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Rate distortion theorem and the multicritical point of a spin glass
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A spin system can be thought of as an information coding system that transfers information of the interaction
configuration into information of the equilibrium state of the spin variables. Hence it can be expected that the
relations between the interaction configuration and equilibrium states are consistent with the known laws of
information theory. We show that Shannon’s rate distortion theorem can be used to obtain a universal constraint
on neighboring spin correlations for a broad range of Ising spin systems with two-body spin interactions.
Remarkably, this constraint gives a bound for the multicritical point in the phase diagram, when a mean-field
behavior for the neighboring spin pairs can be expected in the paramagnetic phase.
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I. INTRODUCTION

Understanding the experimental observations of disordered
materials has been a challenge to theoretical physicists. This
triggered the rise of a special area of statistical mechanics that
deals with a variety of statistical models with frozen disor-
der, where a series of mathematical techniques has become a
common language for the systematic analysis [1,2]. Moreover,
these techniques of statistical mechanics have been applied
to the study of communication and information systems
[3,4], including noisy channel coding [5–7], recursive data
compression [8–10], code-division multiple-access (CDMA)
multiuser detection [11–13], modern cryptography [14], and
some combinatorial optimization problems and methods for
them [15–17]. Overall, the physicist’s toolbox has success-
fully been applied to solve issues of information science, but
not vice versa. To our knowledge, no classical theorem in
information theory has been used to analyze the physics of
complex condensed matter such as spin glass.

This paper shows that information theory can be effectively
applied to the analysis of spin-glass systems. In our scenario,
each of the equilibrium states of the Ising spins is regarded
as one encoding of the interaction configuration [18,19]. This
scenario enables us to apply the Shannon rate distortion theo-
rem of information coding theory [20], which then allows us
to develop a method for investigating fundamental restrictions
on the phase diagram. As a result, we obtain a general bound
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for the location of the multicritical point for Ising spin glasses,
where paramagnetic, ferromagnetic, and spin-glass phases
merge [21]. Remarkably, our argument is independent of the
detailed structure of the lattice. Numerical studies of problems
related to the location of the multicritical point for specific lat-
tice models have been carried out by many physicists [22,23].
However, we still have little knowledge about these significant
issues from a theoretical point of view [24,25].

This paper is organized as follows. Section II introduces
the Hamiltonian of our target models. Section III briefly sum-
marizes the statement of results for the multicritical point,
provided that the system exhibits a mean-field behavior in
the paramagnetic state. For the reader’s convenience, we out-
line the proof of the statement in Sec. IV. Subsequently, in
Sec. V, we invoke Shannon’s rate distortion theorem and give
a thorough mathematical proof. Finally, Sec. VI concludes the
paper.

II. SPIN-GLASS MODEL

In our spin-glass model, we assign a binary spin Si = ±1
to each site i and the local energy −Ji jSiS j to a set of pairwise
bonds (i, j) with a binary interaction Ji j = ±1. We investigate
a class of Ising spin systems with the Hamiltonian

H {S}{J } = −
∑
(i, j)

Ji jSiS j, (1)

only assuming that the total number of the sites i and the
bonds (i, j) are N and M, respectively. Specifically, we do
not restrict the range of the sum (i, j) in Eq. (1). This sum
could be over nearest neighbors, or it might include farther
pairs, etc. Special features of each lattice will be reflected only
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FIG. 1. Theoretical bound for the multicritical point in the phase
diagram for disorder parameter p and ratio R = N/M. The solid
line represents the upper bound p∗ for the transition point pc for a
given R. Shannon’s rate distortion theorem gives the constraint for
R smaller than 0.0454. The dashed line represents the exact value of
the transition point pc for a family of the Bethe lattice spin glass.

through the ratio R = N/M. For simplicity, this work deals
with a Hamiltonian with two-body interactions to elucidate
the benefit of Shannon’s rate distortion theorem, although the
same arguments apply to other multibody spin systems.

Each Ji j is supposed to be distributed independently ac-
cording to the common distribution

P(Ji j ) = pδ(1, Ji j ) + (1 − p)δ(−1, Ji j ),

for a value of disorder parameter p in the interval 1/2 < p �
1. Here, δ denotes the Kronecker’s delta function and the set
of interaction coefficients J = {Ji j} is called the Bernoulli (p)
random variables. In general, we write the inverse temperature
as β and then the phase diagram of the system can be depicted
in the space of disorder parameter p and temperature 1/β.
Now, we consider the Nishimori temperature 1/βp for the spin
system, defined to be

e2βp = p

1 − p
.

Notice that the above equation specifies a line, the Nishimori
line, in the space of p and 1/β; see Appendix A. It has been
shown that the multicritical point can be always found on this
line. And so, we can specify the multicritical point by giving
a value for the disorder parameter p, say, pc. Moreover, since
a spin-glass phase does not exist on the Nishimori line, the
multicritical point can be characterized as a ferromagnetic
transition along the line [26].

III. STATEMENT OF RESULTS

In this paper, we present a general bound for the location
of the multicritical point of spin systems on any lattice with
a Hamiltonian (1). The solid line in Fig. 1 shows the upper
bound p∗ of pc for a given R, only below which we find
the multicritical point. Notice that we can use Shannon’s rate

distortion theorem to obtain this remarkable constraint when
a mean-field behavior can be expected in the paramagnetic
phase. More precisely, on the Nishimori line, we assume that

P(Si, S j |J ) � exp(βpJi jSiS j ) (2)

holds in the paramagnetic phase, where the P(Si, S j |J ) de-
notes the joint distribution of Si and S j in the whole complex
system and the � means equality up to a normalization con-
stant. This implies that the effect of the rest of the lattice
on local marginals should not be dominant and our potential
target systems have a certain mean-field property in the para-
magnetic state, at least on the Nishimori line. However, we
insist that no further physical assumption is required for the
Ising spin system. As an example, the dashed line in Fig. 1
represents the exact value pc of the multicritical point for a
family of spin glass on a Bethe lattice [25]. Here, all the bonds
(i, j) are chosen randomly to give a diluted lattice with the
fixed connectivity of 2/R. The standard cavity analysis shows
that relation (2) holds at any temperature in the paramagnetic
phase [27]; see Appendix B. As is expected, we can confirm
that p∗ upper bounds pc for this specific model.

IV. OUTLINE OF PROOF

In the remainder of the work we will explain how this gen-
eral bound can be obtained using the rate distortion theorem.
For the reader’s convenience, we now outline the proof and
then go into specific details afterwards. We first define an
average of local correlation functions

u =
⎡⎣〈

1

M

∑
(i, j)

SiS j

〉
β

⎤⎦,

where we assume that 〈·〉β represents the expectation value
in the equilibrium state of the Hamiltonian (1) at temperature
1/β, and suppose that a bracket [·] indicates averaging over an
ensemble of configurations J . If assumption (2) holds within
the paramagnetic phase, we always get u = (2p − 1)2 at 1/βp

for all p < pc. However, if R is small enough, u = (2p − 1)2

derived from the paramagnetic assumption is smaller than
the lower bound u∗(p), which is imposed by Shannon’s rate
distortion theorem. This implies that such p for a given R in-
dicates the ferromagnetic state, otherwise it is a contradiction.
The infimum p∗ of such ferromagnetic p, therefore, gives an
upper bound for the transition point pc. Figure 2 illustrates a
typical example with ratio R = 0.03.

We first show that the local correlation function at 1/βp is

u = (2p − 1)2,

if the system is in the paramagnetic state. Since relation (2)
implies the explicit form

P(Si, S j |J ) = 1

4 cosh βp
exp(βpJi jSiS j ),

it is an easy matter to check that 〈SiS j〉βp = tanh(βpJi j ) and
averaging over J = {Ji j} gives u = [tanh(βpJi j )] = (2p −
1) tanh βp = (2p − 1)2.

Now, we will explain how to obtain the theoretical bound
u∗(p) for u based on Shannon’s rate distortion theorem. Let
us first consider a virtual communication channel where the
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FIG. 2. Theoretical constraints for local spin product u as a func-
tion of disorder parameter p for ratio R = 0.03. The solid curve
represents the universal lower bound of u imposed by Shannon’s
rate distortion theorem. The dashed parabolic curve indicates the
calculation of u based on a mean-field assumption for neighboring
spin marginals. The paramagnetic solution contradicts our universal
lower bound for p greater than the intersection point p∗ = 0.750.
This means that for p > p∗ the paramagnetic solution is no longer the
stable solution, implying that pc � p∗. The vertical solid line shows
pc = 0.561 for a family of the Bethe lattice spin glass.

interaction configuration sequence J = {Ji j} is a set of the
Bernoulli (p) random variables to be compressed, the set
of spins S = {Si} is its compressed representation or code
word, and the spin products Ĵ = {SiS j} are its reproduction
at Nishimori temperature 1/βp. This choice of communication
channel is motivated by the fact that at the Nishimori temper-
ature, the Hamming distortion, or the normalized Hamming
distance, D = (1/M )

∑
(i, j)[〈δ(−1, Ji jSiS j )〉βp] between the

J and its reproduction Ĵ can be easily obtained as D = 1 − p
[26]. This specific distortion measure defines the goodness of
Ĵ as a representation of a set of given Bernoulli (p) random
variables J . The basic problem in Shannon’s rate distortion
theory can then be stated as follows. What is the minimum
description ratio R = N/M required to achieve a given Ham-
ming distortion D between the two sequences? Shannon’s
rate distortion theorem gives the lower bound, say, Rp(D),
as a function of the distortion measure D for the theoreti-
cally achievable ratio R = N/M. The ratio, or rate, Rp(D) is
called the rate distortion function for the Bernoulli (p) random
variables. However, the distortion D = 1 − p only gives a
trivial lower bound Rp(D) = Rp(1 − p) = 0 and results in no
restrictions for this specific channel [20].

We thus introduce a coding “trick,” a set of the Bernoulli
(α) random variables J̃ = {J̃i j} with 1/2 � α < p, which
allows us to tighten the bound on R = N/M. In the communi-
cation channel picture, the manipulation of the Bernoulli (α)
sequence J̃ to get the sequence J corresponds to a prepro-
cessing step in the encoding operation. After we preprocess J̃
to get J , the J is not Bernoulli (p) assumed in the Nishimori’s
theory. However, this difference becomes negligible when we

take the large system limit of N → ∞. As a result, we can use
the Nishimori’s theory to calculate the Hamming distortion
between J̃ and Ĵ , which then offers a positive minimum
ratio of R = N/M. Since distortion D redefined for the new
pair depends on p and u, a positive bound on R for the D,
if any, imposes a constraint on u as a function of p and R.
Hence, we obtain the theoretical lower bound u∗(p) on u for a
given ratio R = N/M. Notice here that we require no physical
assumptions such as (2) in this argument. In Sec. V we explain
the essential details of this universal analysis.

V. RATE DISTORTION ANALYSIS

We first introduce a set J̃ of Bernoulli (α) random vari-
ables for some α satisfying 1/2 � α < p. Define the set Ta

of all configurations with relative frequency of 1s equal to a.
For sufficiently large M, we can consider J̃ ∈ Tα and J ∈ Tp,
respectively [28]. So we suppose that any J̃ configuration
can be switched to a J configuration by flipping (p − α)M
elements from −1 to 1. We consider the set of spin products
Ĵ as an estimate of the original J̃ .

Here, we evaluate the normalized Hamming distance be-
tween the samples J̃ and Ĵ , i.e., (1/M )

∑
(i, j) δ(−1, J̃i jSiS j ).

We first notice that the identity J̃i jSiS j = Ji j J̃i j · Ji jSiS j leads
to∑

(i, j)

δ(−1, J̃i jSiS j ) �
∑
(i, j)

δ(−1, Ji j J̃i j ) +
∑
(i, j)

δ(−1, Ji jSiS j ).

The equality holds if and only if there is no chance of getting
Ji j J̃i j = −1 and Ji jSiS j = −1 simultaneously. By definition,
the preprocessing gives

∑
(i, j) δ(−1, Ji j J̃i j ) = (p − α)M. The

second term on the right-hand side would be⎡⎣〈∑
(i, j)

δ(−1, Ji jSiS j )

〉
βp

⎤⎦ = (1 − p)M, (3)

since the gauge theory tells us that the internal energy be-
comes [〈H {S}{J }〉βp] = −M tanh βp on the Nishimori line;
see Appendix C. Assume that the bracket [·] also indicates
averaging over an ensemble of configurations J̃ as well as J .
Then we have⎡⎣〈∑

(i, j)

δ(−1, J̃i jSiS j )

〉
βp

⎤⎦ � (1 − α)M. (4)

To directly calculate the Hamming distance between the sam-
ples J̃ and Ĵ on the Nishimori line, we introduce a pair of
auxiliary variables Q1→−1 and Q−1→1 defined to be

Q−1→1 (1 − p)M + Q1→−1 pM = (1 − p)M,

(1 − Q−1→1) (1 − p)M + Q1→−1 pM = (1 − q)M,

where Qx→y is the empirical probability of SiS j = y when
Ji j = x and q denotes a frequency of 1s at the random vari-
ables Ĵ . Notice that the former equation just counts up every
difference Ji j 	= SiS j , while the latter indicates the total num-
ber of SiS j = −1 in the reconstruction. By solving the two
equations, we have

Q1→−1 = 1 − q

2p
, Q−1→1 = 1 − 1 − q

2(1 − p)
.
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It is easy to check that these formulas are well defined as
probabilities in the interval 2p − 1 � q � 1 for a given p 	= 1.
Notice also that u = 2q − 1. Then it follows that⎡⎣〈∑

(i, j)

δ(−1, J̃i jSiS j )

〉
βp

⎤⎦ = (1 − α)M − 2Q1→−1(p − α)M

(5)

(see Appendix D). In other words, the normalized Hamming
distance between J̃ and Ĵ on the Nishimori line can be
estimated by the formula

dα (p, q) = (1 − α) − 2Q1→−1(p − α),

which is non-negative for the relevant intervals.
Lastly, it is possible to invoke Shannon’s rate distortion

theorem for the Bernoulli (α) random variables [20]. In this
communication channel picture with preprocessing, we first
write D = (1/M )

∑
(i, j)[〈δ(−1, J̃i jSiS j )〉βp] and focus on the

Hamming distortion between the original J̃ and its reproduc-
tion Ĵ . Define the rate distortion function for the Bernoulli
(α) random variables as

Rα (D) = H2(α) − H2(D),

where we denote H2(α) = −α log2(α) − (1 − α) log2(1 −
α). For the ratio R = N/M and the distortion D, the theorem
states that

Rα (D) < R.

This inequality provides a bound on the compression ratio
R, dependent only on distortion D. By letting D = dα (p, q),
we can use the formula Rα (p, q) = H2(α) − H2(dα (p, q)) to
lower bound the ratio as Rα (p, q) < R for every α in the
relevant interval 1/2 � α < p. Now write

R∗(p, q) = sup
1/2�α<p

Rα (p, q).

It is obvious that we can still lower bound R as

R∗(p, q) � R. (6)

Notice also that the R∗(p, q) is a nonincreasing continu-
ous function of q. Suppose that the ratio R = N/M is small
enough to satisfy an inequality R < R∗(p, 2p − 1). Here, the
R∗(p, 2p − 1) is the largest value of R∗(p, q) for q over the
interval 2p − 1 � q � 1. Since dα (p, 1) = 1 − α, it is an easy
matter to check that R∗(p, 1) = 0 for every p. Then, by the
intermediate value theorem, there exists a number q∗(p) in
the closed interval 2p − 1 � q � 1 such that

R∗(p, q∗(p)) = R. (7)

We compare formulas (6) and (7) to conclude that

q∗(p) � q,

i.e., the q∗(p) lower bounds q.
For small enough R = N/M, we numerically examine

Eq. (7) which implicitly determines q∗(p) for a given pair
of p and R. Evaluation of the equation R∗(p, 2p − 1) = R
shows that there exists such a solution q∗(p) for some p for
every R smaller than 0.0541. Notice that the lower bound
q∗(p) for the Bernoulli parameter q gives the lower bound

u∗(p) = 2q∗(p) − 1 for local spin product u. Figure 2 com-
pares this universal lower bound u∗(p) with the preceding
paramagnetic solution u = (2p − 1)2. However, in this figure,
u = (2p − 1)2 violates our lower bound u∗(p) for p larger
than the intersection point p∗. Hence, the p larger than p∗
implies the ferromagnetic phase, in which the paramagnetic
solution could break down. In other words, the multicritical
transition point pc should be smaller than the intersection
point p∗. For a given R, this p∗ offers an upper bound for pc

as is shown by the solid line in Fig. 1, which is identified with
R∗(p, 2p2 − 2p + 1) = R.

VI. CONCLUSION

In this paper, we considered the “N-bit” spin state of the
Ising spin-glass model as compressed representations of a set
of M Bernoulli (p) binary random variables encoded in the
interaction configuration. We showed that the Shannon rate
distortion theorem, which provides a bound on the compres-
sion ratio dependent only on distortion, can give an upper
bound p∗ for the location of the multicritical point pc for a
sufficiently small compression ratio R = N/M. Remarkably,
our argument is independent of the detailed structure of the
lattice and only requires a mean-field assumption for the joint
marginals of neighboring spins in the paramagnetic phase.
Results obtained here for a certain class of lattice models with
two-body Ising spin interactions will motivate applications of
Shannon’s rate distortion theorem to other Ising spin systems.
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APPENDIX A: NISHIMORI LINE

In this Appendix we illustrate a schematic picture for the
location of the multicritical point, Nishimori line, and the
three phase boundaries in the space of p and T = 1/β. As is
depicted in Fig. 3 the ferromagnetic phase transition along the
Nishimori line coincides with the multicritical point, which
enables us to identify the critical value pc for p in the phase
diagram.

APPENDIX B: BETHE LATTICE

In this Appendix we show that the Bethe lattice spin-glass
models satisfy relation (2) providing a pedagogical example.
We first notice that the Hamiltonian (1) gives

H {S}{J } = −
∑
(k,l )

Jkl SkSl

= −
∑
j∈∂i

Ji jSiS j −
∑

(k,l )|k,l 	=i

Jkl SkSl ,

for any site i on the lattice. The ∂i represents a collection of
all sites j connected to i with an interaction Ji j . The second
term on the right-hand side denotes the Hamiltonian of a
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FIG. 3. A schematic illustration of Nishimori line in the Ising
spin-glass models. The M denotes the location of the multicritical
point on the Nishimori line, where paramagnetic, ferromagnetic, and
spin-glass phases merge.

smaller Ising spin system without the spin variable Si. Then
the effective Hamiltonian for the site i and its vicinity is found
to be

Ĥ (Si, {S j} j∈∂i ) = −
∑
j∈∂i

Ji jSiS j −
∑
j∈∂i

h j→iS j,

replacing the effects of the subsystem without Si with some
terms involving the variables h j→i. These auxiliary variables
are called the cavity fields. It follows that

P(Si|J ) = 1

Z1

∑
{S j} j∈∂i

exp[−βĤ (Si, {S j} j∈∂i )]

= 1

Z1

∑
{S j} j∈∂i

∏
j∈∂i

exp(βJi jSiS j + βh j→iS j )

= 1

Z1

∏
j∈∂i

∑
S j=±1

exp(βJi jSiS j + βh j→iS j ).

Here, Z1 denotes the normalization constant. Since S j = ±1,
the identity

exp{βSj (Ji jSi + h j→i )} = 2 cosh{β(Ji jSi + h j→i )}

× 1 + S j tanh{β(Ji jSi + h j→i )}
2

gives

1

Z1

∏
j∈∂i

∑
S j=±1

exp(βJi jSiS j + βh j→iS j )

= 1

Z1

∏
j∈∂i

{2 cosh{β(Ji jSi + h j→i )}}.

Now we define the effective field

ĥ j→i = 1

β
tanh−1{tanh(βJi j ) tanh(βh j→i )}.

Together with another identity

cosh{β(Ji jSi + h j→i )}
= 2 cosh(βJi j ) cosh(βh j→i )

× 1 + Si tanh(βJi j ) tanh(βh j→i )

2
,

we have

P(Si|J ) = 1

Z2
exp

(
βSi

∑
j∈∂i

ĥ j→i

)
,

with a new normalization constant Z2. Since the magnetiza-
tion at site i is

mi = 1

Z2

∑
Si=±1

Si exp

(
βSi

∑
j∈∂i

ĥ j→i

)
,

it is an easy matter to check that h j→i = 0 for all j gives mi =
0. By letting h j→i = 0, the summation over the spin variables
other than Si and S j results in

P(Si, S j |J ) = 1

Z3

∑
{Sk}k∈∂i\ j

exp

(
β

∑
k∈∂i

JikSiSk

)
,

where Z3 denotes the normalization constant of the joint
marginal distribution. Finally, simple algebra gives

P(Si, S j |J ) = 1

4 cosh β
exp(βJi jSiS j ).

This indicates that relation (2) holds at any temperature in the
paramagnetic phase for the Bethe lattice spin-glass models
and, hence, the location of their multicritical points in the
phase diagram should be consistent with our results.

APPENDIX C: DERIVATION OF EQ. (3)

In this Appendix we show the details of the calculation for
(3) given in Sec. V. First, the gauge theory tells us that the
internal energy becomes

−1

M
[〈H {S}{J }〉βp] = tanh βp = 2p − 1

at the Nishimori temperature 1/βp. Notice that the above
formula holds for any lattice. Together with the definition of
the Hamiltonian (1), i.e.,

H {S}{J } = −
∑
(i, j)

Ji jSiS j

= −
∑
(i, j)

δ(1, Ji jSiS j ) +
∑
(i, j)

δ(−1, Ji jSiS j ),

we get⎡⎣〈∑
(i, j)

δ(1, Ji jSiS j )

〉
βp

⎤⎦ −
⎡⎣〈∑

(i, j)

δ(−1, Ji jSiS j )

〉
βp

⎤⎦
= (2p − 1)M.
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Notice also that⎡⎣〈∑
(i, j)

δ(1, Ji jSiS j )

〉
βp

⎤⎦ +
⎡⎣〈∑

(i, j)

δ(−1, Ji jSiS j )

〉
βp

⎤⎦ = M

holds. Then the conclusion follows, i.e.,⎡⎣〈∑
(i, j)

δ(−1, Ji jSiS j )

〉
βp

⎤⎦ = (1 − p)M.

APPENDIX D: DERIVATION OF EQ. (5)

In this Appendix we show the details of the calculation for
(5) given in Sec. V. We put

C = {(i, j)|J̃i j = −1 or 1},
D = {(i, j)|J̃i j = −1, Ji j = 1, SiS j = −1}.

Obviously, we have∑
(i, j)∈D

δ(−1, J̃i jSiS j ) = 0,

∑
(i, j)∈D

δ(−1, Ji j J̃i j ) = |D|,
∑

(i, j)∈D

δ(−1, Ji jSiS j ) = |D|,

where |D| is the number of the elements in D. As we discussed
in the derivation of Eq. (4), we have∑

(i, j)∈C\D

δ(−1, J̃i jSiS j )

=
∑

(i, j)∈C\D

δ(−1, Ji j J̃i j ) +
∑

(i, j)∈C\D

δ(−1, Ji jSiS j ).

Thus, we have∑
(i, j)∈C

δ(−1, J̃i jSiS j )

=
∑

(i, j)∈C\D

δ(−1, J̃i jSiS j ) +
∑

(i, j)∈D

δ(−1, J̃i jSiS j )

=
∑

(i, j)∈C\D

δ(−1, Ji j J̃i j ) +
∑

(i, j)∈C\D

δ(−1, Ji jSiS j )

=
∑

(i, j)∈C

δ(−1, Ji j J̃i j ) +
∑

(i, j)∈C

δ(−1, Ji jSiS j ) − 2|D|.

Taking the average, we obtain⎡⎣〈∑
(i, j)

δ(−1, J̃i jSiS j )

〉
βp

⎤⎦ = (1 − α)M − 2Q1→−1(p − α)M.
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