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Computation of the solid-liquid interfacial free energy in hard spheres by means
of thermodynamic integration
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We used a thermodynamic integration scheme, which is specifically designed for disordered systems, to
compute the interfacial free energy of the solid-liquid interface in the hard-sphere model. We separated the
bulk contribution to the total free energy from the interface contribution, performed a finite-size scaling analysis,
and obtained for the (100)-interface γ = 0.591(11)kBT σ−2.
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I. INTRODUCTION

Monte Carlo (MC) simulation is widely used to compute
the thermal equilibrium properties of atomistic materials mod-
els, such as, e.g., the interfacial free energy between different
phases of a given substance [1]. To compute the tension, the
free energy and the stiffness of the interface between the solid
and the liquid phases, various methods have been introduced
over the past 50 years. The capillary-wave method was first
introduced by Hoyt et al. [2] for metals. Morris and Song used
it for the Lennard-Jones model [3] and Benet et al. for the
TIP4P/2005 model of water [4]. A method using thermody-
namic integration techniques, called the cleaving method, was
first used by Broughton and Gilmer [5] for the Lennard-Jones
model. Davidchack and Laird refined this technique and used
it for the hard-sphere model [6,7]. Between different methods,
systematic errors due to finite-size effects can differ. Hence,
the values predicted for a given system often do not agree,
even if the simulations have been carried out with high preci-
sion.

Hard spheres are often used as a model to test simulation
methods in statistical physics. Arguably, there are no hard-
sphere-like atoms in nature, however, the model captures the
local ordering of atoms in the dense phases and has, therefore,
been studied quite extensively in theory and colloid experi-
ments [8–12]. Hard spheres are also interesting because their
phase behavior is athermal and the interfacial free energy is
determined solely by entropy. The hard-sphere interfacial free
energy has been computed by means of various methods in
the past 20 years, partly producing contradictory results due
to differences in systematic errors, and a final statement is
still missing [7,13–18]. In the following, we would like to
introduce a direct thermodynamic integration method and dis-
cuss the value we obtain with this method for the hard-sphere
system.
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II. METHOD

A. Thermodynamic integration

Thermodynamic integration is a method to compute dif-
ferences in thermodynamic potentials. Consider the case in
which we would like to compute the difference in free energy
between a system of interest with a Hamiltonian Hint and
a reference system with a Hamiltonian Href for which we
can evaluate the free energy exactly. Furthermore, assume
that both Hamiltonians are defined on the same state space.
If we blend continuously from one Hamiltonian to the other
by means of a combined Hamiltonian H(ε) = εHint + (ε1 −
ε)Href , where the “switching” parameter ε is a real number,
we obtain

Fint − Fref := �F =
∫ ε1

0
dε′

〈
∂H
∂ε

〉
N,V,T,ε′

. (1)

The angular brackets indicate the average taken with re-
spect to the canonical ensemble for a given value of ε. (We
used a linear blending function, here, for simplicity, but it is
straight-forward to implement other functional forms of H(ε)
in order to optimize the performance of the method, see, e.g.,
Refs. [19,23].) The integrand 〈 ∂H

∂ε
〉

N,V,T,ε′ can be computed by
means of MC sampling.

Thermodynamic integration requires a reference model
which can be reached along a path that does not cross a first
order phase transition. To construct an analytically solvable
reference model for dense disordered systems, we follow,
here, the method introduced by Schilling and Schmid [20]
and Schmid and Schilling [21]: We construct a reference con-
figuration of particles {�rref

i |i = 1, . . . , N} using as reference
coordinates the particle positions of an arbitrary equilibrated
configuration. Analogous to the Einstein crystal method [22],
a set of attractive wells ϕi(�ri − �rref

i ), each of which only in-
teracts with one particle i, is placed at each coordinate �rref

i .
Here, we will use the same function for all wells and, thus,
drop the index i from ϕi. As the method is intended to study
liquids, we need to take into account the possibility that a
particle moves infinitely far away from its reference position.
Thus, in contrast to the Einstein crystal method, the potential
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ϕ needs to be cut off at a finite value to prevent the sampling
of a diverging function. We introduce a cutoff radius rc, above
which the potential is zero, via x = |�ri − �rref

i |/rc.

For a linear reference potential,

ϕ(x) =
{0 for x � 1,

x − 1 for x < 1,
(2)

the Helmholtz free energy can be obtained via integration by parts and using the Stirling approximation,

Fref (ε1) ≈ N

{
ln

(N

V

)
− ln

[
1 + 6Vc

V

1

ε3
1

(
eε1 − 1 − ε1 − ε2

1

2
− ε3

1

6

)]
− 1

}
, (3)

where Vc is the volume of a sphere with radius rc.
Table I shows a list of other possible functional forms for ϕ(x) and the free energies of the corresponding reference

systems. We observed that equilibration times are shortest when using the linear well. However, if one uses molecular dynamics
simulations instead of Metropolis MC, potentials will be required that are differentiable in every point in space [23]. Then, the
functional forms listed in Table I can be useful.

In the liquid-solid coexistence regime, the high density renders equilibration and decorrelation difficult because particles may
be blocked from moving into their wells for many MC steps. To circumvent this problem, we used a swap move as introduced in
Refs. [20,21].

Finally, we need to take into account one specificity of the hard-sphere model. As the reference Hamiltonian does not contain
pair potentials, all pair interactions need to be switched off when the parameter ε approaches the value of ε1. However, the
hard-sphere interaction potential diverges for overlapping spheres, whereas we can only use a set of finite values for ε to evaluate
the ensemble averages in Eq. (1). To circumvent this problem, we used a finite-valued repulsive potential Vsph between the
spheres—finite, but large enough for small ε to ensure that the probability of two particles overlapping was negligible

Vsph(�ri, �r j, ε) =
{

A
(
1 − ε

ε1

)B
for |�ri − �r j | < σ,

0 for |�ri − �r j | � σ,
(4)

where σ is the diameter of the hard spheres. We set A = 40kBT . To optimize the equilibration times for all ε, we used a
polynomial of order B = 4 to switch off this pair potential.

To summarize, the free energy difference between the hard-sphere system and the reference system, then, has the form

�F =
∫ ε′=ε1

ε′=0
dε′

〈
−NoverlapsAB

ε1

(
1 − ε

ε1

)B−1
+

N∑
i=1

ϕ

( |�ri − �rref
i |

rc

)〉
N,V,T,ε′

. (5)

We show, in detail, in Sec. III B how this expression can be
used to compute the interfacial free energy.

B. Pressure tensor

To check whether the simulated system was subject to me-
chanical stress, we computed the local excess pressure tensor.
For hard spheres Allen showed [24] that the following limit

holds:

Pex
αβ

kBT
= lim

ξ→0+

1

V ξ

〈
N∑

i< j

φi j

(�ri j )α (�ri j )β
|�ri j |2

〉
. (6)

The double sum is taken over all unique particle pairs.
The αth component of the distance vector �ri j between the
particle pair i, j is given by (�ri j )α. φi j is a function that is
either 1, if the particle pair i, j is overlapping or 0 otherwise.
The brackets 〈·〉 denote the thermodynamic ensemble average.

TABLE I. Free energy expressions for model systems with different well potentials with finite range in three dimensions. The function
erf (· · · ) denotes the error function. The last expression is a generalization of the two expressions preceding it.

Form of the potential well Free energy of the corresponding N-particle system F (ε1)

ϕ(x) =
{

0 for x � 1,

x2 − 1 for x < 1,
N

{
ln

(N

V

)
− ln

[
1 + 3Vc

4V

1√
ε3

1

(√
πeε1 erf (

√
π ) − 2

√
ε − 4

3

√
ε3

1

)]
− 1

}
,

ϕ(x) =
{

0 for x � 1,

x3 − 1 for x < 1,
N

{
ln

(N

V

)
− ln

[
1 + Vc

V

1

ε1
(eε1 − 1 − ε1)

]}
,

ϕ(x) =
{

0 for x � 1,√
x − 1 for x < 1,

N

{
ln

(N

V

)
− ln

[
1 + 720Vc

V

1

ε6
1

(
eε1 −

6∑
k=0

εk
1

k!

)]
− 1

}
,

ϕ(x) =
{

0 for x � 1,

x3/n − 1 for x < 1,
N

{
ln

(N

V

)
− ln

[
1 + n!Vc

V

1

εn
1

( ∞∑
k=n+1

εk
1

k!

)]
− 1

}
for n ∈ N \ {0}.
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Hence, to compute the pressure tensor approximately, one
increases the hard-sphere diameter σ by a factor of 1 + ξ with
ξ � 1 and counts the hard-sphere overlaps that occur.

III. SIMULATIONS

A. Setup

We carried out Metropolis MC simulations with systems
of different geometry and size in cuboid simulation boxes
with periodic boundary conditions. The systems consisted of
N = 1097 · · · 38 993 particles. The number density was ρ =
N/V = 0.991σ−3. The geometries of the systems could be
divided into two classes. One class contained the systems with
constant shorter dimensions Lx = Ly ≡ L = 9.3978σ and a
varying longer dimension Lz = 12.5304σ · · · 125.304σ . The
other class contained the systems with constant longer di-
mension Lz = 62.652σ and varying shorter dimensions L =
6.2652σ · · · 25.0608σ . We chose these geometries such that
the z dimension was always significantly larger than the other
two. This fixes the solid-liquid interface parallel to the x-y
plane. Thus, its projected area is L2.

To obtain well equilibrated systems in coexistence, two
smaller systems—one solid, the other liquid—were merged
to form a larger system. The solid part was set up as a fcc
crystal with the equilibrium density of the solid at coexis-
tence (ρcoex

solid = 1.0408σ−3) reported in Ref. [25]. Hence, the
unit-cell dimensions of the crystal were 1.5663σ , and the
simulation box dimensions are integral multiples of it. The
interface orientation of the crystal was (100). The liquid part
was set up in a box of the same size but not in a liquid state.
Rather, it was set up in a crystal structure with the equilibrium
density of the liquid at coexistence. First, the solid particles
were kept fixed in their places, and the liquid particles were
equilibrated by performing MC steps. Some of the liquid par-
ticles crystallized on the fixed solid interface. Afterwards, the
whole system was simulated for another 2 × 106 MC sweeps
(2N × 106 steps) to reach an equilibrium coexistence state.

To distinguish between solid and liquid particles, we used
the bond order parameter described in Ref. [26].

B. Thermodynamic integration

The thermodynamic integration procedure was applied to
all equilibrated systems in phase coexistence. We used the one
particle configuration for each system size as a reference con-
figuration, which determined the coordinates of the potential
well centers. The total free energy is given by

F (ε0 = 0) = N
{

ln
(N

V

)
− 1

− ln

[
1 + 6Vc

V

1

ε3
1

(
eε1 − 1 − ε1 − ε2

1

2
− ε3

1

6

)]}

+
∫ ε′=ε1

ε′=0
dε′

〈
− NoverlapsAB

ε1

(
1 − ε

ε1

)B−1

+
N∑

i=1

ϕ

( |�ri − �rref
i |

rc

)〉
N,V,T,ε′

, (7)
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FIG. 1. Ratio of particles Nin/N that are in the attraction range
of their respective potential wells for the system of size L =
25.0608σ, Lz = 62.652σ, N = 38, 993. Note that graph (b) is an
enlarged version of graph (a) which shows all ε values for which
the ratio is close to 1.

where the ensemble average term in angular brackets needs to
be determined by simulation. The parameter ε that switches
between the model system and the hard-sphere system Hamil-
tonian was chosen to be in the range of ε ∈ [0, 40]kBT . One
reason for this choice of the range is that test runs showed
that 99% of particles find their respective wells at around
ε = 12kBT , and that, on average, fewer than 0.1% of all par-
ticles are outside of their wells at about ε = 30kBT . In Fig. 1,
we show the dependence of the number of particles inside the
potential wells on ε for the system size L = 25.0608σ, Lz =
62.652σ, N = 38, 993. (These numbers change slightly with
system size, but they are close enough to allow us to use
the same integration interval for all systems.) The integration
range was sampled at 161 evenly distributed points (abscissas
of the integral) which is, as we will see later, the main source
of error of the method. We chose the cutoff radius to be rc =
2σ because the number of sweeps necessary to equilibrate the
systems is minimized for this value.

To compute the integral in Eq. (7), for every abscissa an
average value of ∂H/∂ε is required. Hence, after an equili-
bration period of 3N × 105 MC steps, between 1 × 103 and
2 × 104 samples of this quantity were recorded (depending
on the system size) with 200 decorrelation sweeps between
each pair of samples. This is performed separately for each ab-
scissa. The thermodynamic integration process was performed
forwards (starting at ε = 0kBT ) and backwards (starting at
ε = 40kBT ). Since no hysteresis occurred, there is no first
order phase transition present. As the quantity 〈∂H/∂ε〉 is
only obtained at a finite number of abscissas with a finite
accuracy, the integral needs to be estimated numerically.

We used three different quadrature rules to approximate the
integral: The trapezoidal rule, Simpson’s rule, and Romberg
integration with Richardson extrapolation. The error of the
integral due to the uncertainty of the data points 〈∂H/∂ε〉
was estimated with a parametric bootstrapping method. For
that, we assumed that every data point stems from a Gaussian
distribution. From these distributions, random numbers were
generated that were then used as artificial data sets for the
integration scheme instead of the real data. From the obtained
integral values of the artificial data sets, one can then esti-
mate an error for the integral and, hence, for the free energy.
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〉

FIG. 2. Integrand used for thermodynamic integration of a sys-
tem of size L = 9.3978σ, Lz = 62.652σ, N = 5483. 〈∂H/∂ε〉 has
been divided by the number of particles to allow for comparison with
other systems. Each data point is an average over 9000 independent
samples. The error bars cannot be seen because they are smaller than
the center dots of the symbols.

However, the errors of this kind produce a relatively small
error in the free energy (about 3 × 10−3%) and they will,
therefore, be neglected. The numerical error due to the finite
number of 161 abscissas is the major contribution to the total
error.

Figure 2 shows a thermodynamic integration curve for a
system of size L = 9.3978σ, Lz = 62.652σ . The error bars
are not visible, because they are smaller than the center dots
of the diamonds. (Note that in the graph, 〈∂H/∂ε〉 has been
divided by the number of particles to allow for comparison
with other systems.)

The free energy per particle f ≡ F/N as a function of the
system size and integration scheme is shown in Fig. 3 for
varying Lz and in Fig. 4 for varying L. The error of the
free energies sF/N = 0.003kBT was estimated by using 401
abscissas for the three smallest systems and comparing the
results to the free energies obtained with 161 abscissas.

For an infinitely long system Lz → ∞, the contribution
to the free energy of the two interfaces finterface which are
not varying in size L vanishes. The remaining free energy
per particle should, thus, be equal to the average bulk free
energy per particle fbulk. Moreover, the interfacial contribution

(a)
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L /σ
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γ = 0.588(25)kBT
σ2

20 40 60 80 100 120

FIG. 3. Free energy per particle as a function of the length Lz for
different integration schemes, namely, (a) trapezoidal rule, (b) Simp-
son’s rule, and (c) Romberg integration. The interfacial area L2 is the
same in all systems (L = 9.3978σ ). The curved line is a nonlinear
least squares fit of the free energies to obtain the interfacial free
energy γ . The straight line represents the bulk free energy value
obtained from the fit.
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F
NkBT
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L/σ

(c)

5 10 15 20 25

FIG. 4. Free energy per particle as a function of the interfacial
edge length L for different integration schemes, namely, (a) trape-
zoidal rule, (b) Simpson’s rule, and (c) Romberg integration. The
longer dimension Lz is the same for all systems (Lz = 62.652σ ).

to the free energy per particle should be proportional to the
inverse length of the system 1/Lz. The proportionality, hence,
contains γ as follows:

f (Lz ) := F (Lz )

N (Lz )
= fbulk + finterface(Lz )

= fbulk + 2γ L2

N (Lz )

= fbulk + 2γ

ρLz
. (8)

However, this expression does not yet account for system-
atic errors due to finite-size effects. Schmitz et al. identified
three finite-size contributions to γ by phenomenological con-
siderations [27],

γ = γ∞ − P
ln(Lz )

L2
+ Q

ln(L)

L2
+ R

1

L2
, (9)

where P � 0, Q � 0, and R are constants. γ∞ is the inter-
facial free energy for the system with infinite size. P and Q
only depend on the dimension of the system, on the statistical
ensemble, and on whether or not periodic boundary conditions
are employed. In our case, the constants are P = 3/4 and
Q = 1/2 (three dimensions, periodic boundary conditions,
and canonical ensemble). The constant R = 0.95(37) needs
to be estimated and can be extracted from Ref. [18] where
the finite-size scaling of the interfacial free energy was inves-
tigated. After incorporating the finite-size scaling into our fit
model (8), it has the following form:

f (Lz ) = fbulk + 2

ρ

(
(γ∞ + C)

1

Lz
− P

L2

ln(Lz )

Lz

)
, (10)

where C := Q ln(L)/L2 + R/L2 is a known constant. This ex-
pression can be fitted to the free energies per particle obtained
from systems with the same L and varying Lz. For the fitting,
we used the Levenberg-Marquardt algorithm provided by the
R-package “MINPACK.LM” [28] to find the minimum of the
sum of weighted least squares in parameter space. The fit
curves are also shown in Fig. 3. The resulting interfacial free
energy values are

γtrap = 0.591(11)
kBT

σ 2
,
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γsimp = 0.589(20)
kBT

σ 2
,

γromb = 0.588(25)
kBT

σ 2
. (11)

The three different values γtrap, γsimp, and γromb stem from
the different integration methods used to perform the free
energy calculation. The relative errors can be reduced by
improving the accuracy of the numerical quadrature and the
number of simulated systems.

As we expect, a constant relation between the interfacial
area L2 and the free energy per particle, it is not possible
to extract the interfacial free energy from Fig. 4 directly.
However, if one knows the free energy of the solid and liquid
bulk phases at their respective coexistence densities, this is
still possible. We determined the densities far away from
the interface and set up separate simulations to determine
the bulk free energies at these densities. Since our crystal
structure was set up with a fixed density of 1.0408σ−3 our
resulting values are not the true coexistence densities. Our
values do compare well to Ref. [25] ρl = 0.943(4)σ−3, ρs =
1.041(4)σ−3 but turn out to by slightly larger than
Refs. [1] with ρl = 0.9391σ−3, ρs = 1.0376σ−3, [29] with
ρl = 0.935(2)σ−3, ρs = 1.033(3)σ−3, and Ref. [30] with
ρl = 0.9375(14)σ−3, ρs = 1.0369(33)σ−3,

ρcoex
liquid = 0.9391(10)

1

σ 3
,

Fliquid

N
= 3.745(3)kBT,

Fsolid

N
= 4.953(3)kBT . (12)

The strategy is, then, to subtract the bulk free energies
Fliquid and Fsolid weighted by the particle number in the respec-
tive phase from the free energy of the systems in coexistence
to be left with the total interfacial free energy. (This approach
is similar to interfacial free energy calculations at hard walls
where the free energy difference between a system with and
without hard walls is calculated [31].) However, the bond or-
der parameter analysis did not allow for a sufficiently precise
determination of the particle numbers in the two phases to
produce a value for γ that is as accurate as Eqs. (11).

C. Pressure tensor analysis

In those systems which contain two phases at coexistence,
we expect the pressure to be inhomogeneous in the x and y
directions parallel to the interface and homogeneous in the z
direction normal to the interface. Thus, computing the spacial
profile of the pressure tensor in the z direction can be helpful
in detecting systems that are out of thermal equilibrium.

Due to the periodic boundary conditions, the system as
a whole can perform translations in the box without a free
energy cost. We, therefore, needed to center the system be-
fore we computed the pressure tensor. Using the bond-order
parameter, we mapped every particle to a phase. We, then,
computed the centers of mass of the phases and translated
every particle by an amount that put the center of mass of the
solid phase into the center of the box.

(a)

Pzz

Pxx, Pyy

11.4

11.5

11.6

11.7

11.8

10 20 30 40 50 60

Pαβσ3

kBT

(b)

-0.05

0.00

0.05

10 20 30 40 50 60
z/σ

Pαβσ3

kBT

FIG. 5. Pressure tensor profile for Lz = 62.652σ and L2 =
(9.3978σ )2. Note that the ideal gas contribution has been added.
The errors of the diagonal elements (a) and the off-diagonal elements
(b) are 0.035kBT σ−3 and 0.025kBT σ−3, respectively.

The pressure tensor was computed for all systems in coex-
istence. The bin width was chosen to be as small as possible
without making the statistical error too large to conclude
whether the systems was free of stresses (�z = 0.2σ ). Fig-
ure 5 shows the pressure tensor for the system with L =
9.3978σ, Lz = 62.652σ . The scaling factor was chosen close
enough to ξ = 0 such that the systematic effects only play
a minor role but large enough that statistics allow to resolve
potential stresses (ξ = 3 × 10−4). The measured values are an
average over 2 × 105 · · · 7 × 106 samples (depending on the
system size) with 200 sweeps between each sample.

The normal pressure value Pzz is, as expected, homoge-
neous. The tangential components Pxx and Pyy do not decay
entirely to the bulk value in the crystal (deviation of <1%),
which indicates a small but negligible stress.

In the liquid part, all diagonal elements approach the same
value in regions far from the interface, which means that bulk
behavior is recovered. All off-diagonal elements are compat-
ible with zero within their margin of error (as can be seen in
the lower panel of Fig. 5 for one example).

With Eq. (6), we can also compute the coexistence pressure
of the systems by averaging the diagonal elements Pcoex =
(Pxx + Pyy + Pzz )/3. Using a finite ξ leads to a variance-bias
trade-off problem. For smaller values of ξ , the probability that
two spheres overlap is relatively small which leads to bigger
statistical fluctuations. However, increasing ξ to reduce the
statistical error leads to a systematic error because the assump-
tions that were made to derive Eq. (6) do not hold anymore. To
obtain the best possible value, we performed the calculations
for different ξ = 1 × 10−2, 2 × 10−3, 4 × 10−4, 8 × 10−5.
With these data, it is possible to extrapolate to ξ = 0 by
means of linear regression. Thus, we can obtain a fairly good
approximation of the coexistence pressure. [Note that the ideal
gas pressure (Pid = ρkBT ) was added to all measured pressure
values to obtain the total pressure.]

The extrapolations for different system sizes and the finite-
size scaling are shown in Fig. 6. The systems on the right-hand
side have a fairly small interface size L = 9.398σ . Thus,
their pressure values are affected by both finite-size scalings.
However, the qualitative behavior shows that for systems of
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FIG. 6. Total pressures for different scaling factors (different
point sizes and different colors online) and different system sizes.
For every system, a linear regression was performed to extrapolate to
a scaling factor of 0 (diamonds). The pressure Pcoex was calculated
with an exponential fit (black line). In graph (a), systems have the
same length Lz = 62.652σ but vary in their interface dimensions L.
In graph (b), the systems have the same interface size L = 9.398σ

but vary in length Lz.

length Lz = 62.652σ the finite-size scaling in the z direction
is negligible. Thus, we can extract the coexistence pressure
from the graph on the left-hand side where all systems have
this length. By using an exponential fit, we can extrapolate
the coexistence pressure to infinitely large interface sizes L.
Depending on the system size, the pressure was computed
between 4 × 104 and 3 × 106 times with 200 sweeps between
each pair of samples. The error is estimated based on the
variance of the fit parameters. In conclusion, we obtain

Pcoex = 11.591(10)
kBT

σ 3
. (13)

This result agrees with many previous studies but is is
slightly larger—however, statistically more accurate—than
most of them (e.g., Pcoex = 11.5727(10) kBT

σ 3 [17], Pcoex =

11.57(10) kBT
σ 3 [32], or Pcoex = 11.54(4) kBT

σ 3 [30]). We expect
the true pressure to be slightly lower than our measurements
because the neglected finite-size scaling in the z direction
seems to decay very slowly in a subexponential manner. In
addition, on approach of ξ = 0, the pressure value might
increase more slowly than linearly, but the error bars are too
big to be certain.

IV. CONCLUSION AND DISCUSSION

We have computed the solid-liquid interfacial free energy
in hard spheres by means of a thermodynamic integration with
respect to a reference model, which can be solved exactly.
Our results for the interfacial free energy of the (100) in-
terface are γ = 0.591(11)kBT σ−2, γ = 0.589(20)kBT σ−2,
and γ = 0.588(25)kBT σ−2, depending on the integration
scheme. These values are lower than predictions by den-
sity functional theory, e.g., γ = 0.664(2)kBT σ−2 [33], and,
then, simulation results obtained with the cleaving method,
e.g., γ = 0.62(2)kBT σ−2 [6]. However, more recent stud-
ies using the cleaving method [7], and Ref. [18] produced
a slightly lower value of γ = 0.5820(19)kBT σ−2 and γ =
0.596(2)kBT σ−2, which is in agreement with our results.
Another thermodynamic integration method, called mold inte-
gration, produced similar results γ = 0.586(8)kBT σ−2 [34].
Capillary wave analysis yielded even lower values, as, e.g.,
γ = 0.56(2)kBT σ−2 from Ref. [15].
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