
PHYSICAL REVIEW E 102, 042124 (2020)

Parrondo’s paradox in quantum walks with time-dependent coin operators
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We show that a Parrondo paradox can emerge in two-state quantum walks without resorting to experimentally
intricate high-dimensional coins. To achieve such goal we employ a time-dependent coin operator without
breaking the translation spatial invariance of the system.
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I. INTRODUCTION

From the so-called Brazil nut effect in granular materials
[1]—where the largest particles of a variously sized blend
end up on its surface when subjected to (random) shaking—to
the boosting of the long-term growth rate of a population by
allocating offspring to sink habitats [2], nature has provided
us with a myriad of instances which defy common sense
and thus are often understood as paradoxical [3]. Within this
class of systems yielding counterintuitive results, we can also
refer to several thermodynamical approaches that attempted
to come up with perpetual machines of both first and sec-
ond kinds. A canonical instance thereof is the well-known
Feynman’s ratchet and pawl machine [4] (later scrutinized
in Ref. [5]). The concept of ratchet was later employed to
Brownian particles in a periodic and asymmetric potential
that systematically moves to one of the sides when poten-
tial is switched on and off [6]. Such a mechanism was later
reinterpreted from a gambling perspective, paving the way to
the assertion that the combination of two losing games can
yield a winning game when combined. That understanding
was later honed to a scenario related to good and bad biased
coins which are played more or less frequently when the two
games are combined. That recast of a winning combination of
losing games case was coined Parrondo’s paradox [7–11]. The
so-called Parrondian phenomena have lured the information
theory community—at first, for their connection with random
number generation and game theory—and reached the quan-
tum realm for the development of quantum ratchets, walks,
and quantum games that can be translated into a Parrondo
framework. As in classical systems, there are different variants
of the quantum Parrondo effect [12–19] (for a recent review
see Ref. [20]). In Ref. [21], Toral introduced an alternative
classical Parrondo walk, the cooperative Parrondo’s games,
that subsequently gained quantum versions as well [22–24].

In this paper, we aim at implementing an actual Parrondo
strategy with quantum walks (QWs) [25] as they are mul-
tipurpose models with several possibilities for experimental
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realizations [26–29] and links with both fundamental [30]
and applied [31–34] studies. To the best of our knowledge,
the first attempts to set forth a Parrondian QW—considering
a capital-dependent rule implemented with a position-
dependent potential—were conveyed in Refs. [35–37]. In
spite of being successful in the short-run, a long-run analysis
shows their Parrondo’s paradox can be temporarily suppressed
due to periodicity in expected payoffs. Other close attempts
at implementing Parrondo’s paradox with QWs failed in the
asymptotic limit [38,39] as well. Taking a rather different
road, it was shown in Ref. [40] the emergence of a Parrondo-
like effect consisting of the obtention of an unbiased game
from alternating biased games using QWs. However, the issue
of a QW-based implementation of a genuine Parrondo game
remained pending, irrespective of some proposals [41–46] that
demand high-dimensional QWs, which are harder to imple-
ment than the qubit-based instances. For example, Ref. [41]
used a multicoin approach with history dependence and in
Ref. [42,43] the authors opted for a multi register proto-
col. More recently, a three-state QW was used [44] and in
Refs. [45,46] a two-coin QW was used.

That said, we have verified that the implementation of
a genuine Parrondo paradox within the scope of two-state
QWs with simple alternations between single-parameter coins
remains open so far. To solve it, we have resorted to a
time-dependent coin operator, which exhibits a very rich
phenomenology [47–50] alongside time dependency on the
translation operator [51–53]. Hereinafter, we assert that in
breaking the temporal constancy of the coin operator in the
QW it is possible to successfully implement a quantum Par-
rondo’s paradox.

II. MODEL

Explicitly, our model goes as follows: at a given time t ∈
N, we consider a QW with a full wave function given by �t

as

�t =
∑
x∈Z

(
ψU

t (x)|U 〉 + ψD
t (x)|D〉) ⊗ |x〉, (1)

where {U, D} (standing for up and down, respectively) is the
internal degree of freedom of our two-state quantum walker
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FIG. 1. Spatiotemporal evolution of the normalized Pt (x)/Pmax
t for t = 100. Genuine Parrondo’s paradox with the generalized Hadamard

coin with the novel protocol θt = (t + 1)θ for a two-state quantum walk: a combination of losing strategies (left-biased Pt (x) [becomes a
winning strategy [right-biased Pt (x)]. Different from previous works, this suggests it is not necessary to employ high-dimensional quantum
states to implement a Parrondo’s game. Top left: θ = 60◦. Top right: θ = 36◦. Bottom: switching θ = 60◦ and θ = 36◦.

moving in x ∈ Z, which corresponds to its external degree
of freedom. That is to say, our QW lives in the composite
Hilbert space H2 ⊗ HZ. The functions ψU,D

t (x) are the spatio-
temporal amplitudes of probability associated with {U, D},
respectively. The evolution t → t + 1 proceeds with the ap-
plication of the operator Ŵ as

�t
Ŵt−→ �t+1, (2)

Ŵt = T̂ (Ĉt ⊗ IZ), (3)

with the identity operator IZ = ∑
x∈Z |x〉〈x| and

(i) the coin operator

|x,U 〉 Ĉ−→ cUU (t )|x,U 〉 + cDU (t )|x, D〉,

|x, D〉 Ĉ−→ cUD(t )|x,U 〉 + cDD(t )|x, D〉, (4)

where ci j that are the elements of a rotation matrix that will
be described shortly, and

(ii) the state-dependent shift operator

|x,U 〉 T̂−→ |x + 1,U 〉,

|x, D〉 T̂−→ |x − 1, D〉. (5)

For the coin operator, we choose a generalized version of
the Hadamard operator,

ĈH (t ) = cos θt σ̂z + sin θt σ̂x, (6)

where σ̂z and σ̂x are the standard Pauli matrices. Based on
Ref. [54], we choose θt as a linear function of time, namely
θt = (t + 1)θ , the linearity of which has the advantage of
being feasible for experiments.

The initial condition is chosen as the localized state:

�0 = δx,0√
2

(|D〉 + |U 〉) ⊗ |x〉 (7)

Following the literature related to the Parrondian phe-
nomenon [10,11,20,55] we have assumed the switching rule:
for t even we applied θA, otherwise we applied θB. Concerning
x, there are two possible interpretations in this paper that we
have used interchangeably. On the one hand, when x was set
as capital [35,36], then the QW was interpreted as a game
where x > 0 means a positive payoff. Taking Refs. [56,57]
into account, such interpretation of a capital-dependent game
may provide new insights within the context of quantum-
like modeling of financial processes [58]. This perspective
gives further importance to the development of novel quantum
games, as we intend to carry out here. On the other hand, set-
ting x as the position of a particle, we shed light on transport
phenomena by which we worked at computing the probability
current towards x < 0 or x > 0.

III. RESULTS AND DISCUSSION

To analyze the outcome of this dynamics we first consid-
ered the probability distribution

Pt (x) = ∣∣ψD
t (x)

∣∣2 + ∣∣ψU
t (x)

∣∣2
, (8)

whence we computed

Pmax
t = maxxPt (x), (9)

which is the maximum of Pt (x) over the chain at a time t .
In Fig. 1, we show how Pt (x)/Pmax

t evolves over time. For
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FIG. 2. Time series for the expected payoff �P = PL − PR and for the mean position x(t ) = m1(t ). The net directed current becomes
reverted in the opposite direction under the alternating prescription. I: only θ = 60◦. II: only θ = 36◦. III: alternating θ = 60◦ and θ = 36◦.

θA, we see a left-biased flux of probability. For θB, we ob-
serve a left-biased current of probability as well. Interestingly,
the alternation between θA and θB leads to a counterintuitive
phenomenon corresponding to the very nature of Parrondo’s
paradox: the combination of two losing games [Pt (x) towards
x < 0] gives rise to a winning strategy [Pt (x) towards x > 0].
In other words, in such quantum carpets, the coupling of two
protocols with a left-biased current of probability ends up
producing a right-biased current.

In the left panel of Fig. 2, we quantify the current of
probability,

�P = PL − PR =
∑
x<0

Pt (x) −
∑
x>0

Pt (x), (10)
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FIG. 3. Time series for the entanglement entropy Se. I: only θ =
60◦. II: only θ = 36◦. III: alternating θ = 60◦ and θ = 36◦.

where in the combined protocol (III) we see a negative peak
for t < 20. Afterward, the current of the combined game
becomes robustly positive.

In the right panel of Fig. 2, we plot the first (n = 1)-order
statistical moment

mn(t ) = xn(t ) =
∑

x

xnPt (x), (11)
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FIG. 4. Diagram for the Parrondo QW. The red squares indicate
the left-skewed scenarios with �PθA < −ε and �PθB < −ε. The
blue squares indicate right-skewed scenarios with �Pcombined > ε.
We set ε = 1/3 in order to avoid artifacts. The current reversal
takes place in the cases with red and blue squares. The green open
square indicates the case corresponding to Figs. 1 and 2. Simulations
were performed with tmax = 1000. All quantities in this diagram are
temporal averages discarding the ttransient = tmax/2.
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TABLE I. Parameters θ to generate the Parrondo quantum walk.

θA θB

20◦ 36◦

36◦ 20◦

60◦ 20◦

60◦ 36◦

60◦ 40◦

72◦ 20◦

from which it is possible to perceive the emergence of the
Parrondo effect.

At this point, we still have to answer the question regarding
the underlying mechanism yielding the quantum Parrondo
effect. First, let us recall the canonical reasoning explaining
the aforementioned paradox: blending a game composed of
advantageous and disadvantageous ingredients with a losing
game inhibits the unfavorable part in the first game. In the
standard QW, the central component is quickly suppressed be-
cause its probability, Pt (x), concentrates in the borders. Yet, in
our protocol, the central component of Pt (x) remains for each
isolated game, for instance, with θ = 60◦ and θ = 36◦. This
is similar to the “good” (favorable) and “bad” (unfavorable)
components. Therefore, we learn that the alternating protocol
(θ = 60◦ and θ = 36◦) hinders the left-biased borders, which
prompts the prevalence of the right component, as shown in
Fig. 1.

Following [59,60] we compute the entanglement entropy
Se between the internal and spatial degrees of freedom, Fig. 3,

Se = −Tr[ρc ln ρc], (12)

where ρc = Trx(ρ) is the reduced density matrix of the parti-
cle and ρ is the full density matrix ρ = |�〉〈�| of the QW
system. The time series in Fig. 3 highlights the quantum
feature of our Parrondo model.

Finally, in Fig. 4 we see a diagram with θA versus θB

for runs until tmax = 103, where we discard the transient t <

tmax/2 to compute the temporal average of current of probabil-
ity �Psingle for the single game (with solely θA or θB) as well
as for �Pcombined relative to the combined game (alternating
θA and θB). It is visible that there are specific combinations
that lead to the Parrondian effect. From that diagram, we
understand that we do not have a smooth Parrondo line, but a
set of points wherein a Parrondo strategy emerges. This occurs
in other quantum Parrondo-like cases as well and we ascribe
it to the complexity of the quantum system we are treating.
Contrarily to classical systems, the state of a quantum particle
is ruled by the superposition principle, and thus only very
specific combinations of the two coins, i.e., θA and θB allow
obtaining an overall winning strategy (See Table I).

IV. CONCLUDING REMARKS

In conclusion, one should acknowledge that Parrondo’s
paradox contains an important lesson to be learned: one must
be careful before labeling a given protocol as useless, because
from that it is possible to create a combined protocol—as
we have made here—that ends up yielding the features one
is aiming at. Apart from that, taking into consideration the
assertion in Ref. [45] the need for investigating the class of
Parrondian phenomena via QWs is prompted by the research
to improve quantum algorithms, namely search algorithms.

The classical Parrondian paradigm can be introduced
within the scope of game theory. Similarly the quantum Par-
rondo’s paradox can be introduced in the realm of quantum
game theory [61–65]. In this sense, and taking into account
that QWs are versatile quantum simulators [66], our new pro-
tocol for implementing a Parrondo’s game can be employed
as a platform to provide further insights intp quantum game
theory both theoretically and experimentally.

One advantage of our protocol to achieve directed transport
is that we do not require a breaking in the spatial symmetry
associated with the coin operator. This approach contrasts
with the state of the art, as in Ref. [67] where spatial in-
variance is broken by introducing a pawl-like effect with
position-dependent coin operations. That is, their walk op-
erator is embedded with a local spatial asymmetry. Another
advantage of this protocol is the straightforward use of qubits,
a feature that makes the model feasible for implementation in
photonic architectures [26–29]. More specifically the setups
introduced in Ref. [68] are quite appropriate to accommodate
this time-dependent coin operator with proper adjustments.
From an experimental perspective, our protocol contributes a
prospect for laboratory implementation of Parrondo’s games
in a physical systems beyond the scope of the original model
[69], as it fills a gap in that domain by successfully obtaining
the actual Parrondo effect with a two-state qubit Parrondian
model employing a time-dependent coin. Still, the findings we
have reported suit the development of new devices for current
reversal without the application of an external gradient. From
the point of view of QWs, our work considers the application
of time-dependent coin operators.

Note added. Recently, Ref. [70] appeared, in which a Par-
rondo QW with intricate alternations between three-parameter
coins is discussed.
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