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Random-field Ising model criticality in a glass-forming liquid
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We use computer simulations to investigate the extended phase diagram of a supercooled liquid linearly
coupled to a quenched reference configuration. An extensive finite-size scaling analysis demonstrates the
existence of a random-field Ising model (RFIM) critical point and of a first-order transition line, in agreement
with recent field-theoretical approaches. The dynamics in the vicinity of this critical point resembles the peculiar
activated scaling of RFIM-like systems, and the overlap autocorrelation displays a logarithmic stretching. Our
study demonstrates RFIM criticality in the thermodynamic limit for a three-dimensional supercooled liquid at
equilibrium.
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I. INTRODUCTION

What is the best starting point for a proper theoretical
description of glass formation in supercooled liquids? The fact
that this question remains hotly debated reflects the difficulty
to provide a definite, and then widely accepted, resolution of
the problem [1–3]. One strong candidate ascribes the slowing
down of relaxation to properties of the free-energy land-
scape and to the presence of an underlying thermodynamic
transition to an ideal glass phase [4]. This transition is un-
reachable, as it lies below the experimental glass transition Tg,
but is nonetheless supposed to control glass formation in real
materials. This theoretical approach, the random first-order
transition (RFOT) theory [5], takes its strength from the exact
analytical solution of glass-forming liquids in the limit of
infinite dimensions of space, which realizes exactly the pre-
dicted scenario at a mean-field level [6,7]. Going from infinite
to three dimensions (3D) is, however, a nontrivial qualitative
leap, because spatial fluctuations are expected to play a key
role and the very concepts of metastable states and free-energy
landscape become ill defined.

What remains of the mean-field scenario in three di-
mensions? The dynamical (mode-coupling-like [8]) transition
found at the mean-field level can at best survive as a crossover
in finite dimensions [5,9,10], due to thermally activated pro-
cesses, and its detection is always subject to interpretations.
As for the putative RFOT at TK < Tg, it is not directly testable,
even with efficient swap Monte Carlo algorithms [11]. The
mean-field or RFOT description puts the focus on an order
parameter, the similarity or overlap between liquid configu-
rations, and on its statistics. Following the well-established
statistical mechanical formalism for phase transitions, one
is then led to consider the role of specific boundary condi-
tions and associated length scales [12] or, alternatively, of
pinning fields and applied sources [13–15]. In this context,
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it is found that, at least at the mean-field level, applying a
nonzero source ε linearly coupled to the overlap order pa-
rameter generates a line of first-order transition emanating
from the RFOT at (TK , ε = 0) and terminating in a critical
point at a higher temperature (Tc > TK , εc) [14,16]. Recent
field-theoretical arguments beyond mean field [17,18] predict
that this critical point should be in the universality class of
the random-field Ising model (RFIM). The goal of the present
work is to test whether this prediction is realized in a realistic
three-dimensional glass-forming liquid [19]. Several previous
attempts exist [16,20–24], but their conclusions have been
mostly qualitative because of the impossibility to work at a
low-enough temperature or because of much-too-small sys-
tem sizes. We make here a qualitative decisive step forward by
being able to study the proper range of temperatures as well as
large system sizes (an order of magnitude larger than previous
numerical investigations), allowing for an extensive finite-size
study of the transition, which is the standard (but highly
demanding) tool to analyze phase transitions. Furthermore,
we characterize the nature of the slowing down of relaxation
around the disordered critical point, which has never been
done before. This allows us to establish, as well as possible
using atomistic simulations, that the terminal critical point is
in the universality class of the RFIM. Our work demonstrates
that a nontrivial piece of the mean-field scenario is present in
the phase diagram of finite-dimensional glass-forming liquids.
This represents an additional physical application of the RFIM
universality class, indeed an important topic for statistical
mechanics studies of disordered systems.

II. METHODS

We consider a three-dimensional atomistic model glass-
former that we study through state-of-the-art simulation
techniques, including the recently developed swap algorithm
[11,25] that allows us to equilibrate liquid configurations
down to the conventional glass transition temperature Tg, um-
brella sampling [26,27] and reweighting techniques [28] to
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properly sample rare configurations, and isoconfigurational
ensemble to obtain a better statistics for the dynamics [29]. We
focus on the overlap between a configuration rN = {r (i), i =
1, . . . , N} of N atoms in equilibrium at temperature T and
a quenched reference configuration rN

0 equilibrated at a tem-
perature T0: Q̂[rN ; rN

0 ] = N−1 ∑
i, j w(|r (i) − r ( j)

0 |/a), where
w(x) is a strictly positive window function of width unity such
that w(0) = 1, w(+∞) = 0, and a is a small length account-
ing for thermal vibrations around the reference configuration.

Thermodynamic fluctuations are characterized by the free-
energy cost to maintain the overlap Q̂ at a given value Q,

V (Q|T ; rN
0 , T0) = −T

N
ln

∫
drN e−βH[rN ]

Z (T )
δ(Q̂

[
rN ; rN

0

] − Q),

(1)

where β = (kBT )−1 (the Boltzmann constant is set to unity),
H the liquid Hamiltonian, and Z (T ) the partition function.
This free energy is obtained from the probability distribution
of the overlap P (Q|T ; rN

0 , T0), which is the argument of the
logarithm in Eq. (1). This is a random variable as it de-
pends on the reference configuration rN

0 , which is a source of
quenched disorder. The average over rN

0 (taken with a Boltz-
mann distribution at temperature T0) yields V (Q|T ; T0) =
V (Q|T ; rN

0 , T0), which is called the Franz-Parisi potential
[14,16,30].

The dynamics near the critical point located at (Tc, εc) is
investigated through the equilibrium overlap autocorrelation
function,

C(t |ε, T ; rN
0 , T0) = 〈δQ̂(t )δQ̂(0)〉ε

〈δQ̂(0)2〉ε
, (2)

where δQ̂ = Q̂ − 〈Q̂〉ε and 〈·〉ε denotes a thermal average at
temperature T in the presence of the applied source ε, such
that the liquid Hamiltonian is now Hε[rN ; rN

0 ] = H[rN ] −
NεQ̂[rN ; rN

0 ]. The above correlation function is again a ran-
dom function, through the dependence on the reference
configuration.

A severe obstacle that has hampered numerical studies
of the putative critical point in the extended (T , ε) phase
diagram is that when T0 = T the critical point is expected at
a temperature Tc at which the relaxation time of the liquid
is already so large that conventional simulation techniques
are barely able to equilibrate the system at ε = 0. We have
solved this problem by using the swap algorithm that allows
an equilibration of the continuously polydisperse liquid mix-
ture under consideration (see the Supplemental Material [31])
much below what is attainable by standard methods [11,25].
To give an idea, present-day molecular dynamics simulations
equilibrate the model down to T ≈ 0.1, which is near the
mode-coupling crossover (Tmct = 0.095) whereas the swap
algorithm allows equilibration down to T ≈ 0.055 < Tg. To
characterize the critical point we have therefore chosen a
low temperature T0 = 0.06 � Tg for sampling the equilibrium
reference configurations, which has the prime merit of sig-
nificantly increasing the critical temperature Tc(T0) without
altering its universality class [14,16–18]. We have also inves-
tigated whether the critical point persists when T0 = T , and
we provide strong evidence that it does.

We perform extensive computer simulations to study a
wide range of system sizes, N = 300, 600, 1200, 2400 at
number density ρ = 1. To perform the disorder average, we
consider up to 28 different reference configurations. More
details can be found in the Supplemental Material [31].

III. FINITE-SIZE SCALING ANALYSIS

We first present evidence for the presence of a transi-
tion line in the (T , ε) diagram separating a low-overlap
from a high-overlap phase. Operationally, we use a method
developed to study systems in the presence of quenched
disorder when, contrary to the standard RFIM, there is
no Z2 inversion symmetry [44,45]. We compute the ther-
mal susceptibility, χT (ε, T ; rN

0 , T0) = Nβ(〈Q̂2〉ε − 〈Q̂〉2
ε ), for

each reference configuration rN
0 and temperature T , and we

determine the location of its maximum, ε∗(T ; rN
0 , T0). We next

follow the evolution of the system along the disorder-averaged
line ε∗(T ; T0) = ε∗(T ; rN

0 , T0). The behavior of the probabil-
ity distribution of the overlap along this line, P∗(Q|T ; T0) =
P (Q|ε∗(T ; T0), T ; rN

0 , T0), is illustrated in Figs. 1(a) and 1(b).
For a low-enough temperature [T = 0.15 in Fig. 1(a)] the
probability is clearly bimodal and the width of the two well-
separated peaks shrinks as N increases. The width of the
low-overlap peak rescaled by the peak position follows the
expected N−1/2 behavior [46]. This is strong evidence for
the presence of a first-order transition at low temperature
when N → ∞. The finite-size scaling (FSS) of additional
quantities is provided in the Supplemental Material and
supports as well the existence of a transition in the thermo-
dynamic limit [31]. For higher temperatures [T = 0.30 in
Fig. 1(b)], the probability distribution is bimodal for the small-
est system sizes, but becomes single-peaked for the largest
systems (hence the need to consider large system sizes and
perform finite-size analysis to avoid considerably overesti-
mating Tc). This region corresponds to a “Widom line” that
is the locus of the (finite) maximum of the susceptibility.
As one lowers the temperature along this line, one expects
to cross a critical point at which the susceptibility diverges
and below which a first-order transition is encountered, see
Fig. 1(c). The overlap distributions at Tc evolve very much as
the low-temperature ones in Fig. 1(a).

For RFIM-like systems without inversion symmetry, ratios
of cumulants of the order parameter are not a practical way
to detect the critical point [45]. Instead, to more precisely
locate and characterize this critical point, we focus on the
susceptibilities. Because of the quenched disorder associated
with rN

0 , and as in the case of the RFIM, one must consider two
distinct susceptibilities, the connected one, χcon(ε, T ; T0) =
χT (ε, T ; rN

0 , T0), and the disconnected one, χdis(ε, T ; T0) =
βN (〈Q̂〉2

ε − 〈Q̂〉ε
2
), which we evaluate at ε∗(T ; T0) for all

temperatures and system sizes and then denote with a star.
RFIM physics has a distinct signature in the behavior of these
susceptibilities, because the disorder-induced fluctuations di-
verge much more strongly than thermal ones. As a result,
for large but finite systems of linear size L ∝ N1/3 at the
first-order transition and at the critical point [47]

χ∗
dis(T ; T0) ∝ χ∗

con(T ; T0)2. (3)
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FIG. 1. [(a) and (b)] Overlap probability distribution
P∗(Q|T ; T0) as a function of system size N below [T = 0.15
in (a)] and above [T = 0.30 in (b)] the critical point. The inset of
(a) shows the half-width wl of the low-overlap peak rescaled by the
peak position Ql as a function of 1/

√
N . (c) (T , ε) phase diagram

showing a first-order transition line at low temperature and a Widom
line at high temperature, separated by a critical point (symbol).
(d) Disconnected versus connected susceptibilities with a quadratic
fit (dashed line); the symbols are as in panel (b), with the colors now
denoting the different temperatures. Uncertainties are computed
with the jacknife method [43].

This relation is very well obeyed by our data, as shown in
Fig. 1(d). When approaching the critical point from above
along the Widom line, the susceptibilities should follow
the FSS behavior, i.e., χ∗

con(T ; T0) = L2−ηχ̃con(tL1/ν ) and
χ∗

dis(T ; T0) = L4−η̄χ̃dis(tL1/ν ), where η, η̄ and ν are critical
exponents, t = (T/Tc − 1) is the reduced temperature, and
χ̃con(x) and χ̃dis(x) are scaling functions which are non-
singular at x = 0. In Fig. 2 we display the outcome of our
FSS analysis where we have used the known values of the
critical exponents for the 3D RFIM: η ≈ 0.52, η̄ ≈ 1.04 and
ν ≈ 1.37 [48]. The data collapse is excellent, with the crit-
ical point located at Tc(T0) ≈ 0.167 [which corresponds to
εc(T0) = ε∗(Tc; T0) ≈ 0.20] [51]. Hyperscaling violation also
distinguishes the RFIM university class and implies that at

FIG. 2. (a) Connected susceptibility as a function of reduced
temperature t rescaled according to the FSS ansatz with η = 0.52 and
ν = 1.37. Data from all sizes collapse onto a master curve χ̃con(x).
The dashed line is a guide for the eye. (b) Equivalent plot for the
disconnected susceptibility with η̄ = 1.04. In both panels, colors,
and symbols are as in Fig. 1(d). Data in gray for t ≈ 0 are obtained
via a temperature reweighting from data at T = 0.15 [31]. The inset
of panel (a) shows that the scaled free-energy barrier at the critical
point β	F/Lθ approaches a positive nonzero value as L → ∞ with
a ln(L)/Lθ behavior, where θ = 1.49.

the critical point the free-energy barrier 	F between the low-
overlap and the high-overlap phases is not scale invariant but
instead grows as 	F ∼ ϒLθ , with θ ≈ 1.49 the temperature
exponent [54] and ϒ finite and nonzero. To extract 	F , we
measure the overlap distribution at ε∗(T ; rN

0 , T0) for each in-
dividual sample. The inset of Fig. 2(a) shows that our data
are compatible with a finite positive value of β	F/Lθ ≈ 0.08
in the thermodynamic limit [55]. We provide additional FSS
results in the Supplemental Material [31].

IV. CRITICAL DYNAMICS

We now turn to the study of the dynamics in the vicinity
of the critical point, a study which has never been attempted
before. Relaxation on approaching a critical point is charac-
terized by a slowing down and a divergence of the relaxation
time exactly at criticality. In the case of the RFIM, the slowing
down is anomalous and described by an activated dynamic
scaling according to which it is not the relaxation time τ (T )
that grows as a power law of the correlation length ξ (T ), as
usual, but its logarithm. In a renormalization-group frame-
work this reflects the property that criticality is controlled by
a zero-temperature fixed point [56,57]. From the correlation
function of the overlap in Eq. (2) we define a relaxation time
τ (ε, T ; rN

0 , T0) as the time at which C(t |ε, T ; rN
0 , T0) = 0.2.

We approach the critical point from above and consider points
(T , ε) at or close to the Widom line. Instead of the correlation
length ξ (T ) to which we do not have direct access we use the
connected susceptibility χcon which scales as ξ 2−η. For the 3D
RFIM, 2 − η ≈ θ and it has further been shown that ψ = θ

[58] (so that ξψ ∼ χcon). We therefore consider the following
form [59]:

τ
(
ε, T ; rN

0 , T0
) = τ0

[
χT

(
ε, T ; rN

0 , T0
)]z/θ

ec χT (ε,T ;rN
0 ,T0 ), (4)

with τ0 and c some constants and z a dynamical exponent
describing some subdominant behavior. Whereas the domi-
nant activated scaling behavior is independent of the dynamics
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FIG. 3. (a) Relaxation time τ (ε, T ; rN
0 , T0 ) as a function of

the thermal susceptibility χT (ε, T ; rN
0 , T0) for several samples rN

0 ,
temperatures T , and sources ε. The color bar encodes the relative dis-
tance of the couple (T, ε) used for the simulation from ε∗(T ; rN

0 , T0 )
in the ε direction. All data collapse on a master curve which is well
fitted by Eq. (4) (dashed line), with c = 0.015(2), τ0 = 88(13) and
z = 1.15(10). The inset shows a tentative power-law fit which obvi-
ously fails at high values of the susceptibility. (b) Disorder-averaged
overlap autocorrelation function along the Widom line for several
temperatures. The full lines represent a fit to the empirical form
presented in the main text, with C0 ≈ 0.54 and φ ≈ 8.2.

(the overlap is in any case a nonconserved order parameter),
the subdominant behavior and prefactors can be somehow
modified by choosing an appropriate algorithm. Here, we
consider the swap algorithm that is expected to speed up any
pre-asymptotic dynamics. (We find that the ordinary Monte
Carlo dynamics is much too slow near the critical point.)
Figure 3(a) shows that the data agree well with the prediction
in Eq. (4). The increase in relaxation time is limited to a
little more than two orders of magnitude but it is sufficient
to distinguish between activated scaling (main panel) and
conventional power-law scaling (inset).

Another prediction of the activated dynamic scaling in the
RFIM is that the correlation function should be very stretched,
on a logarithmic scale, with C(t ; T ) = C̃(ln t/ ln τ (T )) [57]
and C̃(x) a scaling function for which no theoretical predic-
tion is available. We find that along the Widom line, we can
fit our autocorrelation data C∗(t |T ; T0) = C(t |ε, T ; rN

0 , T0)
with an empirical form previously used in RFIM-like sys-
tems [60–62], C̃(x) = C0 exp(−xφ ), with C0 and φ two
T -independent adjustable parameters. As seen in Fig. 3(b),
data at large times for all temperatures agree well with this
prediction. A rescaling using the variable t/τ is instead in-
consistent with the data. We stress that the activated critical
slowing down that we analyze here in the vicinity of the
critical point at (Tc, εc) is unrelated to the glassy slowdown
of the bulk glass-former but requires the existence of a critical
point in the RFIM universality class.

V. INFLUENCE OF THE TEMPERATURE OF THE
REFERENCE CONFIGURATION

We finally come back to the issue of the persistence of a
critical point when the temperature of the reference configu-

FIG. 4. Disorder-averaged overlap probability distribution below
[T = 0.085 in (a)] and above [T = 0.100 in (b)] the critical point for
the case T0 = T .

ration is T0 = T . This situation then probes typical states of
the landscape and can be more directly related to the physics
of a glass-forming liquid with no applied source. As already
stressed, such study is computationally more demanding. We
have therefore limited ourselves to checking the existence of a
transition, without studying its nature in detail nor investigat-
ing the critical dynamics. The results are illustrated in Fig. 4
where we show the disorder-averaged overlap probability dis-
tribution P∗(Q|T ). For T = 0.085 [in Fig. 4(a)], it becomes
increasingly bimodal with N , the reduced half-width of the
low overlap peak shrinking with N consistently with the exis-
tence of a first-order transition. By contrast, for T = 0.100
[in Fig. 4(b)], the probability function is bimodal at small
N but the peaks rapidly approach each other as N increases,
indicating that P∗(Q|T ) should become single-peaked in the
thermodynamic limit. Overall, our results suggest that the crit-
ical point also exists when T0 = T , with 0.085 � Tc < 0.100,
close to or below the mode-coupling crossover, as eluded by
past studies [22,24,63].

VI. CONCLUSIONS

To summarize, we have performed an extensive finite-size
scaling analysis of a critical point proposed to character-
ize three-dimensional glass-formers, relying on the massive
speedup afforded by the swap Monte Carlo algorithm
combined with umbrella sampling techniques. Our results
demonstrate for the first time the existence in the thermo-
dynamic limit of a critical point, with a first-order transition
line at lower temperatures, and our finite-size scaling anal-
ysis is consistent with the RFIM universality class in three
dimensions. The critical point studied here is unique, since
it represents, to date, the only piece of the mean-field or
RFOT theoretical construction to survive other than as a
crossover the introduction of finite-dimensional fluctuations.
This closes, for three-dimensional liquids, a 25-year-old quest
since its initial analysis in a fully mean-field context and more
recent field-theoretical predictions, and gives us hope that a
fundamental understanding of glass formation can be further
developed in finite dimensions.
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