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Characterization of domain formation during random sequential adsorption of stiff linear k-mers
onto a square lattice
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Using a computer simulation, we have studied the random sequential adsorption of stiff linear k-mers onto
a square lattice. Each such particle occupies k adjacent lattice sites. During deposition, the two mutually
perpendicular orientations of the particles are equiprobable, hence, a macroscopically isotropic monolayer is
formed. However, this monolayer is locally anisotropic, since the deposited particles tend to form domains
of particles with the same orientation. Using the “excluded area” concept, we have classified lattice sites into
several types and examined how the fraction of each type of lattice site varies as the number of deposited particles
increases. The behaviors of these quantities have allowed us to identify the following stages of domain formation:
(i) the emergence of domain seeds, (ii) the filling of domains, and (iii) densification of the domains.
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I. INTRODUCTION

The deposition of large particles (proteins, viruses, bac-
teria, colloids, and macromolecules) at various interfaces is
widespread in both nature and industry [1,2]. For instance,
proteins usually form monolayers on substrates, since pro-
teins do not adhere to each other [3,4]. Protein adsorption at
solid-liquid interfaces is important in thrombosis, plaque for-
mation, artificial organ failure, and fouling of contact lenses
[4,5]. The efficient separation and purification of proteins by
chromatography, filtration, for biosensing, bioreactors, im-
munological assays, etc., require controlled protein deposition
[4–6]. The adsorption of colloids and bioparticles is impor-
tant for filtration, electroflotation, separation of toner and ink
particles, papermaking, xerography, production of magnetic
tapes, etc. [7]. In general, adsorbed particles, e.g., biological
molecules or polymers, have a nonspherical shape. For exam-
ple, the adsorption of fibrinogen has been studied considering
its molecule as a linear chain of touching beads of various
sizes [8]. Another important field is nanotechnology, where
elongated nanoparticles (e.g., gold nanorods [9], colloidal
CdSe/CdS nanorods [10], silver nanorods [11]) are deposited
onto a substrate.

Random sequential adsorption (RSA) is a process during
which particles are randomly and irreversibly deposited onto
a substrate without overlapping with previously adsorbed par-
ticles [3]. RSA is a useful model for many physical, chemical,
and biological processes [1,5,6,12]. Both continuous and dis-
crete substrates can be considered. A widely used kind of
discrete substrate is the square lattice. One of the simplest
particle shapes is the so-called k-mer (rod, stick, needle, stiff
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linear chain), i.e., a linear “molecule” occupying k adjacent
lattice sites. The prohibition of overlapping means a hard-
core (excluded volume) interaction between the particles. As
particles are deposited, first there occurs a percolation phase
transition, i.e., the emergence of a cluster that penetrates the
whole system. Then, the system reaches a jamming state when
any additional deposition of particles is impossible due to the
absence of any appropriate empty space to place even one
extra particle. Although there are some empty spaces, these
holes have inappropriate shapes or sizes to accept a further
particle. During the RSA of k-mers onto a square lattice, the
excluded area effect [13] leads to the formation of domains
filled with particles all of the same orientation. Domain struc-
tures have been observed both at percolation [14–16] and at
jamming [15,17–19].

A qualitative description of the domain formation is as
follows [18]. At the early stages of adsorption, previously
deposited k-mers affect insignificantly the deposition of new-
comers since the system is fairly sparse. Almost each new
k-mer can be adsorbed in arbitrary orientations. As the num-
ber of deposited k-mers increases, newly deposited k-mers
have to align to the already deposited ones to avoid intersec-
tions. The late-stage deposition pattern consists of domains
of densely packed parallel k-mers and regions of empty sites
of sizes ranging from a single site to the length k − 1 which
are inaccessible for the adsorption of k-mers. Similar be-
havior, i.e., the formation of domains of parallelly deposited
objects, has also been observed for elongated particles of
more complex shapes on both square [18] and triangular
lattices [20]. The sizes of these domains were greater for
more elongated shapes, i.e., for shapes that resemble more
the straight lines. Moreover, domains have been reported for
RSA of binary mixtures of line segments on a square lattice
[21].
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Using a local order parameter, the typical size of domains
has been evaluated as k × k [22]. Thus, although a monolayer
produced by RSA is macroscopically isotropic, microscopic
regions can exhibit significant anisotropy. Visually, the do-
mains resemble winding areas with dense centers and diffuse
edges [23]. It seems, therefore, that a local order parameter
cannot provide complete information about the shape and
structure of the domains. An alternative characteristic of the
domain structure is the pair correlation function [24,25].

The internal structure of domains can be described using
a concept of stacks [26]. A definition of a stack states that
two neighboring parallel k-mers belong to the same stack if
the number of nearest-neighbor bonds between them is greater
than k/2 [26]. When a stack is defined in such a way, it has
a wormlike structure without branching. Although all k-mers
within the stack are aligned in the same direction, some trans-
verse fluctuations are allowed, which make the stacks wavy
and curved. Accordingly, each domain is a set of stacks.

A larger substructure of a domain is a cluster of k-mers of
the same orientation. Two neighboring parallel k-mers belong
to the same cluster if there is at least one nearest-neighbor
bond between them. This substructure has been used to char-
acterize a relaxation of the jammed state due to the random
walks of k-mers [27]. Thus, contiguous stacks form a cluster.

When RSA of randomly oriented elongated particles onto a
continuous substrate is considered, the formation of domains
has been observed in the long-time regime for zero-width
sticks [28], rectangles [29], discorectangles [24], and poly-
mers [30]. These elongated particles were arranged almost
parallel to each other within the domains. Thus, the formation
of domains is custom for elongated particles when deposited
onto both discrete and continuous substrates.

Recently, a RSA of rectangles onto a continuous plane has
been considered geometrically [31]. The three areas which
are formed around a deposited rectangle have been defined.
As particles are deposited they change the properties of
the surrounding space by creating a probability field around
them, i.e., creating a “polarized space.” Within this “polarized
space,” a newly deposited particle is forced to align parallel
to the previously deposited particles. The proposed approach
can be treated as a refinement of the excluded area concept.
A similar consideration has been performed for zero-width
sticks, i.e., rectangles with an infinity large aspect ratio [32].

By means of both computer simulation and analytical treat-
ment using the “excluded area” concept, we have studied the
formation of domains during RSA of k-mers onto a square
lattice. The three stages have been found and classified. In
fact, we have transferred the idea of a polarized space [31]
from continuous space to a discrete one.

The rest of the paper is constructed as follows. In Sec. II,
the technical details of the simulations are described, all
necessary quantities are defined, and some estimates of the
finite-size effect are given. Section III presents our principal
findings. Section IV summarizes the main results.

II. COMPUTATIONAL MODEL

A square lattice with L × L sites was used as a substrate.
Periodic boundary conditions were applied along both di-
rections of the lattice to reduce the finite-size effect. Linear

(a) (b)

FIG. 1. Example of a kx-mer and a ky-mer (k = 4) with
(a) nonoverlapping excluded areas and (b) partially overlapping ex-
cluded areas.

particles occupying k adjacent lattice sites were randomly and
sequentially deposited onto the lattice. To distinguish the two
possible orientations of deposited particles, we denoted the
particles oriented along the abscissa as kx-mers, while the
particles oriented along the ordinate were ky-mers. We treated
the leftmost site of a kx-mer and the topmost site of a ky-mer
as the “primary element” (origin) of the particle. The rest
of the k − 1 sites of the particle were denoted as its body.
Both the mutually perpendicular orientations of deposited
particles were taken as equiprobable. In our simulations, we
used k ∈ [2; 12]. As a basis, the linear size of the lattice
was chosen as L = 32k. However, the finite-size effect has
also been tested by variations of the lattice size for a fixed
value of k. All results were averaged over 100 independent
runs.

We used the reduced (normalized) coverage, i.e., the num-
ber of occupied sites N , divided by the number of occupied
sites at jamming Nj,

x = N

Nj
, (1)

in such a way that x ∈ [0; 1].
Each adsorbed particle blocks k lattice sites from further

deposition of both kx- and ky-mers. Furthermore, some sites
in the vicinity of the adsorbed particle are forbidden for the
deposition of only one kind of particle (Fig. 1). Figure 1(a)
demonstrates a kx-mer and a ky-mer together with their
nonoverlapping excluded areas. Figure 1(b) demonstrates a
kx-mer and a ky-mer when their excluded areas are partially
overlapping. Deposited particles are shown using a solid fill.
Darker cells correspond to the “primary element” of particles,
while lighter ones form their bodies. The primary elements of
any additional kx- or ky-mers can be placed in open cells. Only
ky-mer primary elements can be placed in cells with vertical
hatching. The primary elements of only kx-mers can be placed
in cells with horizontal hatching. The primary elements of
neither kx- nor ky-mers can be placed into cross-hatched cells.

We classified each of the lattice sites under one of several
types:

Type 0: Lattice sites that are forbidden for the deposition
of both kx- and ky-mers. This type can be additionally divided
into two subtypes:

Subtype −0: Occupied sites [solid squares in Fig. 1(a)]. No
site of the newly deposited particle can be placed in these sites.
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FIG. 2. Example of the functions f+0(x), f1(x), and f2(x) for k =
8, L = 256.

Subtype +0: Empty sites that are forbidden for the deposi-
tion of the primary elements of both kx- and ky-mers. However,
a body-site of a newly deposited particle may be placed into
a site of subtype +0. These sites are shown in Fig. 1(b) as
cross-hatched squares.

Type 1: Empty sites that allow deposition of the primary
elements of the either kx- or ky-mers. These sites are shown
in Fig. 1 as horizontally, or vertically hatched squares, respec-
tively.

Type 2: Empty sites that can allow the deposition of the
primary elements of both kx- and ky-mers. These sites are
shown in Fig. 1 as open squares.

Sites of types 0 and 1 belong to the excluded area.
The fractions of lattice sites belonging to one of these types

are denoted as f−0(x), f+0(x), f1(x), and f2(x), respectively.
Naturally, f−0(x) + f+0(x) + f1(x) + f2(x) = 1, hence, only
three of the four functions are independent. By definition,
f−0(x) is a linear function. It is therefore uninformative, and
is not discussed further.

Figure 2 presents an example of the functions f+0(x), f1(x),
and f2(x) for one particular case (k = 8, L = 256). f2(x) is a
monotonically decreasing function, while each of the func-
tions f+0(x) and f1(x) has one maximum and one inflection
point. The coordinates of the maxima look promising for
characterizing the kinetics of domain formation.

Figure 3 presents the functions f+0(x) and f1(x) for a
fixed k = 8 and different lattice sizes (L = 64, 256, 1024).
Figure 3 suggests that the finite-size effect is significant only
in the vicinity of the jammed state (x = 1). In any case, the
curves for L = 32k and L = 128k are hardly distinguishable.
Since domain formation is a continuous process, i.e., there is
no jump between any two stages, the exact location of the
maxima is not so important. This is the reason for the use of
L = 32k in our main evaluations.

We investigated the mean stack size 〈s〉 and the number of
stacks per lattice site ns, which quantify the internal structure
of the domains. Figure 4 demonstrates an example of the
dependencies of these quantities on the normalized coverage
x for k = 8, L = 256. Quite expectedly, the mean stack size

FIG. 3. Example of the finite-size effect: Functions f+0(x) and
f1(x) for k = 8, L = 64, 256, 1024.

monotonically increases. The number of stacks per lattice site
has a maximum at a certain value of the normalized coverage,
x = arg max ns(x).

Additionally, we investigated the mean cluster size 〈c〉
and the number of clusters per lattice site ns which quantify
the internal structure of the domains. Figure 5 demonstrates
an example of the dependencies of these quantities on the
normalized coverage x for k = 8, L = 256. As expected, the
mean cluster size monotonically increases. The number of
clusters per lattice site has a maximum at a certain value of
the normalized coverage, x = arg max nc(x).

III. RESULTS AND DISCUSSION

For k ∈ [2; 12], the abscissae of the extremal points of the
functions f1(x) and f+0(x) decrease as the value of k increases
(Fig. 6). However, this behavior may differ for larger values
of k.

The extremal points of the functions f1(x) and f+0(x)
as well as direct observation of the particle deposition [33]

FIG. 4. Example of the dependencies of the mean stack size
〈s〉 and the number of stacks per lattice site ns on the normalized
coverage x for k = 8, L = 256.
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FIG. 5. Example of the dependencies of the mean cluster size
〈c〉 and the number of clusters per lattice site nc on the normalized
coverage x for k = 8, L = 256.

suggest the following stages of domain formation. Naturally,
the boundaries of the stages are approximate (Fig. 6).

Stage I: Emergence of domain seeds.During the initial stage
of particle deposition when x ∈ [0; arg max f1(x)], particles
stake out the future domains. The number of empty sites of
type 2 decreases, while the number of empty sites of type 1
increases. Since a significant fraction of the empty sites can
accept deposited particles of only one orientation, they can be
treated as the progenitors of future domains [Fig. 7(a)].

Stage II: Filling of domains. As the number of deposited
particles increases, x ∈ [arg max f1(x); arg max f+0(x)], the
number of sites of type 1 decreases due to overlapping of
the excluded areas produced by the deposited particles of
mutually perpendicular orientations [Fig. 7(b)].

Stage III: Densification of domains. At this stage when
x ∈ [arg max f+0(x); 1], almost all newly deposited particles
fall only into the already formed domains. A feature of this

FIG. 6. Dependencies of arg max f+0, arg max f1, arg max ns, and
arg max nc on the particle size k. The lines between the markers
are drawn simply for convenience. The error bars correspond to the
standard deviation. When not shown explicitly, they are of the order
of the marker size.

FIG. 7. Example of a system under consideration (a) at the end of
stage I and (b) at the end of stage II; k = 8, L = 8k. Both deposited
particles and different types of empty sites are shown. Darker regions
correspond to deposited particles (sites of subtype −0). Empty sites
belonging to subtype +0 are shown as white regions. Light gray
regions correspond to type 2 sites. Two shades of gray (light blue
and light red online) depict sites belonging to type 1.

stage is the reduction in the number of sites of type +0 due to
their overlapping by newly deposited particles. At this stage,
the number of sites of type 2 is already negligible. A reduc-
tion in the number of sites of type 1 occurs since the newly
deposited particles overlap sites of types 1 and +0. Almost all
newly deposited particles are placed into already formed and
limited domain structures. This densification of the domains
hardly changes their formed structure, since almost all the
newly deposited particles are placed inside domains between,
and aligned with, previously placed particles [Fig. 8(c)].

For the values of k under consideration, the width of stage
II seems to be a constant within the precision of our evalua-
tions,

� = arg max f+0 − arg max f1 ≈ 0.42 ± 0.01.

With an increasing value of k, the width of stage I decreases
while that of stage III increases (Fig. 6).
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(a) (b) (c)

FIG. 8. Example of the sequence of formation of the domain structure for one particular lattice (k = 8, L = 16k). The patterns at the end
of each stage are shown. (a) I, (b) II, and (c) III. Particles deposited during each particular stage are shown in different shades.

During stage II, the number of clusters reaches its max-
imum value and then decreases (Fig. 6). The merging of
clusters seems to be independent of the evolution of the po-
larized space.

The number of stacks reaches its maximum value near the
transition from stage II to stage II and then decreases (Fig. 6).
Nonmonotonic dependence ns(k) occurs due to the definition
of stacks [26] since there are the two different branches corre-
sponding to even and odd values of k. For example, according
to the definition of stacks [26], two common lateral bonds are
needed for two particles to belong to the same stack both in
the case of dimers and trimers.

IV. CONCLUSION

Using a computer simulation, we have studied an isotropic
random sequential adsorption of stiff linear segments (k-mers)
onto a square lattice with periodic boundary conditions along
both directions. Due to the excluded area effect, deposited par-
ticles form domains of particles of the same orientation. Using
the excluded area concept, we have classified lattice sites into

several types. We have examined how the fraction of each type
of lattice site varies with the number of deposited particles.
The behaviors of these quantities provide for a classification
of the stages of domain formation: (i) the emergence of do-
main seeds [Fig. 8(a)], (ii) the filling of domains [Fig. 8(b)],
and (iii) densification of the domains [Fig. 8(c)]. Our approach
and results are closely related to that for the RSA of needles
[32] and rectangles [31] onto a plane. Since our computer
simulation is restricted only to short particles, an additional
study is needed for larger values of k (k > 12); however, such
a study is expected to be time consuming.

Our study offers an approach to classify the RSA stages.
The proposed approach is expected to be useful for other
kinds of regular discrete substrates (e.g., triangular lattice) and
other shapes of particles (e.g., rectangles). The application of
the approach to other kinds of substrates as well as to other
particle shapes suggests an additional independent study.
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quential adsorption on a triangular lattice, Phys. Rev. E 56, 6904
(1997).

[21] J. W. Lee, Irreversible random sequential adsorption of mix-
tures, Colloids Surf., A 165, 363 (2000).

[22] Y. Y. Tarasevich, A. V. Eserkepov, V. V. Chirkova, and V. A.
Goltseva, Monte Carlo simulation of entropy-driven pattern
formation in a two-dimensional system of rectangular particles,
J. Phys.: Conf. Ser. 1163, 012007 (2019).

[23] M. G. Slutskii, L. Y. Barash, and Y. Y. Tarasevich, Percolation
and jamming of random sequential adsorption samples of large
linear k-mers on a square lattice, Phys. Rev. E 98, 062130
(2018).

[24] S. M. Ricci, J. Talbot, G. Tarjus, and P. Viot, A structural
comparison of random sequential adsorption and equilibrium

configurations of spherocylinders, J. Chem. Phys. 101, 9164
(1994).

[25] R. C. Hart and F. D. A. Aarão Reis, Random sequential ad-
sorption of polydisperse mixtures on lattices, Phys. Rev. E 94,
022802 (2016).

[26] J. Kundu, R. Rajesh, D. Dhar, and J. F. Stilck, Nematic-
disordered phase transition in systems of long rigid rods on
two-dimensional lattices, Phys. Rev. E 87, 032103 (2013).

[27] Y. Y. Tarasevich, V. V. Laptev, A. S. Burmistrov, and N. I.
Lebovka, Pattern formation in a two-dimensional two-species
diffusion model with anisotropic nonlinear diffusivities: A lat-
tice approach, J. Stat. Mech: Theory Exp. (2017) 093203.

[28] J. D. Sherwood, Random sequential adsorption of
lines and ellipses, J. Phys. A: Math. Gen. 23, 2827
(1990).

[29] R. D. Vigil and R. M. Ziff, Random sequential adsorption of
unoriented rectangles onto a plane, J. Chem. Phys. 91, 2599
(1989).
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