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Some universality in subcritical behavior of real substances and model fluids
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On the basis of the latest advances in Mayer’s cluster-based approach, the reduced forms of the well-known
virial expansions are derived in terms of scaled reducible and irreducible cluster integrals. This transformation
minimizes the dependence on temperature and the effect of parameters specific for each thermodynamic system,
thus making the resulting reduced expansions indeed universal on the quantitative level. In particular, the scaling
of isotherms and saturation curves for various systems (the Lennard-Jones model, different lattice gases, and real
substances with simple nonpolar molecules as well as complex polar ones) confirms the approximate universality
of the proposed reduced variables for temperature, pressure, and density at subcritical gaseous states up to the
saturation point. In addition, the temperature dependence of the correspondingly scaled second virial coefficients
also appears similar for various systems.
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I. INTRODUCTION

The search for some universal equation of state, which
could describe the behavior of various substances in one
qualitatively and quantitatively general manner, has a long
history. The principle of corresponding states was first intro-
duced by van der Waals and its approximate nature as well
as serious restrictions on its applicability was the subject of
subsequent studies: In fact, the corresponding-states behav-
ior deviates significantly (see Fig. 1) for different classes of
fluids, such as classical simple fluids with nonpolar molecules
(inert gases, nitrogen, oxygen, etc.), simple polar fluids (water,
short-chain alcohols), nonclassical fluids (low-temperature
hydrogen and helium), and complex hydrocarbons, however,
separately within a certain class, the scaling by critical pa-
rameters and some extensions of this approach work well
enough [1–6]. Furthermore, the ideas of universality based on
scale invariance and scaling transformations have played an
important role in the statistical theory of second-order phase
transitions and critical phenomena [7,8].

As to the statistical description of condensation phenomena
(i.e., first-order phase transitions), some success has been
achieved recently on the basis of Mayer’s cluster expansion
[13], which can be considered as qualitatively general, though,
on the quantitative level, it yields different results for vari-
ous substances. The studies of the long-known consequences
of Mayer’s approach [14–17] (virial expansions in terms of
reducible and irreducible cluster integrals [13]—integrals spe-
cific for a certain interaction potential) as well as the relatively
new equation of state [18–20] in terms of irreducible integrals
have finally established a strict definition for the saturation
point that is general for all classical fluids and even quantum
systems [21,22]: The condensation begins exactly at the diver-
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gence point of the virial expansions in powers of activity (in
terms of reducible cluster integrals) where the isothermal bulk
modulus of the virial expansion in powers of density (in terms
of irreducible integrals) vanishes.

Thus, theoretically, the saturation density and saturation
activity are now both expressed in terms of Mayer’s cluster
integrals, but any practical quantitative application of such a
theory to a certain fluid remains problematic due to technical
difficulties of calculating the corresponding sets of cluster
integrals—sets which, on the one hand, must include the in-
tegrals to very high orders (to guarantee the accuracy) and,
on the other hand, significantly differ for various substances
(because their microscopic and interaction parameters vary).
In this situation, any possible findings in generalizing the
behavior of cluster integrals for various systems and therefore
simplifying the practical application of the theory could be
very useful.

One step in this direction was made recently in Ref. [23].
There, a simple method to reproduce subcritical isotherms
was proposed for real substances and model fluids up to their
saturation point based on very limited theoretical or empirical
information: Only the value of saturation activity and the set
of several irreducible integrals of lowest orders can define the
subcritical behavior of various systems with high accuracy.

Here, we logically follow up the above-mentioned studies
of Mayer’s cluster expansion and provide a possible explana-
tion for the universality discovered in the latter work [23] by
introducing another dimensionless form of virial expansions
that should describe the subcritical behavior of absolutely
different thermodynamic systems in a similar way even on
a quantitative level. Namely, performed calculations indicate
that the correspondingly scaled (in the proposed reduced
variables) isotherms and saturation curves are very close for
simple statistical models and a wide range of real fluids
(with simple nonpolar molecules as well as complex polar
ones).
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FIG. 1. Isotherms of various fluids (water [9], isopentane [10],
argon [11], hydrogen [12]) at T = 0.8Tcr scaled by using the critical
parameters.

II. THEORETICAL BACKGROUND

A direct consequence of Mayer’s cluster expansion for the
grand partition function (i.e., at the thermodynamic limit) is
the well-known pair of virial expansions for pressure and
particle-number density [13,24],

P
kBT =

∞∑
n=1

bnzn,

ρ =
∞∑

n=1
nbnzn,

⎫⎪⎪⎬
⎪⎪⎭ (1)

in powers of activity

z = λ−3 exp
( μ

kBT

)
, (2)

where μ is the chemical potential and λ = h/
√

2πmkBT is the
de Broglie wavelength. In contrast to the conventional modern
interpretation of dimensionless activity, Mayer’s activity in
Eqs. (1) and (2) means the particle-number density of the ideal
gas with the same chemical potential at the same temperature.

The power coefficients in Eq. (1) are the so-called re-
ducible cluster integrals and, at the thermodynamic limit,
they form the correspondingly huge (almost infinite) set
{bn(T,V )}, which is strictly defined by the interaction poten-
tial in the considered thermodynamic system: Each bn in this
set is the integral of a certain complex function (the function
of interaction potential and temperature) over the configura-
tion phase space of n molecules (and hence it depends on
temperature and system volume).

Theoretically, Mayer’s expansion and Eq. (1) (hereafter, we
denote this parametrical virial equation of state in terms of
activity as VEOSA) have no restriction on applicability. Under
some modifications in the structure of cluster integrals {bn},
they must be valid for any multicomponent system with an

arbitrarily complex nonpairwise interaction potential, though
practical computations of high-order integrals remain techni-
cally problematic even for the simplest statistical models of
single-component fluids.

In order to additionally simplify the calculations of clus-
ter integrals, they are usually treated as volume independent
(i.e., the actual integration limits over the system volume
are replaced by infinite limits). This simplification makes the
VEOSA absolutely inapplicable in condensed states of matter,
but its effect on the VEOSA adequacy remains negligible
at any density below the boiling point [25]. In addition, the
mentioned infinite limits of integration allow defining any
reducible cluster integral bn(T ) in terms of more simple ir-
reducible cluster integrals {βk (T )} of orders from k = 1 to
k = n − 1,

bn = n−2
∑
{ jk}

n−1∏
k=1

(nβk ) jk

jk!
, (3)

where all possible integer sets { jk} must satisfy the condition

n−1∑
k=1

k jk = n − 1. (4)

This relationship between the {bn} and {βk} sets allows
Mayer’s transformation of Eq. (1) (VEOSA) into a simpler
(and therefore more famous) form [13]: the virial expansion
for pressure in powers of density,

P

kBT
= ρ

(
1 −

∑
k�1

k

k + 1
βkρ

k

)
, (5)

which is usually called the virial equation of state (VEOS).
It is important to note that Mayer’s transformation of

VEOSA (1) into VEOS (5) has an additional restriction on
its validity (besides the above-mentioned simplification of
infinite integration limits): VEOS (5) adequately represents
the behavior of Mayer’s expansion only at densities below a
specific value ρS , which corresponds to the point where the
isothermal bulk modulus of the VEOS vanishes,∑

k�1

kβkρ
k
S = 1. (6)

Later and more rigorous approaches to Mayer’s expansion
in terms of irreducible integrals [18,20,24] have no restriction
on density (except that the simplification of infinite integration
limits becomes invalid in condensed states [25]) and indicate
the strict constancy of pressure beyond the ρS point.

On the one hand, this fact turns Eq. (6) into a general
theoretical condition for the saturation density ρS , but, on
the other hand, its practical quantitative usage unfortunately
yields results of unsatisfactory accuracy: Though irreducible
integrals are simpler than the reducible ones, their calculation
remains technically limited by relatively low orders, even for
the simplest models of matter [26–32]. In order to be accurate
enough, Eq. (6) must include the {βk} set with irreducible
integrals of orders up to hundreds or thousands, which is
technically impossible at the moment, and even the modern
approximations for such large sets [33,34] still yield results
quantitatively far from perfect.
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Some success has been achieved here by studying the di-
vergence behavior of VEOSA (1) [15,16,35,36]. The matter
is that even a limited set of irreducible integrals (i.e., the {βk}
set truncated at some low order, kmax) always defines the in-
finite set of corresponding reducible integrals {bn} in Eqs. (3)
and (4): Actually, each correct bn must be constructed of a
full set of irreducible integrals, {β1, β2, . . . , βn−1}, however,
it has a certain nonzero value even for a truncated initial
set, {β1, β2, . . . , βkmax , 0, 0, 0, . . .}. Therefore, such an infinite
activity series in VEOSA (1) may diverge at some activity zS ,
even in cases when the corresponding VEOS (5) is truncated
and always converging.

The exact relation between the VEOSA convergence radius
zS and saturation density in Eq. (6), ρS , was presented in
Mayer’s transformation of VEOSA (1) into VEOS (5) [13,15],

zS = ρS exp

(
−

∑
k�1

βkρ
k
S

)
. (7)

Thus, the constancy of pressure beyond the ρS point is due
to the VEOSA divergence [15,16] exactly at the zS (ρS ) value
of activity (the jump of density at some constant chemical po-
tential is a sign of the first-order phase transition) at subcritical
temperatures [when Eq. (6) has at least one real positive root
ρS , and hence Eq. (7) for zS (ρS ) is also valid].

Of course, the incompleteness of the known {βk} sets (in
the practice of calculations even for the widely used statistical
models, they are usually truncated at low orders, as it is stated
above) greatly affects the accuracy of the resulting zS and
{bn}. On the other hand, the direct mathematical relation [37]
between the convergence radius of some power series and its
power coefficients directly relates the asymptotics of high-
order reducible integrals to the VEOSA convergence radius
zS ,

lim
n→∞ (n2bn) = z−(n−1)

S . (8)

This relation (8), which was additionally proved for vari-
ous models in Ref. [16], has finally allowed a correction of
high-order cluster integrals in cases when the actual value of
saturation activity is known: The incorrect reducible integrals
[i.e., defined in Eqs. (3) and (4) on the basis of some truncated
{βk} set] may be scaled [23,36] so that they would correspond
to the true saturation activity instead of the incorrect one [i.e.,
defined in Eqs. (6) and (7) on the basis of the same truncated
{βk} set].

III. A UNIVERSAL REDUCED FORM OF
VIRIAL EXPANSIONS

The above-mentioned approach to correct the set of re-
ducible integrals cardinally improved the accuracy of VEOSA
(1) for some model systems with theoretically defined values
of saturation activity [36] as well as other fluids (model and
absolutely real ones) with experimentally established values
of zS (T ) [23]. Moreover, this approach can be further general-
ized by scaling the virial expansions themselves in a manner
that they would yield quantitatively similar results for various
systems.

A possible way to transform VEOSA (1) is to make its
variable (activity) dimensionless by using the constant (at

a certain temperature) value of saturation activity (which is
additionally the convergence radius zS),

x = z

zS
. (9)

In turn, this transformation of the VEOSA variable requires
the corresponding transformation of its power coefficients
{bn}. In order to make them dimensionless, let us introduce
a scaled reducible integral of the nth order,

an = bnzn−1
S . (10)

Therefore, VEOSA (1) takes the following form of a
dimensionless power series for dimensionless pressure and
density in powers of the reduced activity x [see Eq. (9)],

w = P
zSkBT =

∞∑
n=1

anxn,

y = ρ

zS
=

∞∑
n=1

nanxn.

⎫⎪⎪⎬
⎪⎪⎭ (11)

It is important to note that the first-order reducible integral
(which is always equal to identity) remains untransformed
with regard for Eq. (10),

a1 ≡ b1 ≡ 1,

and this fact makes Eq. (11) [let us hereafter denote this
reduced form of VEOSA (1) as RVEOSA] absolutely iden-
tical for all ideal gases or real substances in dilute regimes
(bn>1 ≡ 0 for any substance without molecular interactions).

In addition, the asymptotic behavior of scaled reducible
integrals {an} must also be identical for all possible systems
at subcritical temperatures,

lim
n→∞ (n2an) = 1,

in accordance with Eqs. (8) and (10), and hence the RVEOSA
convergence radius (the scaled activity of phase transition),

xS ≡ 1,

at any subcritical temperature regardless of the actual micro-
scopic properties of the considered macroscopic systems.

All these features should significantly reduce the depen-
dence of RVEOSA (11) (and therefore the dependence of
reduced pressure, w = P

zSkBT , and reduced density, y = ρ

zS
)

on the temperature and chemical composition of systems in
subcritical regimes: The first power coefficient (a1) and high-
power coefficients (an�1) in both series of the RVEOSA are
certainly constant, so only the remaining low-order coeffi-
cients may indeed depend on the temperature and interaction
parameters.

Moreover, the proposed transformation of VEOSA (1) into
RVEOSA (11) automatically leads to the transformation of
VEOS (5) into the following relation between the reduced
density y and reduced pressure w,

w = P

zSkBT
= y

(
1 −

∑
k�1

k

k + 1
αkyk

)
, (12)

where the scaling of each irreducible integral,

αk = βkzk
S, (13)
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exactly corresponds to the scaling of any reducible integral
in Eq. (10) [see Eq. (3) taking condition (4) into account]. A
logical abbreviation for Eq. (12) (as a reduced form of the
VEOS) is RVEOS, and any αk in Eq. (13) may be called a
scaled irreducible integral of the kth order.

It should be remembered that RVEOS (12) is theoreti-
cally adequate only at regimes beneath the point yS where its
isothermal bulk modulus vanishes [see Eq. (6)],

∑
k�1

kαkyk
S = 1,

and the same point must be considered as the reduced satura-
tion density.

A similar scaling for more rigorous equations in terms
of irreducible integrals [18,20,24] does not change the form
of the RVEOS except that the reduced pressure w must be
constant beyond the yS point. Unfortunately, the accuracy of
the yS density in the last equation is directly related to the
accuracy and completeness of the corresponding {αk} set, and
computations of high-order scaled irreducible integrals seem
no simpler technically than the computations of nonscaled
ones, {βk}. In contrast to the reducible integrals (scaled or
not), the asymptotics of high-order irreducible ones remains
unexplored, though Eq. (7) takes a somewhat simpler form
for the scaled {αk} set,

yS exp

(
−

∑
k�1

βkyk
S

)
= 1.

IV. THE “HOLE-PARTICLE” SYMMETRY OF
LATTICE GASES

A statistical model of matter, which is widely used in
the theory of phase transitions, is the so-called lattice gas.
There, the particles are restricted to occupy individual sites
of a regular space lattice that makes the configuration phase
space of a system discrete, and therefore all the corresponding
statistical integrals turn into some exact sums. A special inter-
est in this model was due to its formal mathematical relation
to the Ising problem [38–40]: By using Onsager’s solution
for a two-dimensional ferromagnetic at a zero external field
[41,42], Lee and Yang [43,44] obtained the exact parameters
of the gas-liquid phase transition for a lattice gas, where each
particle has a hard core and attracts other particles only in
the four closest neighbor sites of the two-dimensional square
lattice.

Later, the “hole-particle” symmetry [45] (when empty cells
can statistically be treated as some particles) has allowed
deriving the following virial expansions for dense regimes of
various lattice gases with a hard core [45,46]: the expansion
“symmetrical” to VEOS (5) (hereafter referred to as SVEOS),

P

kBT
= ρ0

(
u0

kBT
+ ln

(
ρ0

ρ ′

)
+

∑
k�1

βkρ
′k
)

+ρ ′
[

1 −
∑
k�1

k

k + 1
βkρ

′k
]
, (14)

in powers of the “hole number density,”

ρ ′ = ρ0 − ρ,

and expansions “symmetrical” to the VEOSA (1) (hereafter
referred to as SVEOSA),

P
kBT = ρ0

( u0
kBT + ln ρ0

η

) + ∑
n�1

bnη
n,

ρ = ρ0 − ∑
n�1

nbnη
n,

⎫⎬
⎭ (15)

in powers of the “reciprocal activity,”

η = ρ2
0

z
exp

(
2

u0

kBT

)
, (16)

where u0 is the potential energy per particle in the close-
packing state and ρ0 is the particle number density in the same
close-packing state.

Recently, an exact analytical expression has been derived
for the phase-transition activity of lattice gases [17],

zS = ρ0 exp
( u0

kBT

)
, (17)

and this expression is especially important in this paper be-
cause it concretizes RVEOSA (11) and RVEOS (12) for lattice
gases and allows transforming of SVEOSA (15) and SVEOS
(14) into the following simpler reduced forms (SRVEOSA and
SRVEOS, respectively),

w = P exp (− u0
kBT )

ρ0kBT =
∞∑

n=1
anx′n − exp

(− u0
kBT

)
ln x′,

y′ = (
1 − ρ

ρ0

)
exp

(− u0
kBT

) =
∞∑

n=1
nanx′n,

⎫⎪⎪⎬
⎪⎪⎭ (18)

w = y′
(

1 −
∑
k�1

k

k + 1
αky′k

)

+ exp
(
− u0

kBT

)(∑
k�1

βky′k − ln y′
)

, (19)

where

x′ = 1

x

is the reduced reciprocal activity [see Eq. (16)].
An essential feature of SRVEOSA (18) and SRVEOS (19),

which cardinally distinguishes them from RVEOSA (11) and
RVEOS (12), is that they must yield certainly different results
for various lattice gases due to the presence of the expo-
nential function at their right-hand sides—a function which
explicitly involves the model parameter u0. Thus, although
similar “symmetrical” high-density expansions are now ab-
sent for continuous models of matter or real substances, the
example of lattice gases obviously indicates that, as proposed
in Sec. III, the scaling of pressure and density into the reduced
parameters w and y can indeed be general only at subcritical
gaseous states up to the saturation point: The mentioned
scaling should certainly yield different results for different
systems in condensed (liquid or solid) regimes.
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FIG. 2. Isotherms of RVEOSA (11) in reduced variables w(y) for
various lattice gases at different temperatures (in units of the critical
one, Tcr).

V. UNIVERSALITY OF SUBCRITICAL ISOTHERMS
FOR REAL AND MODEL GASES

In order to check how the scaled virial expansions behave
for essentially different lattice gases, the corresponding calcu-
lations have been performed for the following three models:
a two-dimensional square lattice where each particle attracts
the others only in the four closest neighbor sites (the Lee-Yang
model [43]); a two-dimensional triangle lattice where the at-
traction is only for six neighbors at the hexagon vertices; and
a three-dimensional cubic lattice where only the six closest
neighbors are attracted. In all three cases, the calculations
were based on the {βk} set including the first three irreducible
integrals, {β1, β2, β3}, known for each model as analytical
functions of temperature [36,46]. First, this {βk} set was scaled
into the corresponding {αk} by using Eq. (13) and the zS from
Eq. (17), and then the scaled reducible integrals {an} were
calculated up to the order nmax = 10 000 by using the method
proposed in Ref. [36] to guarantee the correct asymptotics of
high-order integrals (the only difference from that method is
that the convergence radius is always equal to the identity for
the scaled virial series).

Some results of the described calculations are presented in
Fig. 2. An important feature that can be seen in this figure
is the relatively weak dependence on temperature: It should
be noted that, within the presented temperature interval, the
nonscaled values of pressure and density on the corresponding
isotherms of nonscaled VEOSA (1) differ by several orders
that, in turn, force the logarithmic scales to be used in analo-
gous figures [35,36,46].

Another important aspect concerns the similarity of the re-
sults for various lattice-gas models. Although the temperature
dependence becomes somewhat weaker (as it is stated above),
it still cannot be neglected and, thus, the proposed approach

requires a choice of some universal reduced temperature to
make possible any comparison among the different models. A
natural choice can be the temperature relative to the critical
one because it agrees with the principle of corresponding
states, and Fig. 2 indicates the validity of such a choice.
Unfortunately, the exact critical temperature is known for the
Lee-Yang model only, but approximate evaluations of critical
temperatures for the other two models confirm the fact that
the scaled isotherms of various lattice gases are quantita-
tively similar at similar values of the reduced temperature,
t = T/Tcr.

Of course, RVEOSA (11) does not differ from VEOSA (1)
in essence, except that the former is technically much more
convenient due to avoiding the computer operations with
too small or big floating-point numbers: Even at the vicinity
of the divergence point, its high-order terms are close to
identity. Actually, exactly the same results can be obtained by
using the VEOSA instead of the RVEOSA with the following
scaling of the results to the corresponding reduced units, and
similar considerations are valid for the pair of VEOS (5) and
RVEOS (12).

Moreover, it has been shown recently [23] that the practical
usage of VEOSA (1) can essentially be simplified when the
saturation activity zS is explicitly known: There is no need
to calculate the actual huge set of reducible integrals {bn}.
Instead, only a dozen or two dozen of such integrals can
be calculated on the basis of some known {βk} set, and the
corresponding simplified VEOSA (1) would sufficiently well
describe all the gaseous states (z � zS) up to the saturation
point (z = zS). Beyond the saturation point the isotherms
become flat, which corresponds to the divergence of true
VEOSA (1). The same considerations are valid for RVEOSA
(11): Its simplified option may involve only a few dozen
scaled reducible integrals {an} and would be applicable at all
x � 1 [the actual divergence of true RVEOSA (11) at x = 1
means that all the high-order scaled reducible integrals are
simply equal to identity].

Nevertheless, the main advantage that we see in the pre-
sented transformation of VEOSA (1) and VEOS (5) into
RVEOSA (11) and RVEOS (12) is that the logic of this
transformation has led us to the above-mentioned reduced
units themselves. In fact, this logic means that any adequate
equation of state for gaseous subcritical regimes of any system
must yield quantitatively similar results when they expressed
in the following reduced temperature, pressure, and density,

t = T
Tcr

,

w = P
zSkBT = P

fS
,

y = ρ

zS
.

⎫⎪⎪⎬
⎪⎪⎭ (20)

There, f is the conventionally defined fugacity (i.e., the pres-
sure of the corresponding ideal gas with the same chemical
potential at the same temperature), and fS (T ) is the value of
this fugacity at the saturation point.

In order to check whether the proposed scaling for temper-
ature, pressure, and density in Eq. (20) indeed yields similar
results for substantially different statistical models and real
substances, we have simply scaled the existing theoretical
and empirical dependences. In particular, Fig. 3 demonstrates
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FIG. 3. Isotherms of various substances in reduced variables w(y).

the scaled isotherms of various real substances whose
experimental data are available from the National Institute of
Standards and Technology (NIST): water [9] (an essentially
polar fluid), isopentane [10], refrigerant-113 [47] (complex
hydrocarbons), argon [11] (a simple nonpolar fluid), and
hydrogen [12] (a fluid which can hardly be considered as
classical). In Fig. 3, there are also isotherms of the most
widely used statistical model of matter (the Lennard-Jones
fluid [48,49]), whose data are known from numerical simu-
lations [50]. The scaling essentially reduces the temperature
dependence (for example, the nonscaled saturation parameters
of isopentane vary by six to seven orders within the tempera-
ture interval from its triple point to the critical one). At similar
values of reduced temperature, t = T/Tcr, all the isotherms in
Fig. 3 are expectedly close to each other, in contrast to the
isotherms presented in Fig. 1 which are scaled in accordance
with the principle of corresponding states. For the same sys-
tems, Fig. 4 demonstrates the similarity of their saturation
curves in reduced variables w(y), defined by Eq. (20) (for
comparison, the scaled theoretical saturation curve of the Lee-
Yang lattice gas [43] is also presented in this figure). It is quite
expected that the deviations among different saturation curves
increase at the vicinity of the critical point where the role of
high-order virial coefficients becomes important.

Although the discrete statistical model of lattice gases
fundamentally differs from any factual conception on the
structure of real substances (and hence the results obtained for
this model agree with the others at a somewhat lower level),
the overall similarity observed for absolutely different sys-
tems directly indicates a certain universality of the proposed
reduced variables in Eq. (20).

Returning to the Mayer cluster-based approach, this ob-
served similarity indicates that not only the asymptotics of
high-order Mayer’s cluster integrals, {bn(T/Tcr)}, is universal
[as it is guaranteed by their scaling into the {an(T/Tcr)} set
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FIG. 4. Saturation curves of various substances in reduced units
w(y).

in Eq. (10)], but also the low-order integrals should behave
similarly for various thermodynamic systems when they are
scaled properly.

Of course, real molecular interactions can hardly be con-
sidered as exactly pairwise additive (especially for some real
fluids, whose data are presented in Figs. 3 and 4). However,
any possible nonadditivity of the actual interaction potential
imposes no fundamental restriction on the applicability of
Mayer’s cluster expansion in general and the proposed scaling
in particular. As it was already stated in Sec. II, the nonaddi-
tivity can only complicate the structure of reducible cluster
integrals [namely, Eq. (3) must be modified essentially in
order to account for this nonadditivity], but there are some
techniques [51], even saving the conventional terminology as
to the “irreducible integrals” (though the definition of such
“nonadditive” irreducible integrals and corresponding virial
coefficients naturally becomes more complex).

As it has been shown recently [23], at temperatures below
the critical one, the main contribution to virial expansions
belongs to the second virial coefficient B2 = −β1/2 (where
β1 is the first-order irreducible integral), up to the satura-
tion point, and the role of other virial coefficients (i.e., the
irreducible integrals of higher orders) becomes leading only
at the saturation point itself. Therefore, at least the second
virial coefficient should behave similarly for various systems
when it is scaled into the corresponding dimensionless form
A2 = −α1/2 [where α1 is the scaled first-order irreducible
integral—see Eq. (13)], and Fig. 5 demonstrates the explicit
similarity of the A2(T/Tcr ) dependences for various systems,
whose data are presented in Figs. 3 and 4 and are based on the
above-mentioned sources.

This fact can partially explain the universality found in
Ref. [23] that only two quantities (the saturation activity
zS and second virial coefficient B2) define the subcritical
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FIG. 5. The scaled second virial coefficient (A2 = −α1/2) of
various substances.

behavior of various systems with high accuracy. Moreover,
the present study indicates that only one of the mentioned
quantities appears sufficient to approximately describe the
subcritical behavior of various gases up to their saturation
point because the other quantity is automatically defined by
the observed and approximately universal A2(T/Tcr) = B2zS

dependence.
From this point of view, the second virial coefficient may

be considered as some base quantity which mainly defines
the curvature of subcritical isotherms (their deviation from
the ideal-gas isotherms), but it also defines the saturation
parameters (and therefore the high-order virial coefficients at
temperatures below the critical one) in some complex and
still unexplored manner that is a potentially important issue
of molecular physics and statistical mechanics.

VI. CONCLUSIONS

Based on the latest achievements of Mayer’s cluster-based
approach, the reduced forms of the well-known virial expan-
sions have been derived [see RVEOSA (11) and RVEOS (12)]
in terms of the correspondingly scaled reducible and irre-
ducible cluster integrals [see Eqs. (10) and (13), respectively].

The main goal of such a transformation was to minimize
the effect of parameters specific for each thermodynamic
system, thus making the resulting reduced expansions quan-
titatively universal. In particular, the proposed scaling makes
the convergence radius of reduced virial expansions equal to
the identity and independent on temperature or microscopic
parameters of different systems that guarantees the similarity
of the condensation processes in those systems whereas sav-
ing the universal behavior of the original virial expansions in
dilute regimes (the ideal-gas regimes).

The example of lattice-gas models, where the symmetrical
high-density virial expansions are valid for condensed states,
has allowed establishing a serious restriction on the consid-
ered universality: The above-mentioned scaling may yield
similar results for different systems in gaseous subcritical
regimes only, and, at condensed states of matter, the results
should be specific for each system.

The performed scaling of isotherms and saturation curves
for various systems (the Lennard-Jones model, different
lattice gases, and real substances with simple nonpolar
molecules as well as complex polar ones) has confirmed the
approximate universality of the proposed reduced variables
for temperature, pressure, and density [see Eq. (20)] at sub-
critical gaseous states up to the saturation point.

Moreover, the universal behavior of the correspondingly
scaled second virial coefficients has been observed for various
systems that additionally expands a range of possible practical
applications of the proposed scaling.
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