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Current-density relation in the exclusion process with dynamic obstacles
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We investigate the totally asymmetric simple exclusion process (TASEP) in the presence of obstacles
that dynamically bind and unbind from the lattice. The model is motivated by biological processes such as
transcription in the presence of DNA-binding proteins. Similar models have been studied before using the
mean-field approximation, but the exact relation between the particle current and density remains elusive. Here,
we first show using extensive Monte Carlo simulations that the current-density relation in this model assumes
a quasiparabolic form similar to that of the ordinary TASEP without obstacles. We then attempt to explain this
relation using exact calculations in the limit of low and high density of particles. Our results suggest that the
symmetric, quasiparabolic current-density relation arises through a nontrivial cancellation of higher-order terms,
similarly as in the standard TASEP.
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I. INTRODUCTION

The totally asymmetric simple exclusion process (TASEP)
is a paradigmatic model of nonequilibrium statistical mechan-
ics. In its simplest version, particles enter a one-dimensional
lattice of size L from one boundary and exit through the other
boundary. A particle jumps at a constant rate to the next lattice
site, unless that site is blocked by another particle.

The TASEP was originally proposed to model the dynam-
ics of ribosomes during mRNA translation [1,2], and it is
still in much use for that purpose today [3–11]. Other appli-
cations include enzyme kinetics [12], the dynamics of RNA
polymerases during transcription [13–17], the movement of
molecular motors [18,19], and modeling pedestrian and ve-
hicular traffic [20,21].

From the theoretical point of view, the TASEP has been
extensively studied as a model system for boundary-driven
phase transitions [22,23]. The model with open boundary
conditions is one of few models in nonequilibrium statistical
mechanics which can be solved exactly [24,25]. Interestingly,
bulk properties of the TASEP such as the particle current and
density can also be explained using the mean-field approxima-
tion that ignores correlations between particles [1,26]. Other
examples where the mean-field approximation has been ap-
plied successfully include extended particles (e.g., ribosomes
that occupy ≈10 lattice sites) [27], particles that can attach
and detach from the lattice (the Langmuir kinetics) [28],
particles with site-dependent hopping rates [11,29–31], and
particles with internal states [32–34].

A remarkable property of the standard TASEP is a simple
relation between the current J of particles and particle density
ρ in the thermodynamic limit (L → ∞):

J = 4Jmaxρ(1 − ρ), (1)

where Jmax is the maximum current that occurs when ρ = 1/2.
Due to the particle-hole symmetry, this relation is symmetric
to ρ ↔ 1 − ρ. For the standard TASEP, Jmax = v/4, where v

is the particle hopping rate. We will refer to Eq. (1) as the
current-density relation. This relation can be derived using
either the mean-field approximation or the exact solution.

Here we explore to what extent the above relation holds for
the TASEP with dynamic “defects” (henceforth the acronym
ddTASEP) that temporarily block or slow down the move-
ment of particles (Fig. 1). Many variants of the TASEP with
dynamic disorder exist in the literature, such as a single dy-
namical defect [35–37], annealed disorder [38,39], and the
“bus route” model [40]. Here, we focus on the case motivated
by interactions between the RNA polymerase and DNA-
binding proteins [17,41], in which particle-blocking obstacles
hop in and out of the lattice from an infinite reservoir. The
lattice can therefore have an arbitrary number of obstacles
between 0 and L and any site can be occupied by an obstacle.

In our previous paper [42] we used computer simulations to
show that the parabolic form of Eq. (1) holds approximately
for the ddTASEP, whereby the effective particle speed u =
4Jmax was found to be smaller than the intrinsic speed v. We
also applied a simple mean-field approximation to derive the
current-density relation for high binding and unbinding rates.
Our result broke down when the binding and unbinding rates
were low. A similar failure of the mean-field approximation
was previously reported in the TASEP with an isolated dy-
namic defect [36].

In the present work, we would like to better understand
the origin of this quasiparabolic current-density relation in
the ddTASEP. We use Monte Carlo computer simulations to
show that the current-density relation is in fact not a parabola,
but that deviations from the parabolic shape remain very
small over a large range of binding and unbinding rates.
We then consider the dynamics of a single particle on an
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FIG. 1. TASEP with dynamic obstacles. (a) The model with peri-
odic boundary conditions. (b) The model with open boundaries. (c) A
space-time plot of a simulation snapshot for the model with periodic
boundaries, for L = 100, M = 20, k+ = 0.002, k− = 0.02. Particles
are black; obstacles are blue. Particles can be seen moving to the
right and stopping when encountering obstacles. Obstacles appear at
random sites and disappear after a while.

infinite lattice and derive an expression for u that agrees well
with the results of computer simulations. Finally, we derive
the current-density relation for the system with open bound-
ary conditions using the power series method [43,44], and
show that particle-defect correlations dominate over particle-
particle correlations in setting the maximum current.

II. MODEL

In contrast to [17,41,42], we seek a more abstract model
that could serve as an “archetype model” for a broad class of
processes that involve “particles” traveling down the lane that
can be periodically blocked by “obstacles,” for example, RNA
polymerases blocked by DNA-binding proteins, ribosomes
slowed down by RNA folding, or cars stopping at traffic lights.

The model is schematically represented in Figs. 1(a) and
1(b). Each of the i = 1, . . . , L lattice sites can have a particle,
an obstacle, or both. We assign two occupancy variables to
each site: τi for particles and σi for obstacles. If site i is occu-
pied by a particle we set τi = 1; otherwise, τi = 0. Similarly,
σi = 1 if site i is occupied by an obstacle; otherwise, σi = 0.
The state of the system is thus fully defined by two vectors:
τ = {τi} and σ = {σi}.

Obstacles bind and unbind with rates k+, k−. A particle
jumps from i to i + 1 at rate v if there is no particle at site

i + 1, and no obstacle at site i; otherwise, the particle does not
jump. We can write these rules as

σi = 0
k+−→ 1, (2a)

σi = 1
k−−→ 0, (2b)

(τi, τi+1) = (1, 0)
v(1−σi )−−−−→ (0, 1). (2c)

We consider both the closed (with periodic boundary con-
ditions) and the open system. In the closed system, particles
jump from site i = L to site i = 1, and the total number of
particles is fixed and equal to M. In the open system, particles
enter at site i = 1 at rate α if the site is unoccupied. Particles
leave the system from site i = L at rate β provided the site L is
not occupied by an obstacle. These boundary conditions can
be summarized as

(τL, τ1) = (1, 0)
v(1−σL )−−−−→ (0, 1) (closed system), (3a)

τ1 = 0
α−→ 1

τL = 1
β(1−σL )−−−−→ 0

}
(open system). (3b)

We note that the particle-obstacle interaction in this model
is slightly different than in Ref. [42] in which a particle at site
i was blocked by an obstacle at site i + 1. However, these two
models are related by the particle-hole symmetry τi ↔ 1 − τi

and the reversal of entrance and exit rates, α ↔ β.
Using the above notation, we define the total density ρ and

current J in the steady state as follows:

ρ = 1

L

L∑
i=1

〈τi〉, (4)

J = v〈(1 − σi )τi(1 − τi+1)〉, (5)

where 〈. . . 〉 is taken with respect to the steady-state prob-
ability P∗(C) to find the system in state C = (τ; σ). In the
model with open boundaries, the current is related to the
occupation of boundary sites as follows: J = α(1 − 〈τ1〉) =
β〈(1 − σL )τL〉. Since particles are conserved in the bulk, the
steady-state current J does not depend on position i and is the
same for all lattice sites.

By definition, the current J in Eq. (5) is determined by
correlations between the obstacle and particle occupancy vari-
ables σi and τi at site i, respectively, and the hole occupancy
variable 1 − τi+1 at site i + 1. In the low-density limit, J ≈
v〈σiτi〉 = uρ, where u is the effective particle speed. The
linear term in J (ρ) is thus determined by particle-obstacle
correlations, while nonlinear terms are related to correlations
involving multiple particles and obstacles.

III. NUMERICAL RESULTS

We first establish, using Monte Carlo simulations
(large L) and exact enumeration (small L), how well the
current-density relation J (ρ) is described by the inverted
parabola from Eq. (1). We set v = 1 without loss of generality,
which is equivalent to rescaling k+ → k+/v and k− → k−/v.

We begin with the model with periodic boundary condi-
tions. We have simulated the model for different parameters
L, k−, k+, and M = 1, . . . , L − 1. The simulation algorithm is
explained in Appendix B. Figure 2(a) shows the scaled current
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FIG. 2. (a) Current J in the system with periodic boundaries
as a function of the particle density ρ. Different colors represent
235 combinations of the parameters L, k−, k+: L = 10 . . . 1000 and
k−, k+ = 0.001 . . . 20. (b) Difference (J − Jpar )/Jmax between nu-
merically determined J and the inverted parabola Jpar = 4Jmaxρ(1 −
ρ ), for the same data as in the panel (a). (c) Root-mean-square
deviation J − Jpar for k− = k+ = 0.001 (blue), 0.05 (yellow), and
0.2 (green), for different sizes L. Errors (SEM) are smaller than the
point size.

J (ρ)/Jmax, where ρ = M/L and Jmax is the maximum value of
J attained at ρ = 1/2. The shape is very well approximated by
the inverted parabola 4ρ(1 − ρ), exactly as for the standard
TASEP without obstacles. Deviations from the parabola are
very small (below 4%) for all sizes L [Fig. 2(b)], but they do
not seem to go away with increasing L, suggesting that they
are not finite-size effects [Fig. 2(c)].

As expected, the best agreement with the parabola is found
in the regime k+, k− 	 1 in which obstacles attach and detach
many times between each particle jump (Fig. 3; see also the
mean-field theory in Sec. IV). Further inspection of the current
dependence on k− and k+ reveals that the deviations increase
with decreasing k+ and k−. The largest deviations are found
for k+ < k− 
 1. In this regime, obstacles persist for a long
time; we thus expect particles to form quasistationary queues
behind each obstacle.

In order to exclude the possibility that these deviations
are caused by numerical inaccuracies of the simulation algo-
rithm, we calculated J (ρ = M/L) exactly for small systems
for L = 5, 6, 7 (see Appendix B for details). In the standard
TASEP, the exact solution for the current for any M and L is
given by J = L

L−1ρ(1 − ρ), i.e., the current-density relation is
parabolic even for very small systems. In contrast, Fig. 4(a)
shows small but nonvanishing deviations from the parabola

FIG. 3. Root-mean-square (rms) deviation of the current J (ρ )
obtained in simulations from the parabola J (ρ ) = 4Jmaxρ(1 − ρ ), for
k−, k+ = 0.001 . . . 20 and fixed L = 1000.

for ddTASEP. The magnitude of these deviations is the largest
for intermediate binding and unbinding rates k+, k− and de-
creases for very small or very large rates [Fig. 4(b)].

IV. MEAN-FIELD THEORY

Numerical results presented in the previous section pose an
interesting conundrum: the current-density relation is not ex-
actly parabolic, but the correction never exceeds a few percent
when normalized by the maximum current. The correction de-
pends on k+, k−, being the strongest for k+, k− much smaller
than one, but decreasing again for very small rates.

In order to understand where the correction comes from,
we consider the definition of the current of particles at site
i in Eq. (5). If we neglect correlations between particles, as
well as correlations between particles and obstacles, we get
the “naive” mean-field approximation for the current from
Ref. [42]:

J = v(1 − ρd )ρ(1 − ρ), (6)

(a) (b)
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FIG. 4. (a) Current J (ρ ) obtained from exact enumeration of all
states of ddTASEP (points), with a parabolic fit (line), for L = 6
and k+ = k− = 0.1. (b) Root-mean-square deviation from the fitted
parabola as a function of k+ = k−, for three system sizes L = 5, 6, 7
(blue, yellow, green).
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where ρd = k+/(k+ + k−) is the equilibrium density of ob-
stacles. We have shown in Ref. [42] that this approximation
works very well for k+, k− 	 1, but it breaks down for
k+, k− � 1, which indicates the presence of strong correla-
tions between variables τi and σi from Eq. (5).

In the following sections, we will show how these correla-
tions arise from interactions between particles and obstacles,
and how including them gives a much better estimate of the
current. We begin by postulating J (ρ) ≈ uρ(1 − ρ), which
implies that J → uρ as ρ → 0. This assumption enables us
to find u and Jmax = u/4 by considering the limit ρ → 0 in
which particle collisions are negligible. Later we shall show
how to derive the parabolic current-density relation directly
from the master equation of the model and explain the origin
of higher-order corrections.

V. EXACT RESULTS FOR A SINGLE PARTICLE ON THE
INFINITE LATTICE

We begin by presenting a simple calculation which cor-
rectly predicts the leading correction to the mean-field current
in Eq. (6).

We consider a single particle (M = 1) on an infinite lattice
(L → ∞). Let P1(n, t ) and P0(n, t ) be the probabilities of
finding the particle at site n with and without an obstacle,
respectively. These probabilities evolve according to the fol-
lowing master equation:

dP1(n, t )

dt
= vρd P0(n − 1, t ) + k+P0(n, t )

− k−P1(n, t ), (7)

dP0(n, t )

dt
= v(1 − ρd )P0(n − 1, t ) + k−P1(n, t )

− (k+ + v)P0(n, t ). (8)

In Eq. (7), ρd P0(n − 1, t ) is the probability that the particle
is at site n − 1 at time t and an obstacle is at site n. Here we
have used the fact that the obstacle dynamics at site i does
not depend on the particle dynamics at site i − 1; hence the
product ρd P0(n − 1, t ) [see also Eq. (33)]. The second term
in Eq. (7), k+P0(n, t ), accounts for an obstacle binding to
site n occupied currently by the particle, whereas k−P1(n, t )
corresponds to the obstacle unbinding. In the second equa-
tion, (1 − ρd )P0(n − 1, t ) is the probability that the particle
is at site n − 1 at time t , but there is no obstacle at site n.
The term k−P1(n, t ) represents an obstacle vanishing from
the site where the particle is, and −(k+ + v)P0(n, t ) to either
the particle moving away from site n or an obstacle unbinding
from that site. We assume that the particle is initially at site 0,
which has no obstacle, i.e., P0(n, 0) = 0 and P1(n, 0) = δn,0,
where δn,0 is the Kronecker delta. Note that we did not assume
v = 1 in the equations.

Equations (7) and (8) do not have a steady-state solu-
tion as the particle keeps moving through the lattice. To
find the time-dependent solution, we introduce generating

functions:

F0(z, t ) =
∞∑

n=0

P0(n, t )zn, (9)

F1(z, t ) =
∞∑

n=0

P1(n, t )zn. (10)

The equations for F0(z, t ) and F1(z, t ) read

∂F0

∂t
= [v(z − 1) − ρdvz − k+]F0 + k−F1, (11)

∂F1

∂t
= (ρdvz + k+)F0 − k−F1, (12)

with the initial conditions F0(z, 0) = 0 and F1(z, 0) = 1. We
are interested in the speed of the particle u in the long-time
limit,

u = lim
t→∞

∂〈n(t )〉
∂t

, (13)

where 〈n(t )〉 is the mean position of the particle,

〈n(t )〉 =
∞∑

n=0

n[P0(n, t ) + P1(n, t )] (14)

=
[ ∂

∂z
[F0(z, t ) + F1(z, t )]

]
z=1

. (15)

In order to find u, we add Eqs. (11) and (12) together and
differentiate with respect to z at z = 1:

∂〈n(t )〉
∂t

=
[

∂2

∂t∂z
[F0(z, t ) + F1(z, t )]

]
z=1

= vF0(1, t ). (16)

Next, we note that F0(1, t ) + F1(1, t ) = 1, which after insert-
ing in Eq. (11) gives

dF0(1, t )

dt
= −(ρdv + k+ + k−)F0(1, t ) + k−. (17)

The solution of this equation in the limit t → ∞ is equal to
k−/(ρdv + k+ + k−) and thus

u = v
k−/k+

1 + (k−/k+) + v/(k+ + k−)
. (18)

This must be also equal to J/ρ in the limit ρ → 0 and hence

Jmax = v

4

k−/k+
1 + (k−/k+) + v/(k+ + k−)

. (19)

Figure 5 shows that this result correctly reproduces Jmax mea-
sured in computer simulations to ±30% for k−, k+ spanning
four orders of magnitude. Moreover, Jmax correctly reduces to
v/4 in the limit k−/k+ → ∞ that corresponds to the standard
TASEP without obstacles.

The fact that this simple calculation works so well
means that particle-obstacle correlations are the primary fac-
tor responsible for setting the maximum current, whereas
particle-particle correlations are secondary (since we have
neglected them in the calculation). However, we anticipate
that corrections to the parabolic shape must come from higher-
order correlations involving more than one particle.

In the following section we show how to obtain Eq. (19) by
deriving Eq. (1) explicitly rather than postulating it. Specifi-
cally, we will consider a system with open boundaries and
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FIG. 5. Deviation [calculated as ln(Jmax,theor/Jmax,sim )] between
Jmax,sim from simulations and Jmax,theor predicted from Eq. (19), for
k−, k+ = 0.001 . . . 20 and a fixed L = 1000.

expand the steady-state probability in the powers of the en-
try rate α (low-density regime) and exit rate β (high-density
regime).

VI. Exact results for the open system

In this section we use the power series method developed
in Refs. [43,44] to solve the steady-state master equation, first
for small α and then for small β. For small α, we compute
the density ρ(α) up to the linear term in α and the current
J (ρ) up to the quadratic term in α. We then compute the
current-density relation J (ρ) in the low-density regime ρ → 0
by inverting ρ(α) into α(ρ) and inserting α(ρ) into J (α). We
repeat this calculation for small β, which yields the current-
density relation J (ρ) in the high-density regime ρ → 1.

A. Low-density regime

For small α, we expand the steady-state probability P∗(C)
as a power series in α:

P∗(C) =
∞∑

n=0

an(C)αn. (20)

Here, an(C) are unknown coefficients that depend on the
configuration C and the model parameters other than α. The
coefficients an(C) can be obtained by inserting P∗(C) into
the master equation and noting that all terms with αn for any
n � 0 must sum to zero. The master equation is then replaced
by a hierarchy of algebraic equations. These equations have
the same structure as the master equation, with P∗(C) replaced
by an(C) unless P∗(C) is multiplied by α, in which case it is
replaced by an−1(C) if n > 0 or by zero if n = 0.

A crucial property of an(C) that simplifies the calculation
is that

an(C) = 0 if
L∑

i=1

τi(C) > n. (21)

In other words, an(C) �= 0 only if the number of particles in
configuration C is less than or equal to n. In particular, for n =
0, a0(C) �= 0 only if C has zero particles, for n = 1, a1(C) �= 0
only if C has zero or one particle, and so on. The nontrivial
condition (21) follows from the Markov chain tree theorem
[45–47], which expresses the steady-state probability P∗(C) in
terms of spanning trees of a directed, weighted graph defined
by the transition rate matrix (see Ref. [44] for more details).
We further note that since P∗(C) must sum to 1,∑

C

an(C) = δn,0. (22)

Our goal is to compute a0(C) and a1(C), which in turn
allows us to expand J up to the term ∼α2 and ρ up to the
term ∼α. Details of this calculation are presented below. The
final result is

ρ = ρLD(α) ≡ α

u
+ O(α2), (23a)

J = JLD(α) ≡ α − α2

u
+ O(α3), (23b)

where u is given by Eq. (18) and the subscript LD denotes the
low-density (LD) regime. From here we get α = uρ + O(ρ2),
which after inserting into Eq. (23b) gives the current-density
relation

J (ρ) = u(1 − ρ), (24)

which applies to the low-density regime ρ → 0.

1. Zeroth order

According to Eq. (21), the coefficients a0(C) with no par-
ticles are nonzero and all other coefficients a0(C) are zero.
We denote by ∅ the configuration of particles {τi} where
all τi = 0 and σ = {σ1, . . . , σL} represents the configuration
of obstacles. Let σ (i) be a configuration derived from σ by
replacing σi for a given i with σi = 1 − σi. The equation for
a0(∅; σ i) then reads

0 =
L∑

i=1

[k+σi + k−(1 − σi )]a0(∅; σ (i) )

−
L∑

i=1

[k−σi + k+(1 − σi )]a0(∅; σ ). (25)

This equation can be easily solved by observing that, since
defects bind and unbind independently, the weight must fac-
torize:

a0(∅; σ ) =
L∏

i=1

g(σi ). (26)

After inserting Eq. (26) into (25) we obtain that k+g(0) −
k−g(1) = 0. From Eq. (22) it follows that g(0) + g(1) = 1.
Combining this together we have

g(0) = 1 − ρd = k−
k+ + k−

, g(1) = ρd = k+
k+ + k−

. (27)

We note that Eq. (26) solves the original master equation when
α = 0, in which case the only dynamics in the system is the
binding and unbinding of obstacles.

042117-5



J. SZAVITS-NOSSAN AND B. WACLAW PHYSICAL REVIEW E 102, 042117 (2020)

2. First order

We now turn to a1(C) whereby C has at most one particle
since all other coefficients a1(C) are zero. We denote by 1i the
vector τ with only one nonzero element τi = 1, i.e., a single
particle is at site i. The equation for a1(1i; σ ) reads

0 =
L∑

j=1

[k+σ j + k−(1 − σ j )]a1(1i; σ
( j) )

−
L∑

j=1

[k−σ j + k+(1 − σ j )]a1(1i; σ )

+
{a0(∅; σ), i = 1,

v(1 − σi−1)a1(1i−1; σ ), i �= 1,

−
{
v(1 − σi )a1(1i; σ ), i �= L,

β(1 − σi )a1(1i; σ), i = L.
(28)

It is useful to introduce the following “marginalized” coeffi-
cients in which all but the specified state variables have been
summed over:

a1(1i ) =
∑

σ

a1(1i; σ ), (29a)

a1(1i; σi ) =
∑
σ1

· · ·
∑
σi−1

∑
σi+1

· · ·
∑
σL

a1(1i; σ ), (29b)

a1(1i; σiσi+1) =
∑
σ1

· · ·
∑
σi−1

∑
σi+2

· · ·
∑
σL

a1(1i; σ ). (29c)

We now consider the case i = 1. By summing Eq. (28) over
all {σi} except for σ1 we get a system of two equations with
two unknowns, a1(11; 01) and a1(11; 11):

−(k+ + v)a1(11; 01) + k−a1(11; 11) = −g(0), (30a)

k+a1(11; 01) − k−a1(11; 11) = −g(1). (30b)

The solution is

a1(11; 01) = 1

v
, a1(11; 11) = k+

k−v
+ g(1)

k−
, (31)

which gives a1(11) = [1/v + g(1)g(0)/k−]/g(0). If we repeat
the procedure for i = 2, . . . , L − 1, we get the following
equations for a1(1i; 0i ) and a1(1i; 1i ):

−(k+ + v)a1(1i; 0i ) + k−a1(1i; 1i )

= −va1(1i−1; 0i−10i ), (32a)

k+a1(1i; 0i ) − k−a1(1i; 1i )

= −va1(1i−1; 0i−11i ). (32b)

Since an obstacle at site i does not affect the particle at site
i − 1, it follows that

a1(1i−1; 0i−1σi ) = a1(1i−1; 0i−1)g(σi ). (33)

The system of equations for a1(1i; σi ) can now be solved
recursively, and the final expressions for a1(1i; 0i ) and
a1(1i; 1i ) are the same as in Eq. (31), except for i = L for
which v is replaced by β. The coefficients a1(1i ) are thus

given by

a1(1i ) = 1

u
, i = 1, . . . , L − 1, (34a)

a1(1L) = 1

β

(
1 + k+

k−

)
+ k+

k−(k+ + k−)
, (34b)

where u = g(0)/[1/v + g(1)g(0)/k−] is the same as in
Eq. (18).

Now that we know the probability of configurations with
zero or one particle, we can write down the expression for the
total density ρ of particles,

ρ = 1

L

L∑
i=1

αa1(1i ) + O(α2)

= α
[1

u
+ O(1/L)

]
+ O(α2), (35)

and the current J ,

J = α + α2

(
a1(∅) +

L∑
i=2

a1(1i)

)
+ O(α3)

= α − α2

u
+ O(α3), (36)

where in the last expression we have used
a1(∅) = −∑L

i=1 c(1i), which follows from Eq. (22).
We note that there is a contribution to J of order O(ρ2)

that comes from the quadratic term in the series expan-
sion of ρ(α) = α/u + ρ2α

2 + O(α3). After inverting ρ(α) we
get α(ρ) = uρ − ρ2u3ρ2 + O(ρ3), which, when inserted into
J (α), gives an extra contribution −ρ2u2ρ2 to J (ρ). Unfortu-
nately, we could not find an expression for ρ2 in terms of
k+, k− as the second order turned out to be a difficult problem.

In Fig. 6 we compare the predicted ρ(α), J (α), and J (ρ)
with the results from numerical simulations for k+ = k− =
0.1 and 5, while β = 1 is fixed. The density ρ(α) grows lin-
early for small α as predicted by Eq. (23a) and approaches 1/2
for large α [Figs. 6(a) and 6(c)]. The transition from ρ = α/u
to ρ = 1/2 is sharp when k− and k+ are large [Fig. 6(c)],
but smooths out for small k− and k+ [Fig. 6(a)]. Similarly,
the deviation from uρ(1 − ρ) increases as k− and k+ become
smaller [Fig. 6(i)]. These results are expected since decreasing
k− and k+ creates long-lived obstacles leading to particle
entrapment not accounted for in the first order.

B. High-density regime

In this section we expand the steady-state probability
P∗(C) in β,

P∗(C) =
∞∑

n=0

bn(C)βn, (37)

where bn(C) are unknown coefficients. Our goal is to find
b0(C) and b1(C), which will allow us to expand ρ(β ) up to
the linear order and J (β ) up to the quadratic order and thus
give us the expression for J (ρ) that is valid close to ρ = 1.
We leave details of this calculation for later and present here
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FIG. 6. Particle density ρ and particle current J in the system with open boundaries. Left-hand panels [(a), (b), (e), (f), (i), and
(j)]: k− = k+ = 0.1. Right-hand panels [(c), (d), (g), (h), (k), and (l)]: k− = k+ = 5. Other parameters common to all figures are v = 1, L =
100. Panels [(a), (c), (e), (g), (i), and (k)] correspond to small-α expansion (fixed β = 1) and panels [(b), (d), (f), (h), (j), and (l)] to small-β
expansion (fixed α = 1). Points represent Monte Carlo simulations and lines are analytic formulas: Eq. (23a) for panels (a) and (c), Eq. (38)
for panels (b) and (d), Eq. (23b) for panels (e) and (g), and Eq. (39) for panels (f) and (h). J (ρ ) in panels (i), (j), (k), and (l) has been obtained
by inverting the equations for ρ(α), ρ(β ) for α = α(ρ ), β = β(ρ ) and inserting them into the equations for J (α), J (β ).

the final result, which is

ρ = ρHD(β ) ≡ 1 − k−
(k+ + k−)u

β + O(β2) (38)

and

J = JHD(β ) ≡ k−
k+ + k−

β − k−[2(k+ + k−)3 + (k+ + k−)(2k− + 5k+)v + 2k+v2]

v(k+ + k−)2[2(k+ + k−)2 + (2k− + k+)v]
β2 + O(β3), (39)

where the subscript HD denotes the high-density regime.
From here, we obtain J (ρ) by inserting β = (1 − ρ)u/g(0)
into Eq. (39).

In Fig. 6 we compare the predicted ρ(β ), J (β ), and J (ρ)
with the results from numerical simulations for k+ = k− =
0.1 and 5, while α = 1 is held fixed. Interestingly, the density
ρ(β ) maintains a linear profile even for small values of k− and
k+, suggesting that the quadratic term in the expansion of ρ(β )
is either zero or is very small [Figs. 6(b) and 6(d)]. We also
note that the expressions (23b) and (39) for the current in the
low or high density regime are not symmetric with respect to
exchanging particles with holes (τi ↔ 1 − τi) and switching
the entry and exit rates (α ↔ β). We will comment on this in
the discussion.

In the rest of this section we derive Eqs. (38) and (39).
To this end, the following two relations will be useful. First,
bn(C) is zero if the number of empty sites (“holes”) in C is
larger than n,

bn(C) = 0 if
L∑

i=1

[1 − τi(C)] > n, (40)

which follows from the matrix tree theorem discussed before.
Second, the sum of bn(C) over all C is equal to 1 for n = 0
and is zero otherwise,∑

C

bn(C) = δn,0. (41)
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1. Zeroth order

The zeroth order is equivalent to setting β = 0 in the mas-
ter equation, which has the following solution:

b0(C) =
L∏

i=1

[δτi,1g(σi )], (42)

in which all sites are occupied by particles. We refer to this
state as b0(1; σ), where 1 = {τ1, . . . , τL} in which all τi = 1
and σ = {σ1, . . . , σL}.

2. First order

We denote by ∅i a configuration of particles with a hole at
site i, i.e., τ j = 1 for j �= i and τi = 0. According to Eq. (21),
the coefficients b1(∅i; σ) and b1(1; σ ) are nonzero and all other
coefficients b1(C) are zero. As before, σ denotes a configura-
tion of obstacles and σ ( j) is obtained from σ by replacing σ j

with 1 − σ j . The equation for b1(∅i; σ ) reads

0 =
L∑

j=1

[k+σ j + k−(1 − σ j )]b1(∅i; σ
( j) )

−
L∑

j=1

[k−σ j + k+(1 − σ j )]b1(∅i; σ )

+
{b0(1; σ ), i = L,

v(1 − σi )a1(∅i+1; σ ), i �= L,

−
{
v(1 − σi−1)a1(∅i; σ ), i = 2, . . . , L,

αa1(∅1; σ ), i = 1.
(43)

As before, we introduce “marginalized” coefficients obtained
by summing b1(τ; σ ) over a subset of obstacle variables σ. In
particular, we define

b1(τ) =
∑
σ1

· · ·
∑
σL

b1(τ; σ), (44a)

b1(τ; σ j ) =
∑
σ1

· · ·
∑
σ j−1

∑
σ j+1

· · ·
∑
σL

b1(τ; σ ), (44b)

b1(τ; σ jσk ) =
∑

σ\{σ j ,σk}
b1(τ; σ), (44c)

where σ \ {σ j, σk} denotes σ without σ j and σk . We first find
the coefficients b1(∅i ) and b1(1) which we need to compute
the next term in the series expansion of the density ρ(β ). We
start from i = L and write the equations for b1(∅L; σL−1),

k−b1(∅L; 1L−1) − (k+ + v)b1(∅L; 0L−1)

= −g(0)g(0), (45a)

k+b1(∅L; 0L−1) − k−b1(∅L; 1L−1)

= −g(1)g(0). (45b)

By solving these equations we get

b1(∅L; 0L−1) = g(0)

v
, (46a)

b1(∅L; 1L−1) = g(1)

v
+ g(1)g(0)

k−
, (46b)

and thus b1(∅L) = 1/v + g(1)g(0)/k−. Next, we solve the
equations for i = 2, . . . , L − 1,

k−b1(∅i; 1i−1) − (k+ + v)b1(∅i; 0i−1)

= −vb1(∅i+1; 0i−10i ), (47a)

k+b1(∅i; 0i−1) − k−b1(∅i; 1i−1)

= −vb1(∅i+1; 1i−10i ). (47b)

Using b1(∅i+1; σi−10i ) = g(σi−1)b1(∅i+1; 0i ), we get the same
result as in Eqs. (46a) and (46b),

b1(∅i; 0i−1) = g(0)

v
, (48a)

b1(∅i; 1i−1) = g(1)

v
+ g(1)g(0)

k−
, (48b)

which together yields b1(∅i ) = 1/v + g(1)g(0)/k− for i =
2, . . . , L. Finally, we solve the equations for b1(∅1; σ1):

k−b1(∅1; 11) − (k+ + α)b1(∅1; 01) = 0, (49a)

k+b1(∅1; 01) − k−b1(∅1; 11) = 0, (49b)

which gives b1(∅1) = g(0)/α. We can now compute the den-
sity ρ(β ) which reads

ρ(β ) = 1 + β

L

[
(L − 1)

L∑
i=1

b1(∅i) + Lb1(1)

]
+ O(β2)

= 1 − β
[g(0)

u
+ O(1/L)

]
+ O(β2), (50)

where we have used Eq. (41) to eliminate b1(1).
The next step is to compute J (β ) from

J (β ) = g(0)β +
[

L−1∑
i=1

b1(∅i; 0L ) + b1(1; 0L )

]
β2

+ O(β ). (51)

We shall skip the full derivation of J (β ) for brevity and only
outline its main steps. We first find b1(1; 0L ) from Eq. (43) by
summing over all σ except at site L at which σL = 0, which
leads to

b1(1; 0L ) = g(0)b1(1) − α

k+ + k−
b1(∅1; 1L ). (52)

Here b1(∅1; 1L ) is unknown, but that is not a problem as
it will cancel later. We can eliminate b1(1) using b1(1) =
−∑

i b1(∅i ), which follows from Eq. (41).
Next, we consider the equation for b1(∅i; 0L ) obtained by

summing Eq. (43) over all σ except at site L for which we set
σL = 0. We get one such equation for each i = 1, . . . , L. We
then sum all these equations together, which gives

0 = k−
L∑

i=1

b1(∅i; 1L ) − k+
L∑

i=1

b1(∅i; 0L )

+ g(0) − αb1(∅1; 0L ), (53)

where the last two terms can be replaced by αb1(∅1; 1L )
since b1(∅1) = g(0)/α. After inserting Eqs. (52) and (53)
into Eq. (51), we observe that many terms cancel and we
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are left with a simple expression: J (β ) = g(0)β − b1(∅L; 0L )
β2 + O(β3).

In order to find b1(∅L; 0L ) we solve the equations for
b1(∅L; σL−1σL ) obtained from Eq. (43) by summing over all
σ except the last two sites. After obtaining b1(∅L; 0L−10L ) and
b1(∅L; 1L−10L ), we add them together to get b1(∅L; 0L ), which
we insert into the expression for J (β ) to get Eq. (39).

We note that, similar to the small-α expansion, there is a
contribution to J (ρ) of order O(ρ2) coming from the quadratic
term in the series expansion of ρ(β ) which in turn comes from
the second order of the series expansion in Eq. (37). We did
not manage to find an expression for this quadratic term.

VII. DISCUSSION

Our main goal in this work was to better understand the
quasiparabolic current-density relation observed numerically
in the TASEP with dynamic obstacles. Here we list the most
important results.

The current-density relation is nearly a parabola. Accord-
ing to Fig. 2(a), the current J (ρ)/Jmax is approximately equal
to 4ρ(1 − ρ), where Jmax is the maximum current in the sys-
tem. This approximation is valid within the percentage error
less than 5% over the whole range of binding and unbinding
rates explored in numerical simulations spanning four orders
of magnitude from k+, k− = 10−3 to 101.

Single particle-obstacle correlations explain most of the
observed reduction in Jmax. Since J (ρ) ≈ 4Jmaxρ(1 − ρ), the
maximum current Jmax ≈ u/4, where u = limρ→0 J (ρ)/ρ is
the effective particle speed in the low-density limit. As dis-
cussed in Sec. V, u is determined by single particle-obstacle
correlations, which can be computed exactly. The expression
for u is given by Eq. (18).

The current-density relation is symmetric with respect to
ρ ↔ 1 − ρ. Numerical results presented in Fig. 2(a) suggest
that the current-density relation obeys J (ρ) = J (1 − ρ). Ac-
cording to Fig. 2(b), this symmetry is preserved even after the
parabolic part is subtracted from J (ρ). We note that the model
is not symmetric with respect to the particle-hole inversion
τi ↔ 1 − τi. Instead, τi ↔ 1 − τi leads to a different model
in which the particle is blocked by an obstacle in front of it
rather than at the same site. This model was previously studied
in Ref. [42] and exhibits the same quasiparabolic J (ρ). The
fact that the two models have the same quasiparabolic J (ρ)
suggests a deeper symmetry that is not immediately obvious
at the level of microscopic dynamics of the models.

Corrections to the parabola show complex dependence
on the density. If we assume that J (ρ) = J (1 − ρ) (which is
supported by our numerical results), then J (ρ) must also be
a function of ρ(1 − ρ) (see Appendix C). Expanding J (ρ)
in ρ(1 − ρ) gives J (ρ) = uρ(1 − ρ) + ∑∞

n=2 anρ
n(1 − ρ)n,

where u is given by Eq. (18) and an are unknown coefficients.
We note that Jpar (ρ) = 4Jmaxρ(1 − ρ) in Fig. 2, where Jmax is
obtained by fitting an inverse parabola to J (ρ) and is differ-
ent than Jmax given by Eq. (19). Thus J (ρ) − Jpar (ρ) equals
(u − 4Jmax)ρ(1 − ρ) + ∑∞

n=2 anρ
n(1 − ρ)n and the fact that

it changes the sign suggests that at least a2 �= 0. This means
that the exact J (ρ) has a rather complicated dependence on ρ,
although it remains unclear why the coefficients an are small.

The current and density are asymmetric with respect to
τi ↔ 1 − τi and α ↔ β. We have noted that Eqs. (23b) and
(39) for the current in the low and high density regime are
not symmetric upon replacing α → β, i.e., JLD(α) �= JHD(α).
Similarly, Eqs. (23a) and (38) for the densities ρLD(α) and
ρHD(β ) do not obey ρLD(α) = 1 − ρHD(α). Given that the
microscopic dynamics does not obey the particle-hole symme-
try, these results are not surprising. However, it is surprising
that the particle-hole symmetry is restored when the current is
expressed as a function of the density.

Obstacle dynamics independent from particle dynamics is
crucial for the observed symmetry J (ρ) = J (1 − ρ). In [42]
we considered a model in which obstacles interacted with par-
ticles by exclusion. That model did not have the ρ → 1 − ρ

symmetry in J (ρ). This suggests that the independence of
the dynamics of obstacles from that of particles (but not vice
versa) is crucial for the symmetric relation.

VIII. CONCLUSIONS

To summarize, we have used numerical simulations and
analytic calculations to study the current-density relation in
the TASEP with dynamic obstacles. We have shown that the
current-density relation is not a perfect parabola, but that
corrections to the parabola remain small over a large range
of binding and unbinding rates. We have derived an analytic
expression for the prefactor of the parabolic part of J (ρ)
that is in excellent agreement with the results of numerical
simulations.

Interestingly, our numerical results indicate that the
current-density relation J (ρ) obeys J (ρ) = J (1 − ρ) in spite
of the fact that the microscopic dynamics is not symmetric
with respect to the particle-hole inversion. The origin of this
symmetry remains unclear.
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APPENDIX A: MONTE CARLO SIMULATIONS

We use a kinetic Monte Carlo method analogous to Gille-
spie’s algorithm [48]. In each time step, we calculate the total
rate of all processes that can occur: particles moving by one
site (if not blocked by an obstacle or a particle); particles
jumping in or out of the system at sites i = 1, L (in the open
boundary version); obstacles binding or unbinding. Since all
particles and obstacles have the same jumping and binding or
unbinding rates, to speed up the calculation of the total rate
we keep track of the number of particles that are allowed
to move, the number of sites devoid of obstacles, and the
number of obstacles. Next, we select one of the events to
occur (particle moving; obstacle binding or unbinding) with
probability proportional to the total probability of all events
in that class. We then select a specific particle or obstacle to
move or bind or unbind from an array of stored positions.
Finally, we update the state of the particle or obstacle and
all its associated variables. The algorithm is very fast and has
an approximately constant execution time per time step. To
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determine the current for a given density of particles, we start
from a random configuration of particles and no obstacles.
We first do an equilibration run, waiting for 106 . . . 107 par-
ticle hops to occur. We then run the algorithm for another
106 . . . 107 particle hops and calculate the current as the num-
ber of hops divided by the elapsed time. We repeat this process
until the value of the current stabilizes within 0.1% of the
value from the previous run.

We ran our simulations on the School of Physics and
Astronomy computer cluster. We processed the data using a
Wolfram Mathematica script. The simulation code (C + +)
and the Mathematica script are available at [49].

APPENDIX B: EXACT ENUMERATION

We use Wolfram Mathematica to generate a set of algebraic
equations for steady-state probabilities P(τ, σ ) of all possible
configurations of particles {τ } and defects {σ }. For given
L, M, we go through all 2L particle configurations, accepting
those in which the number of particles equals M. For each
such configuration, we go through all 2L configurations of de-
fects and use the master equation to generate a linear equation
for P(τ, σ ) for each τ, σ .

The complexity of this algorithm is approximately O(22L )
for the equation generation part and O(24L ) for the equation
solving part. The memory usage is also approximately O(24L ).
The algorithm is thus suitable only for very small systems. We

have used it for L � 7. The implementation of the algorithm
as a Mathematica script is available at [49].

APPENDIX C: J(ρ) IS A FUNCTION OF ρ(1 − ρ)

Here we show that if J (ρ) = J (1 − ρ) is satisfied for
0 � ρ � 1 and J (0) = J (1) = 0, then J (ρ) is a function of
ρ(1 − ρ).

To arrive at this result we expand J (ρ),

J (ρ) =
∞∑

n=1

J (n)(0)

n!
ρn. (C1)

Assuming J (ρ) = J (1 − ρ), we can also write

J (1 − ρ) =
∞∑

n=1

J (n)(0)

n!
(1 − ρ)n. (C2)

Combining these two expressions we can write

J (ρ) = J (ρ) + J (1 − ρ)

2
=

∞∑
n=1

J (n)(0)

n!
Sn, (C3)

where we have introduced Sn = [ρn + (1 − ρ)n]/2. We can
check that Sn satisfies the following recurrence relation:

Sn+1 = Sn − ρ(1 − ρ)Sn−1, (C4)

where S0 = 1 and S1 = 1/2. From here we conclude that Sn

and hence J (ρ) are both functions of ρ(1 − ρ).
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