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We investigate the mixed-spin Blume-Capel model with spin-1/2 and spin-S (S = 1, 2, and 3) on the simple
cubic and body-centered cubic lattices with single-ion-splitting crystal field (�) by using the Metropolis and
the Wang-Landau Monte Carlo methods. We show that the two methods are complementary: The Wang-Landau
algorithm is efficient to construct phase diagrams and the Metropolis algorithm allows access to large-sized
lattices. By numerical simulations, we prove that the tricritical point is independent of S for both lattices. The
positions of the tricritical point in the phase diagram are determined as [�t/J = 2.978(1); kBTt/J = 0.439(1)]
and [�t/J = 3.949(1); kBTt/J = 0.854(1)] for the simple cubic and the body-centered cubic lattices, respec-
tively. A very strong supercritical slowing down and hysteresis were observed in the Metropolis update close to
first-order transitions for � > �t in the body-centered cubic lattice. In addition, for both lattices we found a line
of compensation points, where the two sublattice magnetizations have the same magnitude. We show that the
compensation lines are also S independent.

DOI: 10.1103/PhysRevE.102.042113

I. INTRODUCTION

The Ising model [1] can be solved analytically on one-
and two-dimensional lattices [2]. Despite tremendous efforts
in the past few decades, there is unfortunately no analytic
solution in three dimensions (for a recent review, see Ref. [3]).
It exhibits a simple critical point and its properties are now
well known. Other models that have multicritical points are
generally less well understood. Interesting features may arise
when one considers more than two states, and the Blume-
Capel (BC) model [4,5] is one of the simplest extensions that
realizes a tricritical Ising point where three different phases
become indistinguishable. This Ising model with allowed va-
cant sites has attracted particular attention in connection with
its wetting and interfacial adsorption under the presence or ab-
sence of bond randomness [6–9]. It consists of a spin-1 Ising
Hamiltonian with an anisotropy field � (also called single-
ion-splitting crystal field). The latter term controls the density
of vacancies and plays a dominant role in the existence of the
tricriticality. It allows the model to have a nontrivial tricritical
point (TCP) in two- and three-dimensional lattices [10–17].
However, couplings must be fine-tuned and then simulations
have extreme difficulty in finding the precise location of such
a point in a multidimensional space of coupling constants due
to the exceptionally large fluctuations in the order parameter
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close to the TCP [10,18]. On the other hand, in the case of
the BC model, the presence of an almost vertical slope in
the vicinity of the TCP allows to cross the phase diagram
at fixed temperatures along the crystal-field axis. For the
three-dimensional ferromagnetic BC model, the coordinates
of the TCP can be located with fairly high accuracy using a
microcanonical Monte Carlo technique [11], whereas precise
data of the thermodynamic properties in both the first- and
second-order phase boundaries can be obtained by paralleliza-
tion of multicanonical simulations [14,19,20].

It should also be stressed that two is the lower tricritical
dimensionality of BC systems. However, this situation
changes radically when we consider a mixture of spin 1/2
and spin S, since they have less translational symmetry
than their single-spin counterparts. This latter property
has a great influence on the magnetic properties of the
mixed-spin systems and causes them to exhibit unusual
behavior not observed in single-spin Ising models [21].
These mixed-spin models have already found various
applications for the description of certain types of
ferrimagnetism, such as the MnNi(EDTA)-6H2O complex
and the two-dimensional compounds AIMIIFeIII(C2O4)3 [A
= N(n-C3H7)4, N(n-C4H9)4, N(n-C5H11)4, P(n-C4H9)4,
P(C6H5)4, N(n-C4H9)3(C6H5CH2), (C6H5)3PNP(C6H5)3,
As(C6H5)4; MII = Mn, Fe] [22,23].

In recent years, much controversy has surrounded the
behavior of the mixed-spin BC model in two dimensions
[24–33]. Up to now, it has been explored in two varieties
of analytical approaches [33–35]. The first one is to use an
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exact mapping transformation, which maps the subject model
on the honeycomb and Lieb lattices onto an exactly solved
one with effective mapped interaction [34,35]. The second one
was proposed recently based on a heuristic approach to solve
the same model on the square lattice [33]. As a result, it turned
out that in two-dimensional bipartite lattices the mixed-spin
BC model has neither tricritical nor compensation points, as
had been suggested by previous approximative approaches
[24,25,27,29,31]. These findings are in full agreement with
the Monte Carlo (MC) simulations [28,30,32,36] and the
renormalization-group method [26].

In contrast, there is no exact result in three-dimensional
cases. Selke and Oitmaa [32] have performed MC simulations
for the Blume-Capel model with mixed spin-1/2 and spin-1
on the simple cubic (SC) lattice applying the Metropolis up-
date (MU) of single-spin flips [37] and long runs. They found
evidence for a tricritical point (TCP) and a line of compensa-
tion points. This is consistent with the renormalization-group
calculations [38], which indicates the existence of the TCP in
the phase diagram. In Ref. [32], the location of the TCP was
obtained tentatively based on the histogram of the magneti-
zation in a small system. We show in this paper that such a
small lattice size leads to an underestimation in locating the
TCP, which calls for a more extensive study on this model.

Our purpose here is to study two lattices to better improve
our understanding of the mixed-spin systems. Motivated by
this, we re-examine the mixed-spin Blume-Capel model on
the SC lattice using the standard MU [37] and the Wang-
Landau (WL) algorithm [12,13,15,39]. As far as we know,
the WL algorithm has never been implemented to study
mixed-spin systems. We show that the two methods are com-
plementary to each other. We propose a reliable method to
locate the TCP for the mixed spin-1/2 and spin-1 Blume-
Capel model on the SC lattice. The cases of S = 2 and 3 are
also studied, and the S dependence of the TCP is discussed.
The same method is applied to the body-centered cubic (BCC)
lattice to locate the TCP for integer S. In addition, we show
that both lattices exhibit compensation phenomena, which
can be very useful in magnetic memory and spin analyzing
applications [40].

The outline of the article is as follows. As necessary back-
ground, in Sec. II we introduce the mixed-spin Blume-Capel
model and summarize the numerical details of our simula-
tions. In Sec. III, we discuss our results for both lattices SC
and BCC, and we present our analysis for the cases S = 1, 2,
and 3. We then conclude with a summary in Sec. IV.

II. MODEL AND METHODS

We studied the mixed-spin Blume-Capel model on the SC
and BCC lattices. The Hamiltonian can be written as

H = −J
∑

〈i∈�1, j∈�2〉
σiS j + �

∑
j∈�2

(S j )
2. (1)

Each lattice consists of two interpenetrating sublattices �1

with the spin variables σi and �2 with spins S j . Spins σi and
S j may take on the values ±1/2 and {−S,−S + 1, . . . , S},
respectively, where S is an integer or half-integer greater than
1/2. In this paper, we study only integer S cases (S = 1, 2,
and 3). The notation 〈i ∈ �1, j ∈ �2〉 stands for summation

over all pairs of nearest-neighbor spins. The exchange interac-
tion J is between two nearest neighbors σi and S j , and � is the
single-spin anisotropy. Positive J means that the interaction is
ferromagnetic. Since the lattices we study in this paper are bi-
partite, ferrimagnetic case (J < 0) is completely equivalent to
the ferromagnetic case. In this work, all the results presented
in this paper are obtained for J > 0.

We consider three-dimensional cubic lattices SC and BCC
with the number of lattice points N = BL3, where L is the
linear size of the system and B is the number of sites per unit
cell. For the SC and BCC lattices, B = 1 and B = 2, respec-
tively. With this definition in mind, what we called the SC
(respectively, BCC) lattice is in fact the face-centered-cubic
(respectively, SC) Bravais lattice. The periodic boundary con-
dition is used in all directions. We used two kinds of MC
schemes: the MU [37] and WL sampling [12,13,15]. The
MU is simple, easy to implement, and provides access to
simulations in large lattice sizes, but it suffers from critical
and supercritical slowing down [41] and it is not reliable
close to first-order transitions. In contrast, the WL sampling
overcomes the critical and supercritical slowing down and
eliminates hysteresis. Besides, physical quantities for any
temperature and anisotropy can be obtained just by one cal-
culation, but the lattice size is limited in the WL method due
to the multiparametric Hamiltonian of our model and hence
the huge number of the energy levels, which increases with S.
The maximum lattice size studied in this work is L = 100 and
L = 10 for the MU and WL methods, respectively. The MU
has been widely used in both single- and mixed-spin systems
[42] and we shall only discuss the relatively new method, the
WL sampling.

The WL sampling method directly estimates the density of
states ρ(E1, E2) via a random walk in energy space with the
transition probability

P[(i1, i2) → ( j1, j2)] = min

[
1,

ρ(Ei1 , Ei2 )

ρ(Ej1 , Ej2 )

]
, (2)

which makes histogram h(E1, E2) flat. The two energy vari-
ables E1 and E2 represent the two terms of the Hamiltonian in
Eq. (1), respectively:

E1 =
∑

〈i∈�1, j∈�2〉
σiS j and E2 =

∑
j∈�2

(S j )
2. (3)

The splitting choice is specific to the BC model, as it was
first introduced by Silva et al. [12] and then generalized to
other models with multienergy variables [43,44]. The purpose
of this choice is to overcome the barriers in both energy
spaces. Therefore, the energy space ξ of the density of states
ρ(E1, E2) is proportional to the size of the system L and
the spin variables S as ξ = (zSN/2)(S2N/2) = (zB2/4)L6S3,
where z is the coordination number, about half of ξ has
nonzero density of states. We found that the CPU time re-
quired to get the density of states is roughly proportional to
ξα with α = 1.26(4); it takes about eight hours for L = 10
and S = 1 in the SC lattice on a 2.2-GHz Intel(R) Xeon(R)
processor.

At each step, the WL refinement is ρ(E1, E2) →
fn ρ(E1, E2), where fn > 1 is an empirical factor. Whenever
the energy histogram is flat enough, the modification factor
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fn is adjusted as fn+1 = √
fn with f0 = e and a new set of

random walks is performed. The whole simulation is termi-
nated when fn becomes close enough to 1: ffinal < exp(10−10).
See Ref. [45] for more detail. During the simulation, average
values of thermodynamic observables O(E1, E2) as a function
of E1 and E2 should be calculated.

Once the density of states ρ(Ei1 , Ei2 ) is obtained, the parti-
tion function can be calculated for any values of temperature
and anisotropy,

Z (T,�) =
∑
E1,E2

ρ(E1, E2)eβ(JE1−�E2 ), (4)

where β denotes the inverse temperature 1/kBT and kB is
the Boltzmann constant. It is straightforward that all ther-
modynamic observables 〈O〉(T,�) can be calculated without
additional simulation for each temperature and anisotropy:

〈O〉(T,�) = 1

Z

∑
E1,E2

O(E1, E2)ρ(E1, E2)e−βH . (5)

To map the phase diagram, we calculated the sublattice and
the total magnetizations

〈Mσ 〉(T,�) = 1

Z

∑
E1,E2

Mσ (E1, E2)ρ(E1, E2)e−βH , (6)

〈MS〉(T,�) = 1

Z

∑
E1,E2

MS (E1, E2)ρ(E1, E2)e−βH , (7)

〈M〉(T,�) = 1

Z

∑
E1,E2

M(E1, E2)ρ(E1, E2)e−βH , (8)

where Mσ (E1, E2), MS (E1, E2), and M(E1, E2) are averages
of the microcanonical sublattice and total magnetizations for
given E1 and E2:

Mσ (E1, E2) =
∑VE1E2

v=1

∣∣∑
i∈�1

σi(v)
∣∣

VE1E2 Nσ

,

MS (E1, E2) =
∑VE1E2

v=1

∣∣∑
j∈�2

S j (v)
∣∣

VE1E2 NS
,

M(E1, E2) =
∑VE1E2

v=1

∣∣∑
i∈�1

σi(v) + ∑
j∈�2

S j (v)
∣∣

VE1E2 N
, (9)

where VE1E2 is the number of visits to states of (E1, E2) during
the process of the WL sampling; σi(v) and S j (v) are the
spin values of sites i and j, respectively, for the vth visit
[12,15]. Since the random walk is performed to estimate the
density of states ρ(E1, E2) in the WL algorithm, we do not
need extra random walks for the calculation of the magneti-
zation. (In order to reduce the statistical error, extra random
walks can be performed after ρ(E1, E2) is determined [15],
but we found that such extra processes have a little effect
on the final results.) Therefore, the additional computational
burden to calculate 〈Mσ 〉, 〈MS〉, and 〈M〉 is minor. Note that
Nσ = NS = N/2 for the SC and BCC lattices. In addition, to
locate the critical temperature TC and to determine the type of
transition, we calculated the Binder cumulant [46]

U = 1 − 〈M4〉
3〈M2〉2 . (10)
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FIG. 1. Phase diagram in the �-T plane for the SC ((a) and
(c)) and BCC ((b) and (d)) lattices. Compensation temperature
(Tcomp) is represented with dashed lines in lower panels. The hor-
izontal straight lines represent T = (S/2)T Ising

C , which is the critical
temperature expected in the limit � → −∞. T Ising

C is the critical tem-
perature of the conventional Ising model in the SC and BCC lattices.
The transition temperature (TC) and the compensation temperature
(Tcomp) were obtained by using the WL (solid and dashed lines) and
MU (symbols). The statistical error is smaller than the symbol size.
Previous results of the transition temperature by Selke and Oitmaa
[32] in the SC lattice are also shown by the empty squares.

III. RESULTS AND DISCUSSION

Figure 1 shows phase diagrams in the T -� plane for the
mixed-spin Blume-Capel model on SC and BCC lattices with
S = 1, 2, and 3. The critical temperature TC was obtained by
the crossing of Binder cumulant of lattices with different sizes.
This method can be used in first-order as well as continuous
phase transitions [47] (see Figs. 2 and 3). Binder cumulant
was calculated by two methods: Solid curves and symbols in
Fig. 1 represent results from the WL and MU, respectively.
They are consistent with each other within 1%. For the WL
method, the lattice size is limited to L = 4, 6, and 10 for S =
1, and L = 4 and 6 for S > 1; for the MU, much larger lattices
(L = 32 and 60) were used. We estimate that the error by the
correction to scaling [3], if it exists, is small because the two
results by the WL and MU methods are very close to each
other.

In the phase diagram, there are a few qualitatively different
regimes according to the value of �. For sufficiently large
negative crystal field (� → −∞), the system undergoes a
continuous transition at a nearly constant value of TC shown
in the figures by a horizontal line. Because low-spin states
(|Si| < S) are suppressed in �2 sites, the model is reduced
into the conventional two-state Ising model with spin-1/2
and spin-S in each sublattice. We confirmed that the crit-
ical temperature converges to TC = (S/2)T Ising

C in the limit
� → −∞ within error bars, which corresponds to the critical
temperature of the conventional Ising model: J/kBT Ising

C =
0.221654626(5) for the SC lattice [3] and J/kBT Ising

C =
0.1573725(6) for the BCC lattice [48,49]. On the other hand,
for � > �crit the vacancies (S j = 0) become dominant and no
long-range order occurs in the system since a spin σi in �1 is
surrounded by vacancies. In fact, the �1 spins are randomly
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FIG. 2. Binder cumulant as a function of temperature (T ) for various lattice sizes (L) in the SC lattice. Note the valley of negative value
immediately above TC for �/J = 2.979.

oriented when the crystal field is greater than �crit/J = 3 and
4 for the SC and BCC lattices, respectively.

The most interesting part of the phase diagram is the in-
termediate regime, where the system changes the nature of
the transition from continuous to first order, giving rise to a
TCP and a line of compensation points. As � increases, the
critical temperature decreases abruptly because nonzero spin

states in �2 are reduced by the positive crystal field. As shown
in Fig. 4, the reduction of 〈MS〉 is strong near TC and there
appears the compensation point Tcomp, where 〈Mσ 〉 = 〈MS〉,
below TC . In the ferrimagnetic case (J < 0), the total mag-
netization becomes zero at Tcomp. As usual, for vanishing T ,
the sublattice magnetizations 〈Mσ 〉 and 〈MS〉 start from their
saturation values. However, one should note that in Fig. 4, MS
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FIG. 3. Binder cumulant as a function of temperature (T ) for various lattice sizes (L) in the BCC lattice. Note the valley of negative value
immediately above TC for �/J = 3.950.
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FIG. 4. Sublattice magnetizations 〈Mσ 〉 and 〈MS〉 as a function
of temperature for the SC lattice with �/J = 2.9 and for the BCC
lattice with �/J = 3.9. The linear size of lattices is L = 60. The
vertical straight lines indicate the compensation point Tcomp below
the critical temperature TC . The statistical error is smaller than the
symbol size.

curves start from 1 at T = 0. This indicates that the states of
S j = 1 dominate states of S j = 2 and 3 very close to the TCP.
We show that the compensation appears in the BCC lattice as
well as in the SC lattice [see Figs. 1(c) and 1(d)]. We found
that the compensation point does not depend on the magnitude
of spin S. The critical temperature and compensation lines
decrease with � and vanish at � > �crit .

To find the evidence of the discontinuous nature of the
transition and to differentiate the first-order from continuous
transitions, we used two methods. First, for the first-order
transition, the Binder cumulant has a valley of negative values
immediately above TC , while in the case of the continuous
transition, it monotonically decreases to zero as the temper-
ature increases [47,50]. Note that the valley of the Binder
cumulant can be missing in small-sized lattices even if larger
lattices show it. Therefore, the existence of the valley indicates
that the transition is first order, but its absence does not guar-
antee that the transition is continuous. Figures 2 and 3 show
that �t/J < 2.979 and �t/J < 3.950 for the TCP in the SC
and BCC lattices, respectively. Interestingly, Binder cumulant
does not depend on the spin magnitude S around the TCP.
The second method is based on the histogram of the order
parameter close to TC ; the order parameter refers to the total
magnetization M in this case. For the first-order transition, the
histogram of the order parameter has three peaks at M = 0
and M = ±M0 with M0 > 0 close to TC ; the central peak
increases as temperature increases. On the other hand, in the
continuous transition, there are only two peaks at M = ±M0

below TC , and M0 decreases as temperature increases to make
only one peak at M = 0 above TC . Therefore, the existence
of the three-peak structure near TC is the evidence for the
discontinuity of the transition. This method was used by Selke
and Oitmaa to estimate the TCP for the SC lattice with S = 1
[32]. However, as shown in Figs. 5 and 6, there exists a large
finite-size effect in this method, too. Even when a three-peak
structure is observed in small-sized lattices, it could disappear
in larger lattices. For example, for �/J = 2.977 in the SC
lattice in the left column of Fig. 5, a three-peak structure is
clear in L = 10 but it disappears for L = 32. Therefore, the
three-peak structure does not ensure the first-order nature of
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FIG. 5. Histogram of the total magnetization P(M ) for various values of linear size (L) at temperatures crossing the transition in the SC
lattice for S = 1. P(M ) is symmetric about M = 0 and only results of positive M are shown.
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FIG. 6. Histogram of the total magnetization P(M ) for various values of the lattice size (L) at temperatures crossing the transition in the
BCC lattice for S = 1. P(M ) is symmetric about M = 0 and only results of positive M are shown.

the transition, while the missing of the three-peak structure
indicates that the transition is indeed continuous. As a result,
we conclude that �t/J > 2.977 and �t/J > 3.948 for the SC
and BCC lattices, respectively. Ignoring this effect leads to
an underestimation of �t/J . Previous Monte Carlo simula-
tions are limited to small lattice sizes L = 4, which estimated
the value of anisotropy of the TCP to be �t/J = 2.955(15)
[32]. Though not shown here, we obtained the same results
for the cases of S = 2 and S = 3 as the S = 1 case within
error bars. Combining the two results of the Binder cumu-
lant and order parameter histogram, our final conclusion is
that 2.977 < �t/J < 2.979 and 3.948 < �t/J < 3.950 for
the SC and BCC lattices, respectively. Therefore, we estimate
the tricritical point as [�t/J = 2.978(1); kBTt/J = 0.439(1)]
and [�t/J = 3.949(1); kBTt/J = 0.854(1)] for the SC and
BCC lattices, respectively. Note that the position of the TCP
is independent of the spin magnitude S.

To understand the independence of the TCP on S, we
examined 〈nS〉, which is the portion of spin state Sj = ±S in
sublattice �2, as a function of temperature. We concentrate
on the case S = 3. Figure 7 shows 〈nS〉 as a function of
temperature for � = �t in the SC lattice with S = 3. The
size dependence is very small except around TC . At very high
temperature above TC , 〈n0〉 approaches 1/7 and 〈n1〉, 〈n2〉, and
〈n3〉 approach 2/7, as expected. As the temperature decreases,
high-spin states (|S j | > 1) are fully suppressed well above TC

and so they have no role in the transition at the tricritical point.
Therefore, it is natural that the cases of S = 2 and S = 3 have
the same tricritical point as the case of S = 1. Below TC , 〈n1〉
reaches 1 smoothly; this behavior is contrary to the Blume-
Capel model, where 〈n1〉 jumps abruptly to 1 immediately
below TC [15]. We confirmed the same behavior also around
first-order transitions with larger �. The discrepancy may be

explained by the existence of two interpenetrating sublattices
in our model coupled to each other via the interaction J . One
of these sublattices is occupied by σi = ±1/2, which tries to
force the spin of the last sublattice to be aligned (ferromag-
netic) or antialigned (ferrimagnetic).

Finally, as the value of � increases passing through the
TCP, continuous phase transition changes into first-order tran-
sition. At first-order transitions, canonical simulations such
as MU may be trapped in a metastable phase, giving rise to
the supercritical slowing down and hysteresis phenomena. It
becomes more serious as � approaches �crit , for larger S, and
in larger lattices. The hysteresis also depends on the number of
MC steps and the speed of temperature change. We observed
no hysteresis in continuous transitions and close to the tricrit-
ical point. In Fig. 8, we present the thermal dependence of the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01  0.1  1  10  100

Sj=0

Sj=±1

Sj=±2
Sj=±3

〈n
S〉

kBT / J

L=10
L=20
L=60

FIG. 7. Density of each spin state 〈nS〉 as a function of tem-
perature for �/J = 2.978 and S = 3 in the SC lattice. The vertical
straight line represents the transition temperature.
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FIG. 8. Total magnetization as a function of temperature in the
BCC lattice for S = 1, �/J = 3.99, and L = 10 calculated by the
MU (symbols). Squares and circles were obtained during cooling-
down and warming-up processes, respectively. At each temperature,
2 × 105 MC steps were performed; the former 105 steps were dis-
carded and only the later 105 steps were used to calculate total
magnetization. Results of independent 100 runs were averaged for
each process. The results by the WL sampling are plotted by the solid
line for comparison. The statistical error is smaller than the symbol
size.

total magnetization while increasing and lowering tempera-
ture obtained by the MU in the BCC lattice for �/J = 3.99
and L = 10, which shows a very strong hysteresis effect even
in a relatively small lattice. More MC steps may reduce the
hysteresis effect, but we verified the existence of hysteresis
at least up to 2 × 107 MC steps per each temperature value
in this case. The hysteresis behavior is also observed in the
SC lattice, but it is more pronounced in the BCC lattice: In
the SC lattice, a clear hysteresis behavior begins to appear
at �/J = 2.999 for L = 20 and S = 1. We think that the
serious hysteresis in the BCC lattice appears preferably due to
the larger coordination number, which makes the metastable
states deeper. Therefore, the MU should be used with special
care for � > �t . The WL method overcomes the supercritical
slowing down and hence no hysteresis is observed, demon-

strating the effectiveness of the extended ensemble method in
the mixed-spin systems.

IV. CONCLUSIONS

We studied the mixed spin-1/2 and spin-S Blume-Capel
model with S = 1, 2, and 3 on three-dimensional lattices (SC
and BCC) using the MU and the WL sampling to construct
phase diagrams. Although the WL sampling is restricted to
small-sized lattices, the results by the two algorithms coincide
and the error by the correction to scaling is estimated to be
small (a relative error of at most 1%). In the WL method,
thermodynamic quantities at arbitrary temperature and single-
site anisotropy � can be obtained by just one calculation and
there is no supercritical slowing down. Therefore, it is now
clear that the WL scheme is very efficient to study mixed-spin
systems. At low values of the anisotropy �, the mixed-spin
system shows critical lines for each integer S, which end in
first-order transition lines, and they meet at the TCP (�t/J;
kBTt/J). From the Binder cumulant and the histogram of
magnetization as a function of temperature, we determined the
TCP with very high precision as [�t/J = 2.978(1); kBTt/J =
0.439(1)] and [�t/J = 3.949(1); kBTt/J = 0.854(1)] for the
SC and BCC lattices, respectively. The location of the TCP
was determined by the MU, since large-sized lattices need
to be examined due to finite-size effects. We found that the
location of the TCP is independent of S because higher spin
states of |Sj | > 1 are suppressed close to the TCP, which is
confirmed by the density of each spin state 〈nS〉 as a function
of temperature. In addition, we demonstrated the existence of
the line of compensation points in both lattices, which is also
S independent.
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