.
Rev. Lett. 122, 177201 (2019).

[24] C. Price and N. B. Perkins, Phys. Rev. B 88, 024410 (2013).
[25] M. S. S. Challa and D. P. Landau, Phys. Rev. B 33, 437

(1986).
[26] G. Cao, T. F. Qi, L. Li, J. Terzic, V. S. Cao, S. J. Yuan, M.

Tovar, G. Murthy, and R. K. Kaul, Phys. Rev. B 88, 220414(R)
(2013).

[27] R. M. Liu, W. Z. Zhuo, J. Chen, M. H. Qin, M. Zeng, X. B. Lu,
X. S. Gao, and J.-M. Liu, Phys. Rev. E 96, 012103 (2017).

[28] M. Creutz, Phys. Rev. D 36, 515 (1987).
[29] J. A. Olive, A. P. Young, and D. Sherrington, Phys. Rev. B 34,

6341 (1986).
[30] K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604

(1996).
[31] K. Binder, Phys. Rev. Lett. 47, 693 (1981).
[32] G. Ortiz, E. Cobanera, and Z. Nussinov, Nucl. Phys. B 854, 780

(2012).
[33] J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson,

Phys. Rev. B 16, 1217 (1977).
[34] A. Kalz and A. Honecker, Phys. Rev. B 86, 134410 (2012).
[35] R. M. Liu, W. Z. Zhuo, S. Dong, X. B. Lu, X. S. Gao, M. H.

Qin, and J.-M. Liu, Phys. Rev. E 93, 032114 (2016).
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