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Thermoremanent magnetization data for the three-dimensional Edwards-Anderson (EA) spin glass are gen-
erated using the waiting time method as a simulational tool and interpreted using record dynamics. We verify
that clusters of contiguous spins are overturned by quakes, nonequilibrium events linked to record-sized energy
fluctuations, and we show that quaking is a log-Poisson process, i.e., a Poisson process whose average depends
on the logarithm of the system age, counted from the initial quench. Our findings compare favorably with
experimental thermoremanent magnetization findings and with the spontaneous fluctuation dynamics of the EA
model. The logarithmic growth of the size of overturned clusters is related to similar experimental results and to
the growing length scale of the spin-spin spatial correlation function. The analysis buttresses the applicability of
the waiting time method as a simulational tool, and of record dynamics as a coarse-graining method for aging
dynamics.
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I. INTRODUCTION

The multiscale relaxation process called aging is ob-
served in, e.g., spin-glasses [1–3], colloidal suspensions
[4,5], vortices in superconductors [6], and evolving biologi-
cal and cultural ecologies [7–9]. Important aspects of aging
phenomenology have been elucidated by spin-glass linear
response experiments [1–3], including thermoremanent mag-
netization (TRM) studies of memory and rejuvenation effects
[1,10–12], subaging, and end of aging behavior [13,14]. Nu-
merical simulations [15–20] of the Edwards-Anderson (EA)
model [21] provide additional insight and a test of theoretical
assumptions.

In TRM experiments, the system is thermalized in a mag-
netic field H and then thermally quenched at time t = 0 (here
we gloss over the fact that an instantaneous quench is not
experimentally achievable) below Tc, the spin-glass critical
temperature. At t = tw the field is cut and the magnetization
decay is measured for t > tw. Note that field removal and
time origin are usually taken to coincide, in which case t
notationwise corresponds to our t − tw.

Record dynamics [22,23] (RD) deals with complex sys-
tems [24] lacking time translational invariance and evolving
through a series of equilibrium-like configurations of in-
creasing duration. This experimental and/or observational
background can be theoretically associated with a hierarchy
of dynamical barriers and, in a second step, with a hierarchy
of nested ergodic components [25], each predominantly found
in a stationary, or pseudoequilibrium, state.

RD highlights the irreversible events, called quakes, bring-
ing the system from one pseudoequilibrium state to the next.
It posits that quakes constitute a Poisson process whose
average depends on the logarithm of time, for short a log-
Poisson process. The transformation t → ln t then produces
a log-time homogeneous coarse-grained description of aging,

yielding specific predictions for experimental and numerical
observations.

An analysis of experimental TRM data [26] and simula-
tions of the zero-field-cooled magnetic linear response of the
three-dimensional (3D) EA model with Gaussian couplings
[17] make use of RD, and they identify quakes as anoma-
lously large magnetic fluctuations. More recently [20], the
same model was simulated for a range of low temperatures
in zero field, with the waiting time method (WTM) [27] as a
simulational tool. Quakes are associated with records in the
time series of energy values produced by the simulation, and
real-valued event times are assigned to them, providing the
statistics needed to ascertain the log-Poissonian nature of the
quaking process.

Following the same methodology, the present study aims
to show the agreement between WTM simulations and ex-
perimental descriptions, and the ability of RD to predict the
key features of spin-glass dynamics. To this end, we first
demonstrate the log-Poisson nature of the quaking process,
and then we check RD predictions on the time dependence
of the TRM and the system excess energy [17,26], Finally,
the real-space effect of quakes is described in terms of the
near simultaneous overturning of a cluster of adjacent spins,
i.e., a spin-flip cascade over a barrier. This is compared with
experimental results, where clusters of a similar nature are
extracted from TRM traces [28].

The rest of the paper is organized as follows: In Sec. II
the model and the simulation method are briefly described.
Section III is devoted to the simulation results, and Sec. IV to
a summary and a conclusion.

II. MODEL AND SIMULATION PROTOCOL

This section closely follows Ref. [20], to which we re-
fer for additional details. Essential information, including
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differences from the above reference, are given here for the
reader’s convenience.

We consider an Ising EA spin glass [21] placed on a cubic
grid with linear size L = 20 and periodic boundary conditions.
Each of the 2N configurations is specified by the value of N =
L3 dichotomic spins, and has, in a magnetic field H , an energy
given by

H(σ1, σ2, . . . , σN ) = −1

2

N∑
i=1

∑
j∈N (i)

Ji jσiσ j − H
N∑

i=1

σi, (1)

where σi = ±1 and where N (i) denotes the six nearest neigh-
bors of spin i. For j < i, the Ji j’s are drawn independently
from a Gaussian distribution with zero average and unit vari-
ance. Finally, Ji j = Jji and Jii = 0. All parameters are treated
as dimensionless. For H = 0, the model has a phase transition
from a paramagnetic to a spin-glass phase at a critical temper-
ature, which in Ref. [29] is estimated to be Tc = 0.9508.

Our system is thermalized at temperature T0 = 3 in a mag-
netic field H = 0.1, instantaneously quenched at time t = 0
to temperatures T = 0.5, 0.6, . . . , 1, and then left to age
isothermally. At time tw, the magnetic field is removed and
the magnetization decay is observed as a function of time. We
consider three values of tw: 10, 100, and 200.

The real-space manifestation of the quakes in the EA
model are cascade events, where clusters of adjacent spins flip
coherently. The distinction between cascade events and scat-
tered flips is moot in standard MC algorithms, e.g., parallel
tempering [30], since consecutive queries are always spatially
uncorrelated, and the shortest available “time” scale is a MC
sweep. The rejectionless waiting time method (WTM) [27],
where “waiting time” refers to the time between two succes-
sive moves, generates a Markov chain closer to a physical
relaxation process than is the case for standard MC algo-
rithms.

Each basic degree of freedom, e.g., a spin i, performs a
Poisson process whose characteristic timescale τi depends on
the interactions with its neighbors. Any state change of the
neighbors resets the process and requires the recalculation of
τi. Every spin has a flip time at which it would flip if nothing
else happened, and the spin that actually flipped is the one
with the earliest flip time. Each spin flip in a simulation is
thus associated with an intrinsic real-valued time variable t ,
and spatially and temporally localized dynamical events are
possible and can be precisely identified.

When the WTM is applied to the EA model, spin i stays
put for an exponentially distributed time interval τi, unless
one of its neighbors flips. The mean waiting time τi to its
next possible move hinges on the energy change �Ei such
a move would entail. Assuming �Ei > 0, the situation is
locally metastable, but an updated value of �Ei due to activity
in the neighborhood requires a recalculation of the waiting
time. In the unstable situation in which �Ei < 0, the waiting
time is with high probability very short and the spin quickly
flips. A flip can in turn create a new unstable situation in the
neighborhood, and iterating this process generates a sequence
of neighboring spins quickly flipping one after the other.
When no further energy loss is possible, the process stops and
a new metastable configuration is created differing from its

predecessor in the orientation of a spatially connected cluster
of spins.

To detect a quake, we follow Ref. [20] and use two
“record” energy values in combination with a subdivision
of the time axis in short intervals of equal duration δt . The
quantity E (t ) is the energy as a function of time. The two
record values used are the “best so far” energy Ebsf (t ) and the
“highest so far” energy Eh(t ). The former is the least energy
seen during the simulation up to the “current” time t ,

Ebsf (t ) = min
0<t ′<t

(E (t ′)), (2)

and the latter is the largest energy value seen, relative to the
best so far energy,

Eh(t ) = max
0<t ′<t

(E (t ′) − Ebsf (t ′)). (3)

For simplicity, the system energy E is measured relative to
Ebsf and its current position on the time axis is continuously
tracked. A quake alert device with three states 0, 1, and 2
is utilized for quake identification. State 0 covers standard
fluctuation dynamics, state 1 is reached when Eh is updated,
i.e., increased, and state 2 is reached when Ebsf is subsequently
updated, i.e., decreased. At this point, an unfolding quake is
detected and the alert level is reset to 0. The quake event is
deemed to have terminated once time exceeds the boundary
of the current δt subinterval of the time axis. The spin cluster
that changed orientation during the quake is identified, and
the time at which the quake occurred is registered. In [20], the
same procedure is followed except that the detection device
there has two states rather than three. State 1, which triggers
quake detection, is reached if either Eh or Ebsf is updated. We
modified the algorithm to avoid an excessive number of events
being registered right after magnetic field removal.

III. RESULTS

A. Log-Poisson statistics

In this section, we show that the quakes extracted from our
TRM data, i.e., after field removal at times t1 < t2 · · · < tk · · · ,
with t1 > tw, are a Poisson process whose average depends
on the logarithm of tk/tk−1. Since the analysis deals with the
distribution of inter-quake times, the waiting time tw does not
explicitly enter the discussion.

A quake that flips a cluster can facilitate the overturning
of a partly overlapping or neighboring cluster. Quakes can
therefore be interdependent in regions of configuration space
extending well beyond the correlation length associated with
thermal equilibrium fluctuations.

In a large system, quake to quake correlations, not to be
confused with thermal correlations, will eventually die out and
temporally close, but spatially distant successive quakes will
then be uncorrelated. We focus on a spatial domain where
quakes are all interdependent, and where the transformation
t → ln t captures all temporal correlations. Quaking is then
described by a memoryless Poisson process whose average
is proportional to the logarithm of time, i.e., a log-Poisson
process.

To ascertain if this is actually the case, it suffices to check
whether the log-waiting times between successive events have
an exponential PDF with unit average. Log-waiting times are

042131-2



RECORD-DYNAMICS DESCRIPTION OF SPIN-GLASS … PHYSICAL REVIEW E 102, 042131 (2020)

0 2 4 6 8
x

10-4

10-3

10-2

10-1

100

101

F
 ln

(x
)

100 102 104

t/t
w

0

5

10

15

 n
q

FIG. 1. Symbols: PDF of “logarithmic waiting times” �ln, for
the aging temperatures T = 0.5. Dotted line: fit to the exponential
form y(x) = rqe−rqx with rq = 1.275. Inset: the squares show the
average number of quakes vs the logarithm of t/tw for tw = 10.
The hatched line depicts the fitted function y = r′

q ln t − 0.2388 with
r′

q = 1.410 while the full line makes use of the logarithmic rate rq.
The fact that r′

q �= rq shows a discrepancy between the two estimates
of the logarithmic rate of events.

simply defined in terms of the occurrence time tk of the kth
quake as τk = ln(tk/tk−1). Their empirical PDF is predicted to
have the form

F�ln(x) = rqe−rqx, (4)

where the constant rq, the logarithmic quaking rate, is unity.
As shown in the main panel of Fig. 1, the exponential PDF
fits our data, though with a value of rq somewhat higher than
predicted. The inset of the same figure shows that the number
of quakes that fall in the interval (0, t], averaged over all tra-
jectories, grows as μnq(t ) = r′

q ln(t ). The logarithmic growth
is as predicted by RD, but r′

q > rq while rq = r′
q according

to theory. The two lines in the inset of Fig. 1 highlight the
difference.

To conclude this section, briefly consider the situation
in which (4) does not fit the empirical distribution of log-
waiting times. Plainly, the discrepancy can arise if RD does
not apply to the problem at hand. The other possibility is
that data are collected over a spatial domain large enough to
accommodate uncorrelated quakes. In this case, the average
number of quakes will still grow logarithmically, with a pref-
actor reflecting the number of uncorrelated domains contained
in the system. Since the waiting time between uncorrelated
events is exponentially distributed, once uncorrelated quakes
dominate, the PDF of waiting times—rather than log-waiting
times—between successive quakes will be exponential. To
recover Fig. 1, one needs to consider domains of reduced size.
Reference [5] gives an example in which this situation arises.
Alternatively, one can follow Ref. [31] and note that uncor-
related quakes produce a peak in F�ln(x) for small waiting
times near x = 0. For sufficiently large x, the decay remains
unchanged, i.e., exponential.
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FIG. 2. Symbols: the energy per spin, with a fitted ground-state
energy value subtracted, is plotted vs time for three systems with
different field removal times. The dotted line is a fit to the power law
y(t ) = at−α , where a and α are free parameters.

B. Macroscopic data

Unlike experiments, numerical simulations provide easy
access to the system energy. Figure 2 shows the difference
e(t ) − e0 between the energy per spin and its ground-state
value plotted versus time t . Three data sets are included,
corresponding to different values of tw, all three fitted to the
same power law,

e(t ) − e0 = atλe , (5)

where e0 = −1.6813, a = 0.2664, and λe = −0.2557 are fit-
ting parameters. As expected, in a linear response experiment
no significant energy dependence appears on the field removal
time tw.

Equation (5) was proposed in [32] to estimate the ground-
state energy e0 as the value producing the power-law decay.
The decay was observed in isothermal simulations of the EA
model, using the WTM [17] and parallel tempering [18]. See
Eq. (31) and Table 5 of the latter reference for the corre-
spondence to the present notation. These authors tentatively
attribute the power-law decay to the system being critical for
a range of temperatures. Our estimate e0 ≈ −1.68 is nearly
identical to that of [17], while Ref. [18], where much larger
systems are considered with two-valued couplings Ji, j = ±1,
finds values close to −1.77. The exponent λe is a negative and
linearly decreasing function of temperature, with the value
λe(T = 0.5) ≈ −0.25 from [17] close to our current estimate.
Reference [18] finds λe(T = 0.6) = −0.193 somewhat higher
than our T = 0.5 value. The mismatch is related to algorith-
mic details. Note, however, that [17] and [18] agree on λe

being a decreasing function of T .
Our main interest lies not in how to best estimate the

ground-state energy, but in the fact that RD predicts the power-
law decay, in a way unrelated to critical behavior. Assuming
that only quakes can lower the energy, e(n) is a function of
the number n of quakes occurring in the interval (tw, t ). Fur-
thermore, each quake can be expected to decrease the energy
difference �e(n) = e(n) − e0 by a constant fraction.
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Our assumption entails

�e(n) = �e(0)xn, (6)

with 0 < x < 1. To extract a time dependence, the expression
must be averaged over the Poisson distribution of the number
of quakes falling in the observation interval (tw, t ).

Taking �e(t ) = e(t ) − e0, this yields

�e(t ) = �e(tw)

(
t

tw

)−rq ∞∑
n=0

[xrq ln(t/tw)]n

n!

= �e(tw)

(
t

tw

)−rq (1−x)

. (7)

In an RD description, the exponent λe characterizing the en-
ergy decay is given by λe = −rq(1 − x), which is unrelated
to any critical exponent. Power-law behavior comes indeed
naturally in processes involving activation over a hierarchy of
barriers; see [33] and references therein.

Turning now to the thermoremanent magnetization (TRM),
we use the gauge transformation σi → σi(tw)σi, Ji j →
σi(tw)σ j (tw)Ji j to map it into the correlation function

C(tw, t ) =
∑

i

〈σi(tw)σi(t )〉. (8)

Modulo multiplicative constants, the two functions hold
equivalent information, and since the general form of the
autocorrelation function is theoretically available, we can use
it to fit the TRM.

We consider the decorrelation induced by the quakes,
which allow the system to equilibrate in increasingly large
ergodic components. Quaking is a log-time homogeneous
stochastic process, involving a set of interacting mesoscopic
dichotomic variables, i.e., our clusters. Even though a formal
description of how clusters interact is lacking, general argu-
ments [24] lead to

C(tw, t ) =
∑

i

wi exp (λi ln(t/tw)), (9)

where the λi’s are negative eigenvalues associated with the
normal modes of the relaxation process, and all wi are positive
real numbers.

TRM time series are plotted in Fig. 3 as symbols versus
the scaled time t/tw. Neglecting small deviations from pure
aging [10], all data are fitted by the same function, represented
by a staggered line and obtained by truncating Eq. (9) to two
terms, each having the form wit

λi
t

tw . The fitted exponents are
λ1 = −0.167 and λ2 = −5.418 with prefactors w1 = 0.022
and w2 = 30.83. The first term is well approximated by a
logarithm for the range of the abscissa, while the second only
matters for values of the latter close to 1. Note that power laws
eventually vanish. This ensures that TRM traces with different
tw values approach both zero and each other when plotted as a
function of the observation time tobs = t − tw. This feature has
been measured experimentally in [14], where it was termed
“end of aging.” Figure 4 shows six TRM traces, taken for tw =
10 at temperatures T = 0.5, 0.6, . . . , 1, with the staggered
line depicting fits based, as before, on Eq. (9). The exponent
closest to zero is plotted in the inset versus the temperature
T , on which it has the linear dependence shown by the line
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FIG. 3. Symbols: Thermoremanent magnetization data for T =
0.5 plotted vs scaled time t/tw. Three data sets are shown correspond-
ing to the tw values given in the legend. Dotted line: fit using two
terms of the expansion (9).

−λ1 = 0.33T . Finally, note that our earlier RD analysis of
TRM experiments [23] is also based on Eq. (9), but it utilizes
three rather than two of its terms. The dominant exponent
there is closer to zero and almost temperature-independent,
which produces a near logarithmic TRM decay.

C. Mesoscopic real-space properties

The size of thermally correlated domains has attracted
both numerical [15,16,18,19,34,35] and experimental [28,36]
attention. As the aging process surmounts increasingly high
free-energy barriers, and thermal equilibrium is reached in
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FIG. 4. Symbols: Thermoremanent magnetization data for
isothermal aging at temperature T . From top to bottom, data sets
collected at T = 0.5, 0.6, 0.7, 0.8, 0.9, and 1 are plotted vs the
scaled time t/tw, where tw = 10. Dotted lines: fits using two terms
of the expansion (9). Inset: the exponent of the dominant term in the
expansion is plotted vs the temperature T . The line is the linear fit
−λ1 = 0.33T .
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FIG. 5. Symbols: the average cluster size Scl is plotted vs the
scaled time t/tw for different temperatures T and tw = 10. From top
to bottom, the data sets are collected at T = 1, 0.9, 0.8, 0.7, 0.6, and
0.5. The lines are linear fits of Scl to log t/tw. The inset depicts the
corresponding logarithmic rates vs the temperature T .

increasingly larger ergodic components, the domain size is
expected to grow. The process has been followed by measur-
ing the correlation length ξ (t, T ) associated with the spin-spin
correlation function [15,16], by identifying spatial domains
using projections on an alleged ground state obtained by an-
nealing [34,35], or, experimentally, by an analysis of TRM
data introduced by Joh et al. [28]. The method follows S(tobs),
the derivative of the TRM with respect to the logarithm of
the observation time, in our notation tobs = t − tw, and in
particular the position of its maximum, which demarcates
the crossover at tobs = tw from pseudoequilibrium to nonequi-
librium dynamics. Increasing the applied field reduces the
corresponding free-energy barriers, and thereby shifts the
maximum of S(tobs) to the left by an amount proportional
to the size of the spin clusters participating in the barrier-
crossing process.

These clusters are observed directly in numerical simula-
tions, here and in [20], as the coherent movement of adjacent
spins triggered by a quake. To obtain the size of clusters
flipped “near” a certain time t , the simulation time is subdi-
vided into 41 bins of equal logarithmic duration. Choosing t
at the boundary between two bins, all clusters overturned at
times within these bins are assigned to t .

Figure 5 depicts the average size Scl of clusters flipped near
time t versus the scaled time variable t/tw for tw = 10 and
temperatures, from top to bottom, T = 1, 0.9, 0.8, 0.7, 0.6,
and 0.5. The lines are fits showing the logarithmic growth of
the cluster size, and the corresponding rates are plotted in the
inset versus the temperature T . The statistics is obtained using
1000 independent simulations for each parameter value. The
data can be fitted by the expression

SCl(t, T ) = (aT + b) ln(t/tw) + C, (10)

where a = 9.3937, b = −4.445 69, and C is a constant.
Clearly, the logarithmic growth rate should never be nega-

tive, and our linear fit is inadequate for temperatures below
T = 0.5.

To connect the cluster size to the correlation length ξ (t, T )
requires theoretical assumptions [19,28], which, however,
seem hard to verify unequivocally. The difficulty arises be-
cause correlation lengths of all origins, even when observed
for long time intervals, only have a modest variation, typically
spanning less than a decade. Furthermore, a simple dimen-
sional connection between correlation length and the average
size of flipped clusters could be strongly affected by the spatial
heterogeneity, since all spins participate in reversible thermal
fluctuations, but many are not involved in quakes at all.

Reference [16] shows that both a power law and a loga-
rithm can fit the time dependence of the correlation length
ξ (t, T ) for the EA model with Gaussian bonds, and [36]
collects and discusses results from many different sources,
all fitted using two power laws, with small exponents linearly
dependent on the ratio of the temperature to its critical value.

The time dependence of the cluster sizes extracted from
experimental data is shown in [28], on a linear scale versus
a logarithmic timescale in their Fig. 4 and on a log-log scale
in their Fig. 5. Assuming that the characteristic cluster size is
the third power of the correlation length, Scl(t, T ) ∝ ξ (t, T )3,
the experimental data can be fitted using, for the correlation
length, a power law with a small exponent with a linear T
dependence, or activated dynamics, i.e., a logarithm elevated
to a power of order 5. Baity-Jesi et al. [19] used the same type
of analysis as [28] to obtain the cluster size from large-scale
simulations of the J = ±1 EA model. They also express the
cluster size in terms of a correlation length elevated to a power.

To conclude, our average cluster size features a slow
systematic increase with time that can be fitted by both a
logarithm and a power law, in broad agreement with previous
findings. The correlation length, for which we do not have
direct results, is known to have a qualitatively similar growth.
The precise connection between cluster size and correlation
length needs, we believe, further numerical verification.

IV. SUMMARY AND CONCLUSIONS

Spin-glass phenomenology is experimentally well de-
scribed [2,3], while much theoretical understanding relies on
partly competing approaches, conceptually rooted in equilib-
rium statistical mechanics. The ambition of record dynamics
(RD) is to offer a simple and general coarse-graining method
to analyze the dynamics of a class of metastable systems, to
which spin glasses belong.

In this work, log-time homogeneity and the ensuing RD
predictions for the decay of the excess energy and the TRM
are verified in a spin-glass thermoremanent magnetization
numerical simulation.

In thermal equilibrium, spontaneous fluctuations and linear
response convey the same dynamical information, since the
initial state of a linear response experiment could also have
arisen from a spontaneous fluctuation. The situation is more
complicated in a TRM setting, because the barrier structure
controlling the dynamics depends on the external magnetic
field [28,37]. Barrier climbing has a temperature dependence
described by a temperature scaling exponent. The latter is
α = 1 for the TRM data, as expected from quasiequilibrium
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fluctuations, but α = 1.75 for spontaneous fluctuation, a value
explained in [20] in terms of the density of states near local
energy minima. Apart from this difference, the present results
concur with Ref. [20]. This, combined with the agreement
with both experimental and other numerical results, confirms
the validity of the WTM as a simulational tool.

Finally, we show that the size of spin clusters overturned
by quakes grows logarithmically in time, in agreement with
[20]. Wood [36] collects correlation length data of different
origins, and shows that they all can be fitted by a power law
with a small exponent, linearly dependent on the temperature.
We doubt that the correlation length and the cluster size have
a simple geometric relation. Furthermore, considering that
the correlation length typically only varies over less than a

decade, the difference between a power law and a logarithm
is moot, and the correlation length could well grow logarith-
mically in time.

To conclude, together with Ref. [20] this work buttresses
a RD description of complex dynamics, and it confirms that
the WTM algorithm, upon which our data analysis relies,
generates a Markov chain in configuration space that closely
mimics the dynamics of experimental systems.
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