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Modeling ball possession dynamics in the game of football
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In this paper, we study interaction dynamics in the game of football–soccer in the context of ball possession
intervals. To do so, we analyze a database comprising one season of the five major football leagues of Europe.
Using this input, we developed a stochastic model based on three agents: two teammates and one defender.
Despite its simplicity, the model is able to capture, in good approximation, the statistical behavior of possession
times, pass lengths, and number of passes performed. In the last section, we show that the model’s dynamics can
be mapped into a Wiener process with drift and an absorbing barrier.
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I. INTRODUCTION

The statistical analysis of competing games based on data
gathered from professional competitions is currently a grow-
ing area of research [1–8]. In the case of team sports games,
these studies have a potentially high impact. It is boosted by
commercial interests but also by its intrinsic complexity that
caught the attention of basic research [1–5]. In the context
of team sports games, the emergence of complex behavior
is often observed. It arises from the interplay dynamics of a
process governed by well-defined spatiotemporal scales. It is
well known that these scales are important for both individual
interactions among athletes and collective strategies [9].

Particularly interesting is the game of football, where
data analytics have been successfully tackled in recent years
[10–12]. For instance, in the field of complex systems, Buldú
et al. used network theory to analyze the Guardiola’s F.C.
Barcelona performance [13]. In that work, they consider a
team as an organized social system where players are nodes
linked during the game through coordination interactions.

Despite these recent contributions, football analytics seems
to be relegated as compared to other major team sports,
like basketball or baseball. That is why football’s team
management and strategy is far from being recognized as
analytics-driven. The specific problem with football is con-
cerned with data collection. Usually, the collection of data
upon ball–based sports competitions is focused on what is
happening in the neighborhood of the ball (on-ball actions).
Nonetheless, in football games, an important part of the dy-
namics is developed far from the ball (off-ball dynamics),
and this information is required to analyze the performance
of football teams [14]. Consequently, in the game of football,
on-ball actions might provide less insight for strategy and
player evaluation than off-ball dynamics.

In this context, a possible solution is to improve the data
gathering, a possibility often limited by a lack of resources.
From an alternative perspective, we aim to define a framework
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based on the use of state-of-the-art statistical tools and model-
ing techniques that allow us to characterize the global dynam-
ics by studying the local information provided by the data.

Based on these ideas and on previous studies [15–17], in
the present contribution, we have surveyed, collected, and
analyzed information from a database [18] to propose an in-
novative agent–based football model. We emphasize that our
goal is not to model the full complexity dynamics of a football
game, but to model the dynamics of ball possession intervals,
defined as the consecutive series of actions carried out by a
team. We focus on studying the interactions in the frame of
both on-ball and off-ball actions, considered as the main fea-
ture to understand the team’s collective performances [19,20].

This paper is organized in three parts: Material and Meth-
ods, Results, and Discussion. In Material and Methods, we
first introduce the database. In particular, we describe the
dataset Events, as well as other information regarding rel-
evant fields. Second, we discuss some interesting statistical
patterns that we found in this data set to propose the model’s
components. Third, we give a formal definition of the model
and discuss in detail the key elements, the assumptions, and
the dynamical parameters. Lastly, we present a method to
systematically search for a suitable set of parameters for the
model. The Results section is divided into two parts. First,
we evaluate the results of the model. To do so, we focus on
analyzing three statistical observables: (i) the distribution of
possession time, (ii) the distribution of the distance traveled
by the ball in passes (hereafter referred to as the pass length),
and (iii) the distribution of the number of passes. The idea is
to assess the model’s performance by comparing its outcomes
with the data. Second, we place our model in a theoretical
framework. This allows, under certain approximations, an in-
terpretation of the emergent spatiotemporal dynamics of the
model. Finally, our results are discussed in the last section.

II. MATERIAL AND METHODS

A. The data set

In 2019, Pappalardo et al. published one of the largest
football–soccer databases ever released [18]. Within the infor-
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(a) (b)

FIG. 1. Relevant statistical patterns gathered from the data set Events in Ref. [18]. (a) Frequency by type of event. Blue bars, from the set
of all the events. Red bars, only the events triggering a ball possession change (BPC). (b) The main plot shows the number of different players
involved in a ball possession interval (BPI). The inset shows the number of different types of events in a BPI. (∗) The acronym OOTB stands
for others on the ball.

mation provided in this astounding work, the data set Events
contains a gathering of all the spatiotemporal events recorded
from each game in the season 2017-2018 of the following five
professional football leagues in Europe: Spain, Italy, England,
Germany, and France. A typical entry in this data set bears
information on:

(i) Type of event. Namely, pass, duels, free kicks, fouls, etc.,
subdivided into other useful subcategories. This field allows
us to evaluate in detail the correlation between particular
actions and the consequences in the dynamics.

(ii) Spatiotemporal data. Each event is tagged with tem-
poral information, referring to the match period and to its
duration in seconds. Spatial information, likewise, refers to
the stadiums’ dimensions as a percentage of the field length
from the view of the attacking team.

(iii) Unique identifications. Each event in the data set is
linked to an individual player in a particular team. This al-
lows us to accurately determine the ball position intervals,
and moreover to perform a statistical analysis of the players
involved.

In light of this information, we define a ball position in-
terval (BPI) as the set of consecutive events generated by
the same team. We gathered 3 071 395 events and 625 195
BPIs from the data set, totaling 1826 games, involving 98
teams, and with the participation of 2569 different players.
Since we aim to study a dynamical evolution, only BPIs with
two or more events were collected. On the other hand, since
different games often occur in stadiums of varying sizes, to
compare distances we normalized all the measured distances
in a game to the average distance calculated using the whole
set of measures in that game.

B. Statistical patterns

The idea of this section is to present the statistical patterns
that we have used to propose the main components of our
football model. First, in Fig. 1(a), we plot the frequency of

events by type (blue bars) and also the frequency of events that
trigger a ball possession change (BPC) (see red bars). By look-
ing at the blue bars, we can see that the most common event
is the pass, with 1.56 million entries. Notice that passes al-
most duplicate the second-most-frequent type of event, duels,
which at the same time is the most frequent event triggering
possession changes (see red bars). Moreover, by comparing
the two bars on duels, we can see that ≈75% of the duels
produce possession changes, showing that this type of event
is very effective to end BPIs.

Second, in Fig. 1(b), the main plot shows the number of
different players involved per BPI. As can be seen, the most
common case is two players, with 0.27 million observations,
duplicating the three-player case, the second-most-commonly
observed. The inset shows the number of different types of
events per BPI. With 0.4 million cases recorded, we can see
the case of two types of events is the most common. No-
tice, the data seems to show statistical regularities. Despite
the doubtless complexity of the game, there are features that
dominate over others.

In the following section, we use these observations to pro-
pose the main components of a minimalist dynamical model.

C. The model

We aim to build a model that draws the main features of
football game dynamics during ball possession intervals. The
idea is to propose a system both simple and minimalist, but
also effective in capturing global emergents of the dynamics.
To do so, we used the empirical observations made in the
previous section.

Let us think in a system with three agents (the players),
two in the same team having possession of the ball (the
teammates), and one in the other (the defender). The players
in this system can move in two dimensions and the teammates
can perform passes to each other. In this simulated game,
the system evolves until the defender reaches the player
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FIG. 2. Scheme summarizing the main parameters of the model (not to scale). Green circles represent the teammates and orange circle the
defender. (a) We emphasize the parameters (i) d , the distance between the player with the ball and the defender, (ii) dx , the distance between
the player with the ball and the free player, and (iii) a, the action radius. (b) The circles placed at distance R1 from the origin represent the
initial condition in the dynamics. Distance d0 is the initial distance between the three agents. Radius R2 delimits the agents’ moving area.

with the ball and, emulating a duel, it ends the BPI. Bearing
these ideas in mind, in the following we propose the rules
that govern the agents’ motion, and consequently define the
model’s dynamics.

Let �ri(t ) be a 2D position vector for an agent i (i = 1, 2, 3)
at time t . Considering discrete time steps �t = 1, at t + 1 the
agents will move as �ri(t + 1) = �ri(t ) + �δri(t ). In our model,
we propose �δri(t ) = (R cos �, R sin �), where R and � are
two variables taken as follows:

(1) The displacement R
The three agents randomly draw a displacement from an

exponential distribution Pa(r) = 1
a e−r/a, where a, the scale of

the distribution, is the agent’s action radius [see Fig. 2(a)], i.e.,
the surroundings that each player controls.

(2) The direction �

(a) For the teammates. The agents randomly draw an
angle in [0, 2π ) from a uniform distribution.

(b) For the defender. This agent takes the direction of
the action line between itself and the agent with the ball.
Then, according to the roles in the game, the players decide

to accept the changes proposed as follows:
(3) The player with the ball evaluates if the proposed

displacement moves it away from the defender. If it does, the
player changes the position; otherwise, it remains the current
position.

(4) The free player and the defender always accept the
change.

As we mentioned before, in this model we consider the
possibility that the teammates perform passes to each other.
This decision is made as follows:

(5) If the defender’s action radius does not intercept the
imaginary line joining the teammates, then the player with the
ball plays a pass to the other teammate with probability p.

Since in real football games the player’s movements are
confined, for instance, by the field limits, in the model we
introduce two boundary parameters: The inner and external
radii, R1 and R2, respectively [see Fig. 2(b)].

(6) The inner radius R1 is used to set the initial conditions.
At t = 0, each one of the three agents is put at a distance R1

from the center of the field, spaced with an angular separation
of 120 degrees (maximum possible distance between each
other).

(7) The external radius R2 defines the size of the field. It
sets the edge of the simulation. If an agent proposes a new
position �x(t + 1), such that ||�x(t + 1)|| � R2, then the change
is forbidden and the agent keeps its current position—note this
overrules the decision taken from Eqs. (3) and (4).

Lastly, a single realization of the model in the frame of the
rules proposed above ends when:

(8) The defender invades the agent with the ball’s action
radius. That is, when the distance d between the player with
the ball and defender satisfies d < a.

Let us justify the election of the rules and the different
elements of the model. First, it is well known that football ex-
hibits complex dynamics. Figure 1(a) shows that many events
are possible in the context of a BPI. However, we can see
that the events pass and duels domain in the frequency of the
common events, and events triggering a BPC, respectively.
Therefore, a reasonable simplification is to propose a model
with only two possible events. This also agrees with the data
shown in the inset of Fig. 1(b), regarding the number of
different types of events observed during BPI.

Second, considering only three players for a football model
could be seen as an oversimplification. However, as we show
in the main plot of Fig. 1(b), the number of players by BPI
is in most of the cases two. Therefore, a system with two
teammates and a single defender triggering the BPCs is, pre-
sumably, a good approximation; ultimately, to be judged by
the model’s predictions on the observed statistics.

Third, let us discuss the players’ movement rules. In item 1
(see listing above), we propose the agents draw the displace-
ments from an exponential distribution, with an action radius
a as the scale. The idea behind this is to set a memoryless
distribution, in the light that the players’ displacements are
commonly related to both evasion and distraction maneuvers,
which are more effective without a clear motion pattern [21].
The direction and the adoption of the new movement, on the
other hand, are proposed as role dependent. The player with
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the ball takes a random direction and adopts the movement
if the new displacement moves it away from the defender,
otherwise it stays in the current position. The idea here is to
slow down the player movement since it is well known that
the players on ball control are slower than free players. The
free player, on the other hand, follows a random walk. In this
regard, our aim is to include in the model the possibility of
performing passes of different lengths. The defender’s main
role, in turn, is to capture the player with the ball. Therefore,
we consider rule 2(b) as the simplest strategy to choose in the
frame of a minimalist model.

Lastly, the incorporation of the boundaries R1 and R2 is
because the development of football games takes place inside
confined spaces. In particular, R1 brings into the model the
possibility of capturing short-time ball possession intervals,
emulating plays occurring in reduced spaces as, for instance,
fast attacks. The incorporation of R2, on the other hand, is
straightforward since the real football fields are not limitless.
The main difference between the real and the model field’s
bounds is the shape. In this regard, we neglect any possible
contribution from the fields’ geometry.

We consider that our model offers an adequate balance
between simplicity, accuracy, and, as we show in the following
sections, empirical validation. In the Supplemental Material
[22], we show the evaluation of both alternative components
and alternative strategies for the model. In the following sec-
tion, we propose a convenient method for tuning the main
parameters ruling the model dynamics: (i) the action radius
a, (ii) the probability of performing a pass p, and (iii) the
confinement radii R1 and R2.

D. On setting the model’s parameters

The model’s performance depends on the correct choice
of four parameters: a, p, R1, and R2. In this section, we
propose a simple method to optimize this tuning procedure.
For the sake of simplicity, we decided to fix a and refer the
other radius to this scale, R1 → R1

a and R2 → R2
a . For the

other parameters, we devised a fitting procedure based on the
minimization of the sum of the Jensen–Shannon divergences
(JSDs) between the observed and the predicted probability
distributions of the studied stochastic variables. To do so, we
used the following statistical observables: (i) the distribution
of ball possession time P(T ), (ii) the distribution of passes
length, P(�r,Y = pass), and (iii) the distribution of the num-
ber of passes performed P(N ). With this, we can evaluate the
model’s dynamics by using three macroscopic variables that
we can observe in the real data, a temporal, a combinatorial,
and a spatial variable describing the interaction between the
teammates.

The method follows the algorithm below.
(1) Propose a set of parameters ρ = (p, R1, R2).
(2) Perform 105 realization, calculate P(T ), P(�r,Y =

pass) and P(N ).
(3) Compare the three distributions obtained in step 2 with

the real data, using the JSD [23].
(4) Propose a new set of parameters ρ, seeking to lower

the sum of the JSD over the three distributions.
(5) Back to step 2 and repeat until the JSD is minimized.

Notice our goal is not to perform a standard non-linear fit
but to optimize the search of a realistic set of parameters that
simultaneously fit the three distributions. In this frame, the
introduction of the JSD allows us to use a metric distance to
compare and assess differences between probability distribu-
tions with different physical meanings. In the last part of the
Supplemental Material in Fig. S4 [22], we discuss in detail the
implementation of this method.

III. RESULTS

A. Statistical observables

The idea of this section is to describe the statistical observ-
ables that we extracted from the data set, and that we use to
evaluate the model performance. The main plot in Fig. 3(a)
shows the distribution of possession times. We measured the
mean value in 〈T 〉 = 13.72 s. In this case, we performed a
nonlinear fit with a function P(T ) ∝ T −γ , from where we
found γ = 5.1 ± 0.1. We can conclude, despite that the dis-
tribution seems to follow a power-law behavior, the exponent
is large to ensure it [24]. The inset in that panel, in turn, shows
the distribution P(�t ), the time between two consecutive
events. The same heavy-tailed behavior is observed, which
seems to indicate that in both plots, extreme events might not
be linked to large values of T but of �t . This is probably
due to events such as interruptions in the match or similar.
On the other hand, in Fig. 5(b), we show the distribution
P(�r), the spatial distance between two consecutive events.
In this case, we divided the data set to see the contribution
of the event tagged as pass since, as we show in Fig. 1(a),
these are the most recurrent entries. Let us split P(�r) as fol-
lows: P(�r) = P(�r,Y = pass) + P(�r,Y = other), where
Y stands for the type of event, the first term is the contri-
bution coming from passes and the second one from any
other type of event. Moreover, we divided the event pass into
two subtypes P(�r,Y = pass) = P(�r,Y = simple pass) +
P(�r,Y = other pass), where the first term is the contribution
of the subtype simple pass and the second is the contribu-
tion of any other subtype (for example, high pass, cross,
launch, etc.—cf. Ref. [18] for further details). For the sake
of simplicity, hereafter we refer to the type of events pass
and the subtypes simple pass and other pass as X , X2, and
X3, respectively. Notably, we can see a significant contribu-
tion of the event pass to distribution P(�r). The peak at
�r ≈ 1 (the mean value) and the hump around �r ≈ 3 is well
explained by the contribution of P(�r, X ) and P(�r, X1),
whereas P(�r, X2) seems to contribute more to the tail. This
multimodal behavior, likewise, might evidence the presence
of two preferential distances from where teammates are more
likely to interact by performing passes. Panel C shows the
distribution P(N ) of the number of passes per BPI. We ob-
serve the presence of a heavy tail at the right. The mean
value, 〈N〉 = 3.1, indicates that on average we observe ≈3
passes per BPI. Concerning this point, in panel D, we show
the relation between the number of passes and the possession
time. Interestingly, we observe a linear relation for values
within 0 < T < 60 (s) (see solid blue line in the panel). From
our best linear fit in this region, we obtain 〈N〉(T ) = ωp T
with ωp = 0.19 ± 0.03 (R2 = 0.99). This parameter can be
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(b)

FIG. 3. Relevant statistical observables found in the data set Events (DS) in Ref. [18], compared with the model outcomes (MO). For the
results shown in the four panels, we have set the parameters of the model with the values a = 1, p = 0.3, R1 = 2.25 and R2 = 16. (a) The main
plot shows the distribution of the possession time T , whereas the inset shows the distribution of the time differences between two consecutive
events, P(�t ). (b) Distribution of the distance between two consecutive events segmented in the groups: (i) the whole set of events P(�r),
(ii) the passes tagging as sub–type simple pass P(�r, X1), (iii) the passes tagging with any other sub-type P(�r, X2), and (iv) all the passes
P(�r, X ). Notice, the plot is in linear–log scale. (c) Distribution of the number of passes in the ball possession intervals, P(N ). (d) Mean value
of the number of passes, as a function of the possession time. The blue dashed line indicates a linear fit 〈N〉 = ωp T performed on this region,
with ωp = 0.19 ± 0.03 (1/s).

thought in overall terms as the rate of passes per unit of time.
Therefore, we conclude that during ball possession intervals,
≈0.2 passes per second are performed.

B. Assessing the model performance

In this section, we evaluate and discuss the model’s out-
comes. The results are shown in Fig. 3. Figures 3(a)–3(d)
show the comparison between the results obtained from
the dataset (discussed above) and from the model’s simu-
lations (black solid lines). We used the set of parameters
(p, a, R1, R2) = (0.3, 1, 2.25, 16).

For the distribution P(T ) in Fig. 3(a), we obtain a Jensen-
Shannon distance of DJS = 0.017, which indicates a good
similarity between the data set and the model results. How-
ever, we observe a shift in the mean of ≈ −20%, and a
problem to capture “the hump” of the curve around T ≈
30 s. For the distribution of passes length, P(�r, X ),shown
in Fig. 3(b), we observe a very good similarity DJS = 0.008.
Moreover, we can see the model succeeds in capturing the
bimodality of the distribution, which seems to indicate that
the proposed model rules are very effective for capturing both
nearby and distant passes, two interaction distances. On the
other hand, the model fails in capturing the tail, possibly be-

cause these events are related to very long passes (goal kicks
or cross passes) not generated by the simple dynamics of the
model. In Fig. 3(c), we show the distribution of the number of
passes P(N ). The calculation for the Jensen–Shannon distance
gives the value DJS = 0.0007, which indicates a very good
similarity between the curves. In this case, the value of p
seems to be crucial. Note the chosen value for p is near to
the rate ωp = 0.19 passes per second, reported in the previous
section. Regarding the relation 〈N〉 versus T in Fig. 3(d), the
data set shows that, on average, the number of passes cannot
indefinitely grow with the possession time, which is likely
a finite–size effect. Our simple model, in turn, allows the
unrealistic unbounded growth of 〈N〉.

Lastly, let us put the parameter values in the context of
real football dimensions. Regarding the action radius a, the
literature includes reported estimations from kinetic and coor-
dination variables [25,26], where speed measurements [27,28]
show that professional players are able to move in a wide
range within 1.1–4.8 m/s. Thus, it would be easy for a pro-
fessional player to control a radius of a ≈ 2 m. If we set this
value for a, we proportionally obtain for the internal and the
external radii, the values R1 ≈ 5 m and R2 ≈ 32 m, respec-
tively. Consequently, in the frame of our model, the dynamics
of the possession intervals take place into areas within a range
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(b)(a)

FIG. 4. Results of mapping the model to a Wiener process with drift and an absorbing barrier. (a) Distribution of steps δ, segmented in all
the data, P(δ), those steps given in the context of a simple persecution, P(δ, S1), and those steps in the context of a pass, P(δ, S2). (b) Nonlinear
fit performed to distribution P(T ) (MO), using the expression g(t ) given by Eq. (2).

of 78 m2 (approximately a goal area), and 3200 m2 (≈47% of
the Wimbledon Greyhound Stadium). Therefore, we conclude
the proposed parameters are in the order of magnitude of real
football field dimension, and we can confirm that the dynam-
ics of the model is ruled upon a realistic set of parameters’
values.

C. Mapping the model in a theoretical framework

We propose a theoretical framework to understand the
distribution of possession times, P(T ), observed from the
model’s outcomes. Every realization can be thought of as a
process where the defender must capture the ball. A ball that,
due to the movements and passes performed by the team-
mates, may follow a complicated path in the plane. However,
since the defender always takes the direction toward the ball,
the process can be reduced to a series of movements in one
dimension. To visualize this mapping, we fix the origin of
our 1D coordinate system at the ball position and define the
coordinate x of the defender as the radial distance d between
the ball and the defender. In this frame, the defender takes
steps back and forth depending on whether the radial distance
between the ball and defender is increasing or decreasing,
respectively. The step size �d of this random walk is variable,
and the process ends when the coordinate x of the defender
reaches the interval (−a, a) (cf. Sec. II C, rule 8). In this
process, the step size distribution characterizes the random
walk. Let us define δ = �d/d0 as the step size normalized to
the initial distance between the players. Then, in Fig. 4(a), we
plot the distribution P(δ) analyzing two possible contributions
for the steps: (i) the steps taken when the defender follows the
player with the ball (S1) and (ii) those generated when a pass
between teammates occurs (S2). To visualize these contribu-
tions, we have plotted P(δ), and the joint probabilities P(δ, S1)
and P(δ, S2), fulfilling P(δ) = P(δ, S1) + P(δ, S2). From this
perspective, we can see that (S2) explains the extreme events
whereas (S1) explain the peak.

On the other hand, if we measure the mean value of both
contributions, we obtain 〈δ〉P(δ,S1 ) = −0.14, 〈δ〉P(δ,S2 ) = 0.22,
which means that on average, the first contribution brings the
defender toward the ball and the second takes it away. How-
ever, notice that the full contribution is negative, 〈δ〉P(δ) =

−0.07, which indicates the presence of a drift leading the
defender toward the ball.

From this perspective, we can map the dynamics to a
random walk with drift, and in the presence of an absorbing
barrier. Moreover, in the approximation where δ is constant,
the process described above is governed by the following
Focker–Plank equation:

σ 2

2

∂2 p

∂x2
− μ

∂ p

∂x
= ∂ p

∂t
, (1)

subject to the boundary conditions

p(d0, x; 0) = δ(x),

p(d0, xb; t ) = 0,

where p(d0, x, t ) is the probability of finding a walker that
starts in d0, in the position x at time t . The coefficients μ and
σ are the drift and the diffusion, and xb indicates the position
where the absorbing barrier is placed. Additionally, it can be
proved that the probability distribution of the first passage
time τ , for a walker reaching the barrier, is given by [29]

g(τ ) = xb

σ
√

2πτ 3
exp

(
− (xb − μτ )2

2σ 2τ

)
, (2)

which can be straightforwardly linked to the distribution of
possession times P(T ).

In this theoretical framework, we used Eq. (2) to perform
a nonlinear fit of P(T ) via the parameters μ and σ . We set
xb = a, as the action radius can be thought of as the barrier’s
position. The result presented in Fig. 4(b) shows the fitting is
statistically significant, yielding a correlation coefficient r2 =
0.97, with μ = 0.09 ± 0.02 and σ = 0.39 ± 0.03. Moreover,
notice that we achieve a very good agreement between the
drift value and 〈δ〉P(δ), in magnitude. Therefore, we can con-
clude that, in the context of the model, a random walk with
a constant step δ and a drift μ is a good approximation for a
walker drawing steps from 〈δ〉P(δ). Furthermore, this approx-
imation explains the long tail observed in P(T ) for both the
outcomes of the model and the empirical observations.
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IV. DISCUSSION

In this paper, we focused on analyzing the dynamic of ball
possession intervals. We have performed an empirical study
of a data set, detected relevant statistical patterns, and on this
basis, proposed a numerical agent-based model. This model is
simple and can be easily interpreted in terms of the features of
the phenomenon under discussion. Moreover, we proposed a
theoretical interpretation of the numerical model in the frame
of an even simpler but better-understood physical model: the
Wiener process with drift and an absorbing barrier. In this
section, we extend the discussion regarding these results.

First, we fully characterize BPIs of the extensive data set
that compiles most of the events during the games, identifying
the main contributions. Four salient features were identified
and used later as the input to devise a minimalist football
model to study the dynamics of ball possession intervals.
Namely, (i) the most frequent type of events, (ii) events lead-
ing to a change in possession, (iii) the number of players
participating in a BPI, and (iv) the different types of events
during BPIs. We found that the most frequent event is pass,
which is twice the second-most-common event, duels. The
latter, in turn, is the most common type of event triggering
BPCs. In most cases, just two players are involved in a BPI,
and during a BPI there are usually at most two events.

Prompted from these findings, we introduced a minimalist
model composed of two teammates and a single defender
that, following simple motion rules, emulates both on-ball and
off-ball actions. This model can be tuned by setting four inde-
pendent parameters a, p, R1, and R2, which control the action
radius, the probability of making a pass, and the internal and
external radii, respectively.

We evaluated the model’s performance by comparing the
outcomes with three statistical observables in the possession
intervals, the distribution of possession time P(T ), the distri-
bution of passes length P(�r, X ), and the distribution of the
number of passes P(N ). To this end, we have introduced a
simple method based on the evaluation of the Jensen–Shannon
distances as a criterion to fit the simulation’s outcomes to the
real data. Remarkably, despite the simplicity of the model, it
approaches very well the empirical distributions.

Finally, to get a physical insight into the process behind
ball possession dynamics, we map the model to a one-
dimensional random walk in which the ball is fixed at the
origin, and the defender moves taking nonuniform steps of
length δ. We showed that since 〈δ〉P(δ) < 0 holds, the defender
moves following a preferential direction toward the ball. Then
we can use the theoretical framework of a Wiener process
with drift and an absorbing barrier to describe the model’s
dynamics. We evaluated this hypothesis by performing an
nonlinear fit to the distribution of possession times, P(T ), with

the expression of the first passage time for the Wiener process,
finding a very good agreement. The mapping shows that the
agents’ dynamics in the numerical model can be understood
in the frame of a simple physical system.

We can think of the game of football as a complex system
where the interactions are based on cooperation and competi-
tion. Competition is related to teams’ strategies; it concerns
the problem of how to deal with the strengths and weak-
nesses of the opponent [30]. Strategies are usually previously
planned and are developed during the entire game, hence it
could be associated with long-term patterns in the match.
Cooperation, on the other hand, can be linked to tactical as-
pects into the game, where interactions bounded to a reduced
space in the field, short periods into the match, and carried
out by a reduced number of players could be associated with
short-term patterns. Ball possession intervals are related to
cooperative interactions. Therefore, in this paper, we are not
studying the full dynamics of a football match but tactical
aspects of the game. In this frame, our work should be consid-
ered as a step toward a better understanding of the interplay
between the short-term dynamics and the emerging long-term
patterns within the game of football when studied as complex
systems with nontrivial interaction dynamics.

From a technical point of view, our model could be used as
a starting point to simulate and analyze several tactical aspects
of the game. Note that the main advantage of our simple
numerical model is that it easily allows the introduction of
complexity: more players, different types of interactions, etc.
For instance, simulations based on our model can be useful to
design training sessions of small-sided games [31–33] where
coaches expose players to work out under specific constraints:
in reduced space, with a reduced number of players, with
coordinated actions guided by different rules, etc. [34]. More-
over, by performing simulations, it is possible to estimate the
physical demand of the players, which is useful for session
planning and postevaluation [35].

Lastly, as we said above, we consider that a full characteri-
zation of football dynamics should focus on the study of both
competitive and cooperative interactions. In this paper, we
focused on the latter; a first step to address the former could
focus on analyzing the spatiotemporal correlations between
consecutive possession intervals. In this regard, we leave the
door open to futures research works in the area.
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