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We numerically investigate negative mobility of an inertial Brownian particle moving in a periodic double-well
substrate potential in the presence of a time-periodic force and a constant bias. For the deterministic case, we
find from the average velocity that the varying shape parameter and driving forces can cause negative mobility,
differential negative mobility, and giant positive mobility. We analyze these findings via the bifurcation diagram
and maximal Lyapunov exponent and find that certain chaos can give rise to negative mobility. For the presence
of a Gaussian color noise, the results suggest that the noise intensity can enhance or result in negative and positive
mobilities, whereas correlation time can enhance, weaken, or even eliminate them. On the basis of the time series,
phase-space map, and power spectrum of various attractors, we unveil how these mobilities connect to strong
chaotic attractors (SCAs), including both stable attractor and unstable attractors, and propose an underlying
mechanism that SCAs can result in the negative mobility, whereas other attractors do not. Our findings may be
potentially useful for research on anomalous transports of the particles and on designs of various devices, such
as atomic chains, crystals with dislocations, and superconducting nanowires, etc.
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I. INTRODUCTION

Understanding the dynamics of transport phenomena, the
core of many problems in physics, chemistry, and biology
[1], is an outstanding challenge in a system away from equi-
librium. Because systems out of equilibrium can lead to the
occurrence of paradoxical situations since the laws of ther-
modynamics no longer possess validity, many fundamental
problems of these systems remain uncertain. Consequently,
the occurrence of anomalous phenomena in these systems was
extensively investigated in physics, chemistry, and biology. A
typical example for biological system out of equilibrium is
anomalous diffusions of the energy landscape in human chro-
mosomes [2]. Intriguing examples for quantum systems far
from equilibrium are directed transport of atoms in a quantum
ratchet [1] and nonlinear transport in an out-of-equilibrium
single-site Bose-Hubbard model [3]. Another example is ab-
solute negative conductance (ANC) [4] and phase diffusion
[5] in the Josephson junctions circuit. A striking example for
a classical system far from equilibrium is absolute negative
mobility (ANM), differential negative mobility (DNM) [4],
and anomalous diffusions [6] in a symmetrical potential. In
particular, negative mobility, which implies that the particle
moves in a direction opposite to a small bias and is also called
anomalous mobility, has been in the research spotlight [4,7–
15] for 20 years. Much progress in both theoretical [4,7] and
experimental [16] investigations has been made in ANM.

*zchh2009@126.com
†aibq@scnu.edu.cn

In fact, Brownian particles moving in a system driven by
thermal fluctuation and external forces usually exhibit very
complex transport behaviors, such as anomalous transports,
collective motion, chaotic state, even vortices [17] or turbulent
state [18,19]. Therefore numerous works [6,7,10–12,16,20]
have focused on various anomalous mobilities since the late
1990s, but most of these works have frequently paid attention
to the occurrence of the phenomena without providing the
physical mechanism behind them. Actually, these anomalous
transports may be caused by chaos. Notice that by using the
bifurcation diagram, ANM has been investigated in a sym-
metrical periodic system [4], a repulsive Yukawa potential [8],
and an inertial rocking system [9] and ANC in superconduct-
ing quantum interference device ratchet [5]. Furthermore, the
negative mobility of a Brownian particle for strong damping
regime was studied via maximal Lyapunov exponent (MLE)
[21].

To our knowledge, still very little is known about various
mobilities (e.g., ANM, DNM, etc.) and physical mechanisms
behind them in a periodic double-well substrate potential, also
called the Remoissenet-Peyrard substrate potential [22,23]. It
is frequently used to describe the substrate in charge-density-
wave conductors, Josephson junctions arrays, crystals with
dislocations [24], hydrogen-bonded networks [25], supercon-
ducting nanowires [26], and kink-bearing systems [23]. It
is well established that the on-site substrate potentials are
usually assumed to be the cosinelike type potential. How-
ever, certain realistic substrate potentials are very complex
and maybe possess the form of a periodic double-well sub-
strate potential [24,27] in condensed matter physics, with a
particular case of the sine-Gordon potential. Thus, since the

2470-0045/2020/102(4)/042114(14) 042114-1 ©2020 American Physical Society

https://orcid.org/0000-0002-3680-0865
https://orcid.org/0000-0002-3033-8630
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.042114&domain=pdf&date_stamp=2020-10-12
https://doi.org/10.1103/PhysRevE.102.042114


YUHUI LUO, CHUNHUA ZENG, AND BAO-QUAN AI PHYSICAL REVIEW E 102, 042114 (2020)

FIG. 1. The periodic double-well substrate potential for different
shape parameters r.

early 1990s several works have focused on the anomalous
phenomena of a system with the substrate potential, such
as proton transport by solitons [25], the diffusion process
[28], a rich spectrum of dynamical behaviors [29], etc. Ad-
ditionally, similar anomalous behaviors had been studied in
the Frenkel-Kontorova model with a deformable substrate
potential, such as the dynamical-mode-locking phenomena
[30], thermal conductivity, and negative differential thermal
resistance [31]. Moreover, it is noteworthy that a periodic
double-well substrate potential frequently exhibits localiza-
tion of energy transport [32] since the potential consists of
potential barriers with high and low dislocations, as shown in
Fig. 1. Consequently, various localizations were extensively
investigated in this type of disorder system [6,27]. In a word,
the periodic double-well substrate potential with incommen-
surability plays a crucial role in atomic chains.

Moreover, numerous works usually investigated anoma-
lous mobilities of the particle moving in systems with a
thermal fluctuation modeled by a Gaussian white noise for the
ideal case. However, a thermal fluctuation is a Gaussian color
noise for the real case [33]. Based on the above, the aim of this
paper is to examine the anomalous behaviors of a Brownian
particle moving in the periodic double-well substrate poten-
tial driven by a time-periodic force and a constant bias. Via
the bifurcation diagram, time series, phase-space map, power
spectrum, and MLE, we analyze the relationships between
dynamical behaviors and various mobilities and discuss the
physical mechanisms behind them. It is worth mentioning that
the periodic, quasiperiodic, and chaotic dynamics in simple
gene elements were analyzed by the bifurcation diagram,
phase-space map, and power spectrum in the recent work [34].

The rest of the paper is structured as follows. In Sec. II,
we present the model and methodology in detail. In Sec. III,
for the deterministic dynamics, various mobilities—specially
anomalous mobility—are discussed via the average velocity.
We analyze the reasons for these results by the bifurcation
diagram and MLE. To better understand the physical mecha-

nism hinted behind these phenomena, we also analyze these
findings via the time series, the phase-space map, and the
power spectrum. For the presence of a Gaussian color noise,
the noise effects on anomalous transports are studied via the
average velocity and mobility coefficient. Moreover, these
findings are also analyzed via the time series, the phase-space
map, and the power spectrum. Conclusions and applications
are presented in Sec. IV.

II. THE MODEL

We consider an inertial Brownian particle with mass m
moving in a periodic double-well substrate potential with a
color thermal fluctuation and under the influence of an exter-
nal constant bias F . To drive the system out of equilibrium,
the potential is also driven by an external time-periodic force
a sin(ωt ) with amplitude a and frequency ω. Thus the model
is described by Langevin equation in the following form:

mẍ + γ ẋ = −V ′(x) + F + a sin(ωt ) + η(t ), (1)

where the prime and dot are a differentiation with respect
to coordinate x of the particle and time t , respectively. γ

is the friction coefficient. The periodic double-well substrate
potential is given by [22,27]

V (x) = (1 − r)4[1 + cos(2πx)]

[1 + r2 + 2r cos(πx)]2
,

where r is a shape parameter with range −1 < r < 1. In order
to understand a sketch of the system, we present the shape of
the potential for different shape parameters r in Fig. 1. η(t )
denotes a Gaussian colored noise due to thermal fluctuation
of the system, and its correlation properties can be written as

〈η(t )〉 = 0,

〈η(t )η(t ′)〉 = D

τ0
exp

(
− |t − t ′|

τ0

)
,

where D denotes the noise intensity and τ0 is correlation
time. We fix m = 1, γ = 0.9, a = 4.35, and ω = 4.86, unless
otherwise stated. All quantities are in dimensionless units.

The Fokker-Planck equation corresponding to Langevin
equation (1) cannot be commonly solved, and therefore we
study the system by numerical simulation. To ensure reliable
results, the Eq. (1) is integrated by a fourth-order Runge-Kutta
scheme [35] with time step �t = 10−2. The average velocity
and mobility coefficient are calculated through 500 different
trajectories, whose initial positions x(t = 0) and velocities
v(t = 0) are uniformly distributed over the intervals [−1, 1]
and [−0.5, 0.5], respectively. The first 106 data of these trajec-
tories are discarded to remove initial transient states, and then
their 107 data are used to calculate the average velocity and
the mobility coefficient. The data of a single trajectory [whose
initial position x(t = 0) and velocity v(t = 0) are 0.1 and 0.0,
respectively] are used to plot the bifurcation diagram, time
series, and the phase-space map and to compute the power
spectrum and the MLE. The first 106 data of the trajectory
are discarded to remove initial transient states. Then we use
its 104–105 data of the steady state to plot the phase-space
map and the time series. Moreover, 214 data of the steady
state of the single trajectory are used to calculate the power
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FIG. 2. The average velocity (a), the bifurcation diagram (b), and the MLE (c) vs. the shape parameter r in the absence of noise (D = 0).
The other parameter is F = 0.05. The points A–E referenced in Fig. 3.

spectrum and the MLE. Here the the power spectrum is de-
fined by P = |g(w)|2, where g(w) = 1√

2π

∫ ∞
−∞ v(t )eiωt dt . And

the Lyapunov exponent is computed numerically using the
algorithm proposed by Wolf et al. [36]. Notice that the MLE
λMax > 0 denotes chaotic behavior. The larger the MLE, the
more chaotic the system. And λMax � 0 presents no chaos,
namely the system is exhibiting some sort of orbital stability
or periodicity.

III. RESULTS AND DISCUSSIONS

A. The deterministic dynamics

We first focus on the case of the deterministic dynamics
(D = 0). To gain an understanding of how the shape parameter
of the system r affects the particle’s mobility, we present the
average velocity, the bifurcation diagram of the velocity, and
the MLE versus the shape parameter r in Fig. 2. Figure 2(a)
shows that average velocities are zero except for the range
of r = 0.014 to 0.045. It should be noted that there exist
two times negative mobilities with increasing shape parameter
r (gray). Moreover, Fig. 2(b) shows that the varying shape
parameter r can cause double-periodic bifurcation, chaotic
bands, periodic windows, and attractor-merging crisis. It is of
great importance that the regime of the existence of nonzero
average velocities corresponds to the chaotic band in the band-
width range of r = 0.014 to 0.045.

To further verify chaotic behaviors, the MLE λMax as a
function of r is plotted in Fig. 2(c). The nonzero average
velocities in Fig. 2(a) obviously correspond to the large and
positive MLEs in Fig. 2(c). This finding suggests that the
nonzero mobilities may be caused by chaos. Contrasting the
bifurcation diagram with the MLE, we find that the chaotic

bands in Fig. 2(b) clearly correspond to the positive MLEs
in Fig. 2(c). Moreover, it is worthwhile mentioning that the
zero average velocities in Fig. 2(a) correspond to nonchaotic
bands and the rest chaotic bands in Fig. 2(b) or to λMax � 0
and small MLEs in Fig. 2(c). In fact, the periodic attractor
corresponds to trivial negative MLE in the figure. In other
words, this brings up the question of why certain chaos can
result in the nonzero average velocity while the rest does
not, which will be discussed below. In other words, the result
suggests that certain chaos may result in the occurrence of
negative mobility.

The question is still open that certain chaos can result in the
occurrence of the nonzero average velocity whereas the rest
does not. To answer this question, we analyze these findings
via the time series, the phase-space map, and the power spec-
trum in Fig. 3. When r = 0.014 (the A column), the dynamical
behaviors are the following. First, the time series of position
displays that the continuous hoppings of the particle from a
double well to another adjacent double well are observed in
the negative direction of the axis x. Second, the time series
of velocity shows irregularity. Third, the map is irregular
and shows that the trajectory leaves stable attractor (initial
double well) and continuously forms new unstable attractors
in other double wells in the negative direction of the axis
x. Additionally, the spectrum has dominated by downward
spikes. Thus the attractors corresponding to r = 0.014 are
of strong chaotic attractors (SCAs) [34]. Moreover, Fig. 2(a)
shows that the average velocity corresponding to r = 0.014
is negative, implying that SCAs can cause negative mobility.
For r = 0.026 (the B column), the corresponding dynamical
behaviors are as follows. First, the time series of the position
displays that the hoppings of the particle from a double well
to another adjacent double well are observed in the positive
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FIG. 3. The time series of position (the first row) and velocity (the second row), phase-space map (the third row), and power spectra (the
fourth row) of the noiseless system (D = 0) in the presence of shape parameters r = 0.014 (the A column), 0.026 (the B column), 0.2 (the
C column), 0.3 (the D column), and 0.5 (the E column) that correspond to the points A–E in Fig. 2(a), respectively. The other parameter is
F = 0.05.

direction of the axis x. This behavior implies that a nontrivial
mobility arises in the positive direction. Second, the time
series of velocity shows irregularity. Third, the map shows
that the trajectory of the particle leaves the initial double
well, also called a stable attractor, and continuously forms
new unstable attractors in other adjacent double wells in the
positive direction of the axis x. Notice that the unstable at-
tractor may be independent of the initial double well, and the
next-nearest-neighbor hoppings of the particle for the steady-
state result in the appearances of new unstable attractors and
nonzero mobilities. Finally, the spectrum is dominated by
downward spikes. As a consequence, these results demon-
strate that the attractors corresponding to r = 0.026 are of
SCAs. Additionally, the average velocity corresponding to
r = 0.026 in Fig. 2(a) is positive, suggesting that the SCAs
can cause positive mobility. Let us take a closer look at the
lifetimes of unstable attractors for SCAs. The lifetimes of
unstable attractors for r = 0.014 span from several to decade
dimensionless time units, while that for r = 0.026 span from
several to over 200 dimensionless time units. This means that
the firing times of r = 0.026 is longer than that of r = 0.014.
Similar firing times were discussed in recent work [37]. When
r = 0.2, the C column shows that the time series are irregular,
the map covers the phase and trajectories concentrate near
the stable equilibrium, and the spectrum has both upward and
downward spikes. Thus the attractor corresponding to r = 0.2
is of weak chaotic attractor (WCA) [34]. Additionally, the

average velocity corresponding to r = 0.2 is zero in Fig. 2(a),
implying that the average velocity corresponding to WCA is
zero. The chaotic bands of WCA are those exactly mentioned
above that do not lead to a nonzero mobility. Namely, the
attractors corresponding to the small and positive MLE do not
lead to negative mobility. When r = 0.3, the D column shows
that the time series are quasiperiodic, the map displays a torus
structure, and the spectrum has peaks and both upward and
downward spikes. Therefore, the attractor corresponding to
r = 0.3 is quasiperiodic. Moreover, the 〈v〉 corresponding to
r = 0.3 is zero in Fig. 2(a), implying that quasiperiodic attrac-
tor does not result in nonzero mobility. When r = 0.5, the E
column shows that the time series display periodic behaviors,
the map shows period-1 in the positive direction of the axis
x, and the power spectrum possesses peaks at discrete fre-
quencies. Therefore the attractor is periodic. Furthermore, the
average velocity corresponding to r = 0.5 is zero in Fig. 2(a).
This finding suggests that periodic attractor does not lead to
nonzero mobility. In brief, these results suggest that SCAs
can lead to nonzero mobilities which may include anomalous
mobility, whereas both nonchaotic attractor and WCA do not
result in them. Therefore, now we can answer the question of
why certain chaos can give rise to negative or positive mo-
bility, whereas the rest does not. Our results suggest that the
SCAs can lead to the emergence of nonzero average velocity,
whereas both WCA and nonchaotic attractor do not result
in them.
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FIG. 4. The average velocity [(a) and (b)], the bifurcation diagram (c), and the MLE (d) vs. the bias F in the absence of noise (D = 0).
The other parameter is r = 0.05. The points A–E referenced in Fig. 5. Moreover, the solid red line, dashed green line, and dotted black line of
panel (c) indicating F = 0.1, 0.122, and 0.34, which are referenced in Figs. 10–12.

To see how the bias affects the mobility of the particle, we
present the average velocity, the bifurcation diagram, and the
MLE versus the bias in Fig. 4. The average velocity as the bias
F ranging from 0.000 to 1.000 is plotted in Fig. 4(a), which
shows that the average velocities are zero except for three
ranges of F = 0.400 to 0.415 (range I), F = 0.440 to 0.455
(range II), and F = 0.655 to 0.668 (range III). It should be
noted that negative mobility occurs in the range F from 0.450
to 0.455. Additionally, the average velocity as a function of
the bias F ranging from 1.00 to 1.20 is presented in Fig. 4(b),
which shows that the average velocity is zero for F < 1.06,
yet positive for F > 1.06. Through the comparison between
this and Fig. 4(a), it is found that the positive average veloc-
ities for F > 1.06 is 40 times larger than those of F < 1.0.
It is of great importance that the varying bias causes negative
mobility, DNM and giant positive mobility (GPM).

Figure 4(c) shows that with varying the bias, dynamics of
the system exhibits rich dynamical behaviors, such as double-
periodic bifurcations, periodic windows, attractor-merging
crisis, and chaotic bands. Regime (I) of the occurrence of
positive mobilities clearly corresponds to the chaotic band in
the bandwidth range of F = 0.400 to 0.415. Regime (II) of
appearance of nonzero average velocity corresponds to the
chaotic band in the bandwidth range of F = 0.440 to 0.455.
Regime (III) of the emergence of positive mobilities, includ-
ing DNM and GPM, clearly corresponds to several chaotic
points. The reason why it is not chaotic band will be discussed
below. Finally, Fig. 4(c) also shows that the varying bias can
induce the occurrence of a transition between a nonchaotic
band and a chaotic band that may result in the appearance of
the negative mobility.

Figure 4(d) shows the MLE λMax as a function of the
bias F . The comparison between Figs. 4(a) and 4(d) reveals

that ranges (I) and (II) of the appearance of nonzero average
velocities almost correspond to the large and positive MLEs.
This finding reveals that chaos can cause the nonzero mobility.
However, range (III) of 〈v〉 	= 0.0 corresponds to λMax � 0. In
fact, this behavior suggest that chaos is sensitive to the varia-
tion of initial conditions. For certain ranges of the system’s
parameters, different initial conditions lead to different dy-
namical behaviors, such as nonchaotic and chaotic behaviors.
Here the data of the single trajectory (whose initial position
and velocity are 0.1 and 0.0, respectively) are used to plot
bifurcation diagram and to calculate the MLE, whereas the
average velocity is calculated through 500 trajectories with
different initial positions and velocities. In our simulation,
average velocity for the time average well matches the results
of the bifurcation diagram or the MLE for the same trajectory.
These results suggest that for the certain system parameter,
certain initial condition make the system evolve in chaotic
state, whereas other conditions can induce the evolution of the
system in nonchaotic state.

To better understand these dynamical behaviors, we
present the time series, the phase-space map, and the power
spectrum for different biases in Fig. 5, of which columns
A–E correspond to points A–E of Fig. 4(a), respectively.
When F = 0.00 (the A column), the corresponding time se-
ries, phase-space map, and spectrum suggest that the attractor
is periodic. This behavior implies that the average velocity
corresponding to F = 0.00 is zero, which is in agreement
with that of Fig. 4(a). When F = 0.16 (the B column), the
time series, map, and spectrum suggest that the attractor corre-
sponding to F = 0.16 is of WCA. Thus, the average velocity
corresponding to F = 0.16 is nearly zero, which agrees with
that of Fig. 4(a). It should be noted that the phenomenon that
the velocity direction of the particle is against the small bias is
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FIG. 5. The time series of position (the first row) and velocity (the second row), phase-space map (the third row), and power spectra (the
fourth row) of the noiseless system (D = 0) in the absence of the bias F = 0.000 (the A column), and in the presence of biases F = 0.160
(the B column), 0.410 (the C column), 0.456 (the D column), and 0.500 (the E column) that correspond to the points A–E in the top panel of
Fig. 4, respectively. The other parameter is r = 0.05.

fascinating. Namely, for a small positive bias (e.g., F = 0.16),
the time series of the velocity and phase-space map are lightly
biased toward the negative direction of velocity (the B col-
umn). However, the time series of the position shows that the
particle does not leave the initial double well, suggesting that
no mobility emerges for F = 0.16. When F = 0.41 (the C
column), the time series, the map, and the spectrum reveal
that the attractor is of SCAs in the positive direction of the
axis x. This implies that the average velocity corresponding to
F = 0.41 is positive, which is consistent with that of Fig. 4(a).
Moreover, the lifetimes of these unstable attractors span from
70 to over 500 dimensionless time units. The comparison
between this and Fig. 3 reveals that these lifetimes are longer
than those of Fig. 3. For F = 0.456 (the D column), the time
series, the map, and the spectrum suggest that the attractors
corresponding to F = 0.456 are of SCAs in the negative direc-
tion of the axis x, revealing the existence of negative mobility,
which is in agreement with that of Fig. 4(a). Additionally,
the lifetimes of these unstable attractors span from dozens to
over 200 dimensionless time units. For F = 0.5, the E column
shows that the time series, the map, and the spectrum imply
that the attractor corresponding to F = 0.5 is of a WCA.
This finding implies that the corresponding average velocity
is zero, which is in agreement with that of Fig. 4(a).

Such an unexpected behavior that the small bias (e.g., F =
0.410 or 0.456) can drive the motion of the particle, whereas
the large bias (e.g., F = 0.500) does not is an interesting
character of the dynamics in the potential. The reason is that
certain small biases F correspond to SCAs, whereas certain

large biases correspond to WCA or nonchaotic attractor. Our
simulation suggests that these nonzero mobilities observed
are caused by SCAs instead of WCA or nonchaotic attractor.
Surely, larger bias (i.e., F > 1.06) can drive the motion of
the particle in the system, but there still exists the nonlinear
response regime, such as NDM in Fig. 4(b). Moreover, when
the effect of the potential is negligible for larger bias, the
system exhibits linear response.

Results for the dependence of the average velocity on the
amplitude a are displayed in Fig. 6, showing the average
velocity, the bifurcation diagram, and the MLE versus the
amplitude a. Figure 6(a) shows that average velocities are zero
except for two ranges of a = 3.36 to 4.28 and a = 5.62 to
6.15. It must also be mentioned that there exist three times
nontrivial negative mobilities with increasing the amplitude
a (gray). These findings suggest that the time-periodic force
can drive the system out of equilibrium that may result in
the occurrence of some paradoxical situations, such as neg-
ative mobility. To understand the physical mechanism behind
these findings, we analyze these phenomena through the bi-
furcation diagram of the velocity in Fig. 6(b), which shows
that the dynamics of the system exhibits various striking be-
haviors, such as double-periodic bifurcations, chaotic bands,
periodic windows, and attractor-merging crisis. It is of great
importance to note that the regimes of the occurrence of
nonzero average velocity clearly correspond to certain chaotic
bands.

We further demonstrate these results by the MLE in
Fig. 6(c), which shows that the chaotic bands in Fig. 6(b)
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FIG. 6. The average velocity (a), the bifurcation diagram (b), and the MLE (c) vs. the amplitude a in the absence of noise (D = 0). The
other parameters are r = 0.05 and F = 0.05. The points A–D referenced in Fig. 7.

clearly correspond to the positive MLE in Fig. 6(c). Moreover,
the nonzero average velocities in Fig. 6(a) correspond to the
large and positive MLE, whereas the 〈v〉 = 0.0 correspond
to λMax � 0 or the small and positive MLEs. Therefore, the
result unambiguously demonstrates that these nonzero mobil-
ities, including negative and positive mobilities, are caused by
certain chaos.

To elucidate the negative mobility of the particle, we
analyze the above findings via the time series, the phase-
space map, and the power spectrum in Fig. 7, of which
columns A–D indicate the points A–D of Fig. 6(a). When a =
3.00 (the A column), the corresponding time series, phase-
space map, and power spectrum suggest that the attractor
corresponding to a = 3.00 is periodic. Consequently, the aver-
age velocity corresponding to a = 3.00 is zero. For a = 3.48
(the B column) in a periodic window, the corresponding time
series, map, and power spectrum reveal that the attractor cor-
responding to a = 3.48 is of nonchaotic attractor. This result
implies that the average velocity corresponding to a = 3.48
is zero. For a = 3.64 (the C column), the time series, the
map, and the spectrum demonstrate that the attractors corre-
sponding to a = 3.64 are of SCAs in the negative direction
of the axis x, signaling that SCAs may result in negative
mobility. Furthermore, the lifetimes of these unstable attrac-
tors span from dozens to over 100 dimensionless time units.
For a = 4.28 (the D column), the corresponding time series,
phase-space map, and power spectrum suggest that there are
SCAs in the positive direction of the axis x, indicating the
emergence of a positive mobility. These mobilities agree with
those of Fig. 6(a). Moreover, we find, from the time series of

the position (the D column), that lifetimes of these unstable
attractors span from several to dozens dimensionless time
units.

To understand how the angular frequency ω affects the
transport of the particle, we present the average velocity, the
bifurcation diagram, and the MLE versus ω in Fig. 8. We
find that there are several ranges of the occurrence of nonzero
average velocity in Fig. 8(a). It should be noted that there are
seven times negative mobilities with increasing ω in the figure.
We also find that these nonzero mobilities in Fig. 8(a) clearly
correspond to certain chaotic bands in Fig. 8(b). We also prove
these findings by the MLE, namely the nonzero mobilities in
Fig. 8(a) clearly correspond to the large and positive MLE in
Fig. 8(c). These results suggest that strong chaos can cause
nonzero mobilities.

To better understand the diffusions of the particle cor-
responding to various dynamical behaviors, we present
mean-square displacement (MSD) and time-dependent diffu-
sion coefficient (TDDC) in Fig. 9. Here the MSD and the
TDDC are defined by [6] 〈�x2(t )〉 = 〈x2(t )〉 − 〈x(t )〉2 and
D(t ) = 〈�x2(t )〉/(2t ), respectively. Here 〈〉 denotes the en-
semble average including 104 trajectories. Notice that the case
where D(t ) increases with time is superdiffusion, whereas
the case where D(t ) decreases with time denotes subdiffu-
sion. Additionally, D(t ) = const represents normal diffusion.
In general, normal diffusion corresponds to 〈�x2(t )〉 ∝ t1,
suggesting that D(t ) = const denotes effective diffusion co-
efficient.

The MSD and TDDC as functions of time for different r are
plotted in Fig. 9(a) and 9(d), respectively, whose parameters
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FIG. 7. The time series of position (the first row) and velocity (the second row), phase-space map (the third row), and power spectra (the
fourth row) of the noiseless system (D = 0) for different the amplitudes a. The columns A, B, C, and D correspond to a = 3.00, 3.48, 3.64,
and 4.28, respectively, which denote points A–D in the top panel of Fig. 6. The other parameters are r = 0.05 and F = 0.05.

FIG. 8. The average velocity (a), the bifurcation diagram (b), and the MLE (c) vs. the angular frequency ω in the absence of noise (D = 0).
The other parameters are r = 0.05 and F = 0.05.
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FIG. 9. The mean-square displacement and time-dependent diffusion coefficient. The other parameters of (a) and (d) are the same as those
of Fig. 3, the other parameters of (b) and (e) are the same as those of Fig. 5, and the other parameters of (c) and (f) are the same as those of
Fig. 7.

are same as those of Fig. 3. When r = 0.014 (the solid black
curve) and 0.026 (the dashed red curve), the MSDs scale as t1

on long timescales, suggesting that the diffusions are normal
on long timescales in Fig. 9(d). For r = 0.2 (the black circle
curve), 0.3 (the dashed- and dotted-blue curve), and 0.5 (the
short dashed dark red curve), the MSDs trivially oscillate with
time. These behaviors suggest that the particle remains in the
initial double well. As a result, there is no diffusion, shown in
Fig. 9(d).

The MSD and TDDC as functions of time for different
F are plotted in Figs. 9(b) and 9(e), respectively, whose
parameters are same as those of Fig. 5. When F = 0.000
(the solid black curve), 0.160 (the dashed red curve), and
0.500 (the short dashed dark red curve), the MSDs triv-
ially oscillate with time, suggesting that the particle does not
leave the initial double well. Namely, the diffusions are zero
[Fig. 9(e)]. For F = 0.410 (the black circle curve) and 0.456
(the dashed-and-dotted blue curve), the MSDs scales as t1 on
long timescales. These behaviors suggest that the diffusions
are normal [Fig. 9(e)].

The MSD and TDDC as functions of time for different a
are plotted in Figs. 9(c) and 9(f), respectively, whose param-
eters are same with those of Fig. 7. When a = 3.00 (the solid
black curve), the MSD and TDDC suggest that there is no
diffusion, as shown in Figs. 9(c) and 9(f). For a = 3.48 (the
dashed red curve), the MSD increases with time first and then
becomes trivially oscillation with time. This behavior sug-
gest that the particle hoppings from a double well to another
double well in initial transient state, whereas it remains in a
double well in steady state. As a result, the particle under-
goes subdiffusion on short timescales, and then zero diffusion

occurs on long timescales in Fig. 9(f). When a = 3.64 (the
black circle curve), the MSD scales as t1 on long timescales,
and thus the particle undergoes normal diffusion, which is
proven by TDDC in Fig. 9(f). For a = 4.28, The MSD scales
as t0.4 on short time interval and as t1.0 on long timescales, (the
dashed-and-dotted blue curve) namely the particle undergoes
subdiffusion first and then normal diffusion [Fig. 9(f)]. Based
on the above, we find that there is no diffusion for WCA
and nonchaotic attractor for the steady state, whereas various
diffusions may appear for SCAs in different intervals. This
finding suggests that strong chaos may result in the coexis-
tence of various diffusions and negative mobility.

B. The presence of the Gaussian color noise

To understand the effect of a Gaussian color noise, we
study the mobilities of the particle moving in the potential
with a Gaussian color noise in Figs. 10–13. Figure 10(a)
illustrates the average velocity as a function of the bias F
in the presence of the color noise for different values of r.
For small or large shape parameters (e.g., r = 0.0 or 0.1), no
clear ANM is observed, whereas ANM arises for the suitable
r (e.g., r = 0.05). This behavior can be explained as follows.
Figure 2(a) shows that r = 0.0 and 0.1 are far from chaotic
bands, although there are perturbations of both noise and the
bias, chaos does not arise in these regimes. But r = 0.05 is
nearby a chaotic band, and thus the presence of perturbations
(e.g., the bias, noise) can induce the emergence of the tran-
sition from a nonchaotic attractor to SCAs. This transition
implies that the transition from zero to nonzero average ve-
locity, which may include negative mobility, occurs. We also
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FIG. 10. The averaged velocity 〈v〉 versus the bias F for different shape parameters r (a), and the time series of position and velocity, the
phase-space map, and the power spectra of points A (r = 0.05) and B (r = 0.10) with F = 0.34 (b), respectively. The other parameters are
τ0 = 1.0 and D = 0.001.

analyze the physical mechanism of these phenomena through
the time series, the phase-space map, and the power spectrum
in Fig. 10(b), of which rows A and B correspond to points A
and B of Fig. 10(a), respectively. When r = 0.05 (the A row),
the time series, the map, and the spectrum suggest that the
attractors corresponding to r = 0.05 are SCAs in the negative
direction of the axis x. The occurrence of the SCAs implies
that anomalous transport of ANM occurs, in agreement with
that of Fig. 10(a). Moreover, the firing times of these unstable
attractors span from dozens to over 2000 dimensionless time
units. Finally, this finding can be regarded as the consequence
of a nonchaotic attractor, labeled by the dotted black line in
Fig. 4 (F = 0.34), that is perturbed by a Gaussian color noise.
Namely, a Gaussian color noise can induce the occurrence
of a transition from a nonchaotic attractor to SCAs, imply-
ing that the transition from zero to negative mobility occurs.
For r = 0.10 (the B row), the time series, the map, and the

spectrum suggest that the attractor corresponding to r = 0.10
is of WCA, implying that the corresponding average velocity
is zero. The result is consistent with that of Fig. 10(a). Thus
these results suggest that the shape parameter r is of great
importance for the appearance of anomalous mobility.

For further understanding of the role of the Gaussian
color noise, the dependence of the anomalous mobility on
the noise intensity D and the correlation time τ0 are plotted
in Figs. 11 and 12, respectively. Figure 11(a) shows that
for different D, the transports of the particle display dif-
ferent behaviors. For weak noise intensity (e.g., D = 10−3

and 10−2), ANM and GPM coexist, whereas GPM almost
eliminates and ANM remains for strong noise intensity (e.g.,
D = 10−1). These findings are analyzed via the time series,
the phase-space map, and the power spectrum for different
D in Fig. 11(b), of which rows A–C correspond to points
A–C of Fig. 11(a), respectively. For D = 10−3 (the A row),

FIG. 11. The averaged velocity 〈v〉 versus the bias F for different noise intensities D (a), and the time series of position and velocity, the
phase-space map, and the power spectra of the system in the presence of noise intensities D = 10−3 (the A row), D = 10−2 (the B row), and
D = 10−1 (the C row) that correspond to points A–C with F = 0.122 (b), respectively. The other parameters are τ0 = 1.0 and r = 0.05.
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FIG. 12. The averaged velocity 〈v〉 versus the bias F for different correlation times τ0 (a), and the time series of position and velocity, the
phase-space map, and the power spectra of the noise system in the presence of correlation times τ0 = 0.1 (the A row), τ0 = 1.0 (the B row),
and τ0 = 10 (the C row) that correspond to points A–C with F = 0.1 (b), respectively. The other parameters are D = 0.01 and r = 0.05.

the time series, the map, and the power spectrum suggest that
the attractor corresponding to D = 10−3 is of WCA, indi-
cating that the average velocity corresponding to D = 10−3

is zero. The result is in agreement with that of Fig. 11(a).
When D = 10−2 (the B row), the time series, the map, and
the spectrum suggest that the attractors corresponding to
D = 10−2 are SCAs in the negative direction of the axis x,
implying that ANM occurs. The result is in agreement with
that of Fig. 11(a). Additionally, the lifetimes of these unstable
attractors span from decade to almost 2000 time units. For
D = 10−1 (the C row), the time series, the map, and the
power spectrum suggest that the attractors corresponding to

D = 10−1 are also SCAs in the negative direction of the axis
x, revealing that ANM occurs. This result well matches that
of Fig. 11(a). The significant difference between D = 10−1

and D = 10−2 is the lifetimes of these unstable attractors. The
lifetimes of unstable attractors corresponding to D = 10−1

span from several to hundreds of time units, which is nearly
10 times shorter than that of D = 10−2. Finally, these results
can be regarded as the consequences of a nonchaotic attractor,
labeled by the dashed green line in Fig. 4 (F = 0.122), that is
perturbed by a Gaussian color noise. We find that the particle
stays its initial double well and forms a stable attractor when
the noise intensity D is smaller than a threshold value. When

FIG. 13. (a) The mobility coefficient μ versus shape parameter r for different noise intensities D with τ0 = 1.0. (b) The mobility coefficient
μ versus noise intensity D for different shape parameters r with τ0 = 1.0. (c) The mobility coefficient μ versus correlation time τ0 for different
shape parameters r with D = 0.01.
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the noise intensity exceeds the threshold value, the particle
leaves the initial double well, implying that the anomalous
mobilities and unable attractors may arise. Additionally, the
lifetimes of these unable attractors decrease on increasing the
noise intensity D above the threshold value. In a word, noise
intensity can lead to the occurrence of the transition from a
nonchaotic attractor to SACs nearby chaotic bands. The tran-
sition implies that there exists the appearance of the transition
from zero to nonzero mobility including negative or positive
mobility. Namely, the noise may lead to the emergence of
negative mobility.

We now turn to the effects of the correlation time. The
average velocity as a function of the bias F for different τ0 is
presented in Fig. 12(a). At τ0 = 0.1, clear ANM is observed,
while there coexists significant ANM and trivial GPM at
τ0 = 1.0. However, GPM vanishes, and ANM is weakened at
τ0 = 10.0. It is also shown that the peak of ANM produces a
shift when changing τ0. Subsequently, the increase in τ0 can
weaken ANM. Therefore, the results suggest that the increas-
ing correlation time τ0 can weaken, even eliminate ANM. To
better understand the correlation time effect on the transport
of the particle, we analyze these findings via the time series,
the phase-space map, and the power spectrum in Fig. 12(b),
of which rows A–C correspond to point A–C of Fig. 12(a),
respectively. When τ0 = 0.1 (the A row), the time series, the
phase-space map, and the power spectrum suggest that the
attractors corresponding to τ0 = 0.1 are SCAs in the nega-
tive direction of the axis x. These SCAs implies that ANM
arises, also in agreement with that of Fig. 12(a). For τ0 = 1.0
(the B row), the time series, the phase-space map, and the
power spectrum suggest that the attractors corresponding to
τ0 = 1.0 are also SCAs in the negative direction of the axis
x, revealing that there exits an ANM. The result also matches
that of Fig. 12(a). For τ0 = 10.0 (the C row), the time series,
the phase-space map, and the power spectrum suggest that
the corresponding attractor is of WCA. The WCA implies
that the corresponding average velocity is zero, in agreement
with that of Fig. 12(a). Moreover, their time series of the
position show that lifetimes of these unable attractors increase
with increasing the correlation time first. Second, the particle
stays the initial double well and negative mobility vanishes
when correlation time exceeds a critical value. Finally, these
results can be regarded as the consequences of a nonchaotic
attractor, labeled by the solid red line in Fig. 4 (F = 0.1),
that is perturbed by a Gaussian noise. We find that a transi-
tion from a nonchaotic attractor to SCAs occurs in presence
of a Gaussian color noise with τ0 = 0.1. Subsequently, the
anomalous mobilities are weakened and the lifetimes of these
unable attractors increase on increasing the correlation time.
Additionally, the anomalous mobilities vanish on increasing
the correlation time τ0 above a critical value. Based on the
above results, it is shown that the correlation time can weaken
and even eliminate chaotic behaviors, implying that the in-
creasing correlation time can weaken and even eliminate the
negative mobility.

To gain a better understanding of the underlying anomalous
mobility, we study the mobility of the particle via the mobility
coefficient below. Here the mobility coefficient is defined by
μ = ∂〈v〉

∂F |F=0 [4]. Notice that μ < 0 denotes that the parti-
cle works against the small bias, suggesting that μ < 0 is

anomalous mobility. On the contrary, μ > 0 represents that
the velocity of the particle is positive for positive load, vice
versa, suggesting that μ > 0 is normal mobility. We plot the
mobility coefficients μ versus the shape parameter r, noise in-
tensity D, and correlation time τ0 in Fig. 13. The figure shows
that there are double ANMs and GPMs with varying r for
D = 0.01, while there is one ANM and GPM with increasing
r for D = 0.1. But ANM disappears and there exists a trivial
GPM with increasing r for D = 0.4. To gain more insight, we
plot the mobility coefficient as a function of noise intensity
and correlation time for different r in Figs. 13(b) and 13(c),
respectively. Figure 13(b) shows that as the noise intensity
increases, there exists DNM at r = 0.001, while at r = 0.01,
the particle firstly undergoes GPM and then becomes ANM
and, finally, positive mobility. Moreover, the transition from
negative to positive mobility occurs with increasing the noise
intensity D at r = 0.05. Figure 13(c) shows that as the correla-
tion time increases, positive mobility increases first and then
decreases and becomes zero for r = 0.001 finally, while for
r = 0.01, there exists the transition from positive to negative
mobility. Finally, the particle undergoes negative mobility first
and then becomes positive mobility and zero mobility with
increasing the correlation time at r = 0.05.

Based on the above, the results suggest that the SCAs can
result in anomalous mobility and that the dynamical behavior
is sensitive to the variations of the shape parameter r, the
noise intensity D, and the correlation time τ0. The physical
mechanism of the phenomenon is that a small perturbation
can lead to a transition between a nonchaotic attractor and a
chaotic attractor in certain parameters’ regimes. The chaotic
dynamical behavior is known to be sensitive to the variation of
the control parameters of the system. Therefore, the transition
from a chaotic attractor to a nonchaotic attractor may result
in the transition from a nonzero mobility to a zero mobility.
On the contrary, the transition from the nonchaotic attractor
to the chaotic attractor may lead to the transition from a zero
mobility to a nonzero mobility. This is the physical mecha-
nism that the Gaussian color noise induce the occurrence or
disappearance of the anomalous mobility.

IV. CONCLUDING REMARKS

Taken together, we numerically investigate negative mo-
bility of an inertial Brownian particle moving in a periodic
double-well substrate potential driven by a time-periodic force
and a constant bias for the deterministic dynamics and the
presence of a color thermal fluctuation. For the deterministic
dynamics, we find from the average velocity that certain sys-
tem parameters or driving forces can induce the occurrence
of the negative mobility. Moreover, it is clear from the bifur-
cation diagram and the MLE that certain chaos can lead to
nonzero mobilities which may include the negative mobility,
whereas the rest does not. Relative results were demonstrated
in the cosine like type potentials which exhibit anomalous
transport induced by transient chaos [38,39]. To better un-
derstand the physical mechanisms underlying these findings,
we mainly analyze them via SCAs, WCA, and nonchaotic
attractors and find that SCAs can cause the negative mobility,
whereas WCA and periodic and quasiperiodic attractors do
not.
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For the presence of the Gaussian color noise, it is revealed
that the noise may give rise to a transition from a type of
attractor to another since chaotic dynamical behavior is known
to be sensitive to the variation of both the initial conditions and
the system’s parameters. When the transition to SCAs arises,
it implies that the negative mobility may arise. Our simulation
findings suggest that the noise intensity results in the existence
of the negative mobility, while the correlation time may result
in its disappearance.

In brief, our results unveil how the phenomena of the
anomalous mobility connect to SCAs including both stable
attractor and unstable attractors that may directly lead to
the occurrence of negative mobility. Our findings may be
potentially useful for research on anomalous transports of
the particles, and on the designs of various circuits, such as

circuits of atomic chains, Chua’s circuit, charge-density-wave
conductors, Josephson junctions arrays, devices of crystals
with dislocations, hydrogen-bonded networks, and supercon-
ducting nanowires.
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