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We study the annihilating random walk with long-range interaction in one dimension. Each particle performs
random walks on a one-dimensional ring in such a way that the probability of hopping toward the nearest particle
is W = [1 − ε(x + μ)−σ ]/2 (the probability of moving away from its nearest particle is 1 − W ), where x is the
distance from the hopping particle to its nearest particle and ε, μ, and σ are parameters. For positive (negative)
ε, a particle is effectively repulsed (attracted) by its nearest particle and each hopping is generally biased. On
encounter, two particles are immediately removed from the system. We first study the survival probability and
the mean spreading behaves in the long-time limit if there are only two particles in the beginning. Then we study
how the density decays to zero if all sites are occupied at the outset. We find that the asymptotic behaviors are
classified by seven categories: (i) σ > 1 or ε = 0, (ii) σ = 1 and 2ε > 1, (iii) σ = 1 and 2ε = 1, (iv) σ = 1 and
2ε < 1, (v) σ < 1 and ε > 0, (vi) σ = 0 and ε < 0, and (vii) 0 < σ < 1 and ε < 0. The asymptotic behaviors
in each category are universal in the sense that μ (and sometimes ε) cannot affect the asymptotic behaviors.

DOI: 10.1103/PhysRevE.102.042112

I. INTRODUCTION

The annihilating random walk and its close relative the
coalescing random walk describe processes whereby diffus-
ing particles react on encounter. In their presumably simplest
setting, particles perform random walks on a d-dimensional
hypercubic lattice and they undergo pairwise annihilation
(A + A → 0) or coalescence (A + A → A) if two particles
happen to occupy a same site. Due to exact solvability and
wide applicability to various fields, these processes have been
studied extensively for many years [1–18].

In the generic setting, hopping of each particle is symmet-
ric in the sense that the direction of hopping is chosen with
equal probability among 2d nearest-neighbor sites. In this
case, the upper critical dimension dc is 2 and the asymptotic
behavior of particle density is universal with t−d/2 for d < dc

and t−1 for d > dc.
It is quite natural to ask what would happen if hopping

is biased. In the framework of the field theory [8,12,19–
21], it is easy to understand that global bias does not affect
the asymptotic behavior, because the bias is removed by the
Galilean transformation [22]. By the global bias, we mean that
the direction and the strength of the bias does not depend on
the position of a particle.

If bias varies with position and/or time, then the Galilean
transformation cannot remove the bias. This kind of bias can
be relevant in the renormalization group (RG) sense and the
asymptotic behavior would change. One way of implementing
such a bias is to introduce a quenched noise in such a way that
the strength of the bias varies from site to site [23–29].

Recently, another form of bias that cannot be removed
by the Galilean transformation was introduced [30], initially
motivated from opinion dynamics [31,32]. This hopping bias
is implemented in such a way that a particle prefers hopping

toward its nearest particle. Unlike the quenched noise, the di-
rection of hopping depends on which configuration the system
is in and, accordingly, it can change with time.

In the original setting [30], the strength of the bias does not
depend on how far a walker’s nearest particle is located. Then
the bias is generalized in Ref. [33] such that the strength of the
bias is a decreasing power-law function of the distance from
a particle to its nearest one. It was found that the asymptotic
behavior of the density depends on the form of the power-law
function.

In this paper, we further generalize the one-dimensional
annihilating random walk in Ref. [33] by allowing that a
particle is repulsed by its nearest particle. As we will see,
the repulsion triggers rich phenomena. In Sec. II, we define
the generalized model and introduce two initial conditions
that are termed as the two-particle and fully occupied initial
conditions, respectively. Section III studies the system with
the two-particle initial condition, focusing on survival proba-
bility and mean spreading. Section IV studies how the density
behaves in the long-time limit if the system evolves from the
fully occupied initial condition. In Sec. V, we summarize the
result of the paper.

II. MODEL

The model is defined on a one-dimensional lattice of size
L with periodic boundary conditions. Each site of this lattice
is either occupied by a particle or vacant. Multiple occupancy
is not allowed. We will denote the occupation number at site i
by si, which takes either 1 or 0. For convenience, we define

Ri = min{x|si+x = 1, 1 � x � L},
(1)

Li = min{x|si−x = 1, 1 � x � L},
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where i ± L should be interpreted as i (periodic boundary
condition). In other words, Ri (Li) is the distance from site
i to the nearest occupied site on the right- (left-) hand side.

With transition rate 1, each particle hops to one of its
nearest-neighbor sites. If a particle at site i is to hop, then it
must move to either site i + 1 or site i − 1. Probability Wi of
hopping to site i + 1 is (the probability of hopping to site i − 1
is naturally 1 − Wi)

Wi = 1

2
+ ε

2
sgn(Ri − Li )(mi + μ)−σ , (2)

where mi = min{Ri, Li}, sgn(x)(≡ x/|x|) is the sign of x with
sgn(0) = 0, σ � 0, and ε, μ are constants with the restriction
0 � |ε| < (1 + μ)σ to ensure 0 < Wi < 1. A particle is in a
sense repulsed (attracted) by its nearest particle when ε is
positive (negative). If a particle happens to jump to a site that
is already occupied, then the two particles are removed in no
time (pairwise annihilation).

Since hopping of a particle is significantly influenced (es-
pecially for small σ ) by its nearest particle even if they are
separated by a large distance, we refer to the model as the
annihilating random walk with long-range interaction (AWL).
As we will see soon, the sign of ε plays a crucial role. To
emphasize the effect of the sign, we will also refer to the
model with positive (negative) ε as the annihilating random
walk with long-range repulsion (attraction), which will be
abbreviated as AWLR (AWLA).

In the following sections, we study the AWL for two initial
conditions. One is the two-particle initial condition in which
there are only two particles in a row at t = 0 in an infinite
system. In this case, we are interested in the survival proba-
bility S(t ) that two particles survive up to time t and the mean
distance R(t ) between the two particles, conditioned that they
are not annihilated up to time t . The asymptotic behaviors of
S(t ) and R(t ) will be studied in Sec. III.

The other is the fully occupied initial condition in which
si = 1 for all i at t = 0. In this case, we investigate the asymp-
totic behavior of particle density

ρ(t ) = 1

L

∑
i

〈si〉, (3)

where 〈· · · 〉 stands for average over ensemble. The asymptotic
behavior of the density ρ of the AWLA was first reported in
Ref. [30] for σ = 0 and later in Ref. [33] for any σ , which is

ρ(t ) ∼
{

t−1/(1+σ ), σ < 1,

t−1/2, σ � 1.
(4)

Throughout the paper, we write f (x) ∼ g(x) if

0 <

∣∣∣∣ lim
x→x0

f (x)

g(x)

∣∣∣∣ < ∞, (5)

where x0 = 0 or x0 = ∞, depending on the context. In
Sec. IV, we will investigate the asymptotic behavior of ρ for
any value of ε and we will reproduce Eq. (4) for negative ε in
due course.

III. SURVIVAL PROBABILITY AND MEAN SPREADING

This section studies how the system evolves if it starts from
the two-particle initial condition. Let P̃i(t ) be the probability

that the distance between the two particles is i at time t . P̃0(t )
is the probability that the two particles are annihilated before
t . Considering that probability of hopping to the left (right) of
the left particle is the same as that of hopping to the right (left)
of the right particle, we write the master equation

1

2

∂P̃i

∂t
= qi−1P̃i−1 + (1 − qi+1)P̃i+1 − (1 − δi,0)P̃i, (6)

where δi, j is the Kronecker delta symbol and

qi = 1

2
+ ε

2
(i + μ)−σ , (7)

with q0 = q−1 = 0. Defining P(i, t ) = P̃(i, 2t ), we write

dPi

dt
= qi−1Pi−1 + (1 − qi+1)Pi+1 − (1 − δi,0)Pi, (8)

which is equivalent to a random-walk problem with an ab-
sorbing wall at the origin, interpreting i to be a site where the
walker is located. In this section, we study this random walk
with the initial condition Pi(0) = δi,1.

We are interested in the survival probability S(t ) and the
mean spreading R(t ) conditioned on survival, defined as

S(t ) = 1 − P0(t ), R(t ) =
∞∑

n=1

nPn(t )

S(t )
. (9)

We will denote the probability that the walker never visits the
absorbing wall by Ps, which is obtained as

Ps = lim
t→∞ S(t ). (10)

The continuous-time random walk is related to the discrete-
time random walk in the following way. Let di,n be the
probability that the walker is located at site i after nth jump
in the discrete-time random walk, which satisfies

di,n+1 = qi−1di−1,n + (1 − qi+1)di+1,n + δi,0d0,n, (11)

with the initial condition di(0) = δi,1. Since the number of
jumps up to time t follows the Poisson distribution with mean
t , Pi(t ) can be found by

Pi(t ) =
∞∑

n=0

t n

n!
e−t di,n, (12)

which yields

S(t ) =
∞∑

n=0

t n

n!
e−tξn, R(t ) = 1

S(t )

∞∑
n=0

t n

n!
e−t rn,

ξn ≡
∞∑

i=1

di,n, rn ≡
∞∑

i=1

idi,n. (13)

For numerical studies of S(t ) and R(t ), we either use
Eq. (13) with numerical calculation of di,n [especially when
S(t ) is extremely small] or perform Monte Carlo simulations
of the discrete-time random walk [especially when the ob-
servation time is large or S(t ) at the end of the observation
is larger than 10−10]. As long as we are interested in the
long-time behavior, whether time is continuous or discrete is
immaterial in most cases with one exception in this paper.
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We begin with investigating the probability Fi(r) that the
walker starting from site i visits site r at least once. Notice
that Ps can be obtained by

Ps = lim
r→∞ F1(r). (14)

Due to the Markov property, we have a recursion relation

Fi = qiFi+1 + (1 − qi )Fi−1. (15)

Since F0 = 0, we get

Fi+1 − Fi = (Fi − Fi−1)
1 − qi

qi
= F1

i∏
k=1

1 − qk

qk
, (16)

which, along with Fr = 1 by definition, gives

Fn(r) = Gn

Gr
, Gn ≡ 1 +

n−1∑
i=1

i∏
k=1

1 − ε(k + μ)−σ

1 + ε(k + μ)−σ
, (17)

where G0 ≡ 0 and G1 ≡ 1. For ε = 0, we get trivially Gn = n
and Fn(r) = n/r.

For σ = 0, one can readily get

Gn = 1 + ε

2ε

[
1 −

(1 − ε

1 + ε

)n]
, (18)

which gives

Ps = lim
r→∞ G−1

r = 2ε

1 + ε
�(ε), (19)

where �(·) is the Heaviside step function. Note that Gn di-
verges exponentially with n for ε < 0, which indicates that
F1(r) decreases exponentially with r.

For σ = 1, we can write Gn as

Gn = 	(1 + μ + ε)

	(1 + μ − ε)

n−1∑
i=0

	(i + 1 + μ − ε)

	(i + 1 + μ + ε)
, (20)

where 	(·) is the gamma function. For 2ε = 1, we get

Gn =
n−1∑
i=0

2μ + 1

2i + 2μ + 1
∼ 2μ + 1

2
ln n. (21)

For 2ε �= 1, we use an identity

(a − b)
	(x + b)

	(x + a + 1)
= 	(x + b)

	(x + a)
− 	(x + 1 + b)

	(x + 1 + a)
, (22)

to obtain

Gn = 	(1 + μ + ε)	(n + 1 + μ − ε)

(1 − 2ε)	(1 + μ − ε)	(n + μ + ε)
+ μ + ε

2ε − 1
. (23)

One can readily find

Ps = lim
r→∞ F1(r) = 2ε − 1

μ + ε
�(2ε − 1). (24)

Unlike the case with σ = 0, Ps can be 0 even if ε > 0. For
2ε < 1, Gr for large r behaves as

F1(r)−1 = Gr ∼ r1−2ε, (25)

where we have used the Stirling’s formula. Note that the
power in the asymptotic behavior in Eq. (25) varies contin-
uously with ε but does not depend on μ.
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FIG. 1. (a) Plots of S vs t for σ = 0 (square), 0.2 (circle), 0.4
(up-triangle), 0.6 (down-triangle), and 0.8 (diamond), top to bottom,
on a semilogarithmic scale. Here ε = 0.5 and μ = 0. Hoizontal line
segments show the value of Ps numerically obtained from Eq. (17).
(b) Semilogarithmic plots of S vs t for σ = μ = 1 and for ε = 0.6
(circle), 0.7 (up-triangle), 0.8 (down-triangle), 0.9 (square), and 1
(diamond), bottom to top. Hoizontal line segments indicate the pre-
dicted Ps in Eq. (24).

For 0 < σ < 1, we show in Appendix A that Gn converges
as n → ∞ as long as ε > 0. Hence, we conclude that Ps

for any positive ε is nonzero if σ is strictly smaller than 1.
Appendix A also shows that Gn diverges as n → ∞ for any
ε if σ > 1, which amounts to Ps = 0. Defining the threshold
value as εth ≡ sup{ε|Ps = 0}, we obtain

εth =
{0, σ < 1,

1/2, σ = 1,

∞, σ > 1.

(26)

To confirm, we compare Monte Carlo simulation results
with the predictions. Figure 1(a) compares the simulation
results for σ < 1 to the corresponding prediction to show
perfect agreement. In Fig. 1(b), we present the simulation
results for σ = 1 and 2ε > 1 to find that Ps in Eq. (24) is in
perfect agreement with simulations in the long-time limit.

We now present an approximate expression for Gn. Since
we are mainly interested in how Gn behaves for large n, we
expect that the main contribution of the sum in Eq. (17) occurs
when i is large. Accordingly, we have an approximation

Gn ≈
∫ n

1
dxe−2εI (x;σ ), I (x; σ ) ≡

∫ x+μ

1+μ

y−σ dy, (27)

where we used ln[(1 − x)/(1 + x)] 
 −2x and replaced sums
with integrals.

For σ > 1, I (x; σ ) converges as x → ∞, which yields
Gn ∼ n for any ε, as also shown in Appendix A. Since Gn = n
for ε = 0 (unbiased case), we conclude that the case with σ >

1 shares the universal asymptotic behavior with the unbiased
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random walk. We will arrive at the same conclusion when we
discuss the asymptotic behavior of R(t ) and S(t ).

Since I (x; σ ) ∼ x1−σ for σ < 1, Gn for ε > 0 is bounded
as expected. For ε < 0, we obtain the asymptotic behavior of
F1(r) as

F1(r) = G−1
r ∼ r−σ exp

(
− 2|ε|

1 − σ
r1−σ

)
, (28)

where we have used Eq. (B5) in Appendix B. For σ = 1,
one can easily check that Eq. (27) gives the same asymptotic
behaviors as Eqs. (21) and (25).

Now we will find the asymptotic behaviors of R(t ) and
S(t ). Our analysis of R(t ) begins with writing down an equa-
tion for R(t ). Using the master equation (8), we get

dR

dt
= ε

∞∑
n=1

(n + μ)−σ ψn(t ) − R(t )
d ln S(t )

dt
, (29)

where ψn(t ) ≡ Pn(t )/S(t ) with
∑∞

n=1 ψn(t ) = 1. If we define
u(t ) = R(t )S(t ), then we get

du

dt
= εS(t )

∞∑
n=1

(n + μ)−σ ψn(t ). (30)

Actually, u(t ) is the mean distance from the wall to the walker
that is averaged over all ensemble at time t .

We find a formal solution for σ = 0 as

R(t ; σ = 0) = 1

S(t )

[
R0 + ε

∫ t

0
S(t ′)dt ′

]
, (31)

where R0 is a constant determined by the initial condition
(R0 = 1 for the two-particle initial condition). Since S(t ) sat-
urate to nonzero Ps for positive ε, we find

R(t ; σ = 0) ∼ εt . (32)

Since S(t ) ∼ t−1/2 for ε = 0 (see, for example, Ref. [34]), we
get R(t ; ε = 0) ∼ t1/2.

As we have shown above, S(t ) converges to nonzero Ps if
σ < 1 with positive ε or if σ = 1 with 2ε > 1. In these cases,
we can neglect the second term in the long-time limit and we
have

dR

dt
≈ ε

∑
n

(n + μ)−σ ψn(t ), (33)

which suggests that R(t ), not surprisingly, should increase in-
definitely. To find the asymptotic behavior of R(t ) for nonzero
Ps, let us assume that ψn(t ) is sharply peaked around n = R(t ).
Under this assumption, we can approximate the summation in
Eq. (33) as (we neglect μ because R is large)∑

n

ψn(t )

(R + �n)σ
≈ 1

Rσ

[
1 + σ (σ + 1)

2R2
〈(�n)2〉s

]
, (34)

where R = 〈n〉s, �n ≡ n − R, and 〈· · · 〉s stands for the av-
erage over ψn. Hence, we have an approximate equation for
R(t ) as

dR

dt
≈ ε

Rσ

[
1 + σ (σ + 1)

2

〈(�n)2〉s

R2

]
. (35)
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FIG. 2. (a) Double logarithmic plots of R vs t for σ = 0
(square), 0.2 (circle), 0.4 (up-triangle), 0.6 (down-triangle), 0.8
(diamond), and 1 (filled circle), top to bottom. Here ε = 0.5 for all
cases, but μ = 0 for σ < 1 as in Fig. 1(a) and μ = 1 for σ = 1 as
in Fig. 1(b). Line segments depicts the predicted asymptotic behav-
ior (36), which shows perfect agreement for σ < 1. The deviation
for σ = 1 is discussed in the text. (b) Double logarithmic plots of
〈(�n)2〉s vs t for σ = 0 (square), 0.2 (circle), 0.4 (up-triangle), 0.6
(down-triangle), and 0.8 (diamond). A straight line with slope 1 is
drawn for guides to the eyes.

Neglecting the fluctuation (�n)2, we obtain

dR

dt
≈ εR−σ → R ≈ [ε(1 + σ )t]1/(1+σ ), (36)

which reproduces the exact asymptotic behavior (32)
for σ = 0.

Now we argue that keeping only the leading term gives
the exact asymptotic behavior for σ < 1 and ε > 0. A (naive)
continuum limit for the master equation yields the Fokker-
Planck equation

dP(x; t )

dt
= − ∂

∂x

[ ε

xσ
P(x; t )

]
+ 1

2

∂2

∂x2
P(x; t ), (37)

where x is the continuum version of the site index and we
neglect μ, assuming x is large. Since the diffusion term in
Eq. (37) does not depend on ε, we expect that the variance
of x increases linearly just like the unbiased random walks.
Accordingly, 〈�n2〉s/R2 → 0 as t → 0 for σ < 1 and, in turn,
the approximation (36) becomes accurate in the long-time
limit; see Ref. [33] for a similar discussion with negative ε.

We compare Eq. (36) with numerical simulations in
Fig. 2(a). Our prediction is in full accord with the simu-
lation results for σ < 1 and ε > 0. We also measured the
fluctuations in simulations to find that it indeed behaves as
〈(�n)2〉s ∼ t for σ < 1; see Fig. 2(b).

In Fig. 2(a), we also present simulation results for σ = 1
and 2ε = 1 with comparison to Eq. (36). Although the power
is still consistent with the prediction, the coefficient deviates
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from the prediction. Since R2 ∼ 〈(�n)2〉s ∼ t for σ = 1 (and
2ε > 1), we cannot simply neglect the fluctuation (�n)2, but
it only increases the coefficient, which explains why Eq. (36)
lies below the simulation data for σ = 1 in Fig. 2(a).

Let us continue investigating the case with σ = 1 for arbi-
trary ε. As above, we begin with writing down an approximate
equation for R(t ) as

dR

dt
≈ ε

R
− d ln S(t )

dt
R, (38)

where we again neglected the fluctuation. For later purposes,
we also write down an approximate equation for u,

du2

dt
≈ 2εS(t )2. (39)

Notice that Eq. (39) again predicts R ∼ u ∼ √
t for 2ε > 1,

because S(t ) in this case saturates to a nonzero value.
Until now, we have investigated the cases with Ps > 0. To

find S and R for Ps = 0, we will use the following relation. If
S(t ) → 0 while R(t ) → ∞, then S and R are related by

S(t ) ≈ F1(R), (40)

because surviving samples typically arrive at R(t ) at time t .
We will repeatedly use Eq. (40) in what follows. We will
find the asymptotic behaviors of S and R for 2ε � 1 in a
self-consistent manner. We first assume 0 � 2ε < 1. Since the
repulsion gets stronger as ε gets larger, it seems plausible to
expect that R(t ) should be a nondecreasing function of ε for
given t and, in turn, R(t ) ∼ √

t for ε � 0, because R(t ) ∼ √
t

not only for ε = 0 but also for 2ε > 1.
Using Eqs (40) and (25) for 0 < 2ε < 1, we find

S(t ) ∼ t−(1−2ε)/2. (41)

If we plug Eq. (41) into Eq. (39), then we get u ∼ t ε, which
consistently gives R = u/S ∼ √

t . Note that u(t ) diverges for
0 < 2ε < 1 even though S(t ) → 0 as t → ∞.

Since F1(r) ∼ 1/ ln r for 2ε = 1, Eq. (40) along with
Eq. (21) gives

S(t ) ∼ 1/ ln t . (42)

Therefore, we get

u2 ∼
∫ t dt

(ln t )2
=

∫ x ex

x2
dx ∼ ex

x2
= t

(ln t )2
, (43)

where we made a change of variables x = ln t and Eq. (B5)
was used. The logarithm correction in u neatly disappears in
the leading behavior of R(t ) and we get R(t ) ∼ √

t for all
positive ε. This is consistent with the numerical observation
in Fig. 2(a) and the assumption that R(t ) is a nondecreasing
function of ε.

For negative ε, Eq. (30) shows that u(t ) always decreases
regardless of the initial condition, which shows u(t ) → 0 as
t → ∞. Assuming that Eq. (39) is a valid approximation for
negative ε, we get

u2(t ) =
∫ t

∞

du2

dt ′ dt ′ ≈ 2|ε|
∫ ∞

t
S(t ′)2dt ′. (44)

Assuming R(t ) ∼ tγ for negative ε and using Eq. (40), we get

S(t ) ∼ t−(1−2ε)γ , (45)
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FIG. 3. Survival probability for σ = 1 and μ = 1. (a) Double
logarithmic plots of S vs t for ε = 0.2, −0.5, −1, and −1.5, top to
bottom. Line segments with slope ε − 1

2 are for guides to the eyes.
(b) Plot of 1/S vs ln t for ε = 0.5. The straight line depicts a function
3
4 ln t + a, where a is determined by a fitting in the region ln t � 16;
see (48).

which together with Eq. (44) gives

u(t ) ∼ t−(1−2ε)γ+1/2. (46)

Since R(t ) = u(t )/S(t ), we get the self-consistent solution
γ = 1/2, that is, R ∼ √

t .
Our findings for σ = 1 are summarized as

R(t ) ∼ √
t, S(t ) ∼

{(2ε − 1)/(μ + ε), 2ε > 1,

1/ ln t, 2ε = 1,

t−(1−2ε)/2, 2ε < 1.

(47)

Since R(t ) ∼ √
t , neglect of the fluctuation only affects the

coefficient and the approximate equation is expected to give
the correct power-law behavior.

To support the prediction (47) for σ = 1, we performed
Monte Carlo simulations. In the simulations, we set μ = 1.
In Fig. 3(a), we depict S(t ) for ε = 0.2, −0.5, −1, and −1.5
on a double logarithmic scale, together with the predicted
asymptotic behavior (47) for 2ε < 1 as line segments. The
prediction perfectly explains the data. For 2ε = 1, we put
n ∼ √

t in Eq. (21) to get

S(t )−1 ∼ 3
4 ln t . (48)

In Fig. 3(b), simulation results are compared to the prediction
(48) to show excellent agreement.

It is worthwhile to mention that De Coninck et al. [35] stud-
ied a similar random walk with a reflecting wall at the origin.
The hopping probability in Ref. [35] is the same as ours if
we set σ = 1 and μ = −ε = δ/2. When the wall at the origin
is reflecting, De Coninck et al. [35] found R(t ) ∼ t1−δ/2 for
1 < δ < 2, which varies continuously with δ. Since μ = −ε

in Ref. [35], it is unclear whether the exponent depends on ε
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or μ or both. Our results seem to suggest that only ε governs
the universal behavior, but detailed analyses are requested for
further understanding of the random walk with the reflecting
wall, which is beyond the scope of the present paper.

Since R(t ) ∼ √
t if σ = 1 or if σ = ∞, it is natural to

expect that R(t ) ∼ √
t for any σ > 1. In this case, the term

with R−σ in Eq. (36) is negligible and we get S(t ) ∼ R(t ) ∼
t−1/2. Notice that this is also consistent with Eq. (40) because
F1(r) ∼ 1/r for σ > 1. Hence, the bias is immaterial if σ > 1
and the long-range nature is crucial only when σ � 1.

Last, we investigate the case with σ < 1 and ε = −|ε|. In
Appendix C, we find the exact expression of Pi(t ) for σ = 0,
which is

Pi(t ) = wi−1 2i

x
Ii(x)e−t , w ≡

√
1 + ε

1 − ε
, (49)

where x = t
√

1 − ε2 and Ii(x) is the modified Bessel function
of the first kind. Using Ii(x) ∼ ex/

√
2πx for large x, one can

readily get

S(t ) ∼ t−3/2 exp[−(1 −
√

1 − ε2)t],

πi ≡ lim
t→∞ ψi(t ) = (1 − w)2iwi−1,

lim
t→∞ R(t ) = 1 + w

1 − w
= 1 + √

1 − ε2

|ε| . (50)

Note that πi is the quasistationary distribution in that it is the
steady-state solution of the equation

dψi

dt
= qψi−1 + (1 − q)ψi+1 + [(1 − q)ψ1 − 1]ψi, (51)

where ψ0 = 0 and w2 = q/(1 − q). For the discrete-time ran-
dom walk, there is no quasistationary state in that

lim
m→∞

r2m

r2m−1
�= 1, (52)

though ξ2m−1 = ξ2m for all m � 1.
Since F1(r) decays exponentially for σ < 1, it is plausible

to anticipate that S(t ) also decays exponentially in the form
S(t ) ∼ t−α exp(−λtβ ). If we further assume 〈(n + μ)−σ 〉s ∼
t−η, then Eq. (30) gives

u(t ) = |ε|
∫ ∞

t
S(t ′)〈(n + μ)−σ 〉sdt ′

∼
∫ ∞

t
x−α−η exp(−λxβ )dx

∼
∫ ∞

tβ

y−1+(1−α−η)/βe−λydy ∼ t1−η−β−αe−λtβ

(53)

and R = u/S ∼ t1−η−β . If a quasistationary state exists, then
η must be zero by definition and, in turn, β must be 1. Hence,
a quasistationary state cannot exist if β < 1.

In Fig. 4, we present numerical calculations of S(t ) and
R(t ). As can be seen in Fig. 4(a), β is clearly smaller than 1 for
σ > 0 [a fitting of the data for σ = 0.1 in Fig. 4(a) gives β ≈
0.8] and indeed R(t ) increases algebraically; see Fig. 4(b).
The quasistationary state is a special feature of the case with
σ = 0.
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FIG. 4. (a) Double logarithmic plots of − ln S vs t for σ = 0, 0.1,
0.3, 0.5, 0.7, and 0.9 (top to bottom) with ε = −0.4 and μ = 0. The
line segment depcits the exact asymptotic behavior, (1 − √

1 − ε2)t ,
for σ = 0. (b) Double logarithmic plots of R vs t for σ = 0, 0.1,
0.3, 0.5, 0.7, and 0.9 (bottom to top) with ε = −0.4 and μ = 0. The
straight line with slope 0.5 is a guide for the eyes.

Since R increases indefinitely for 0 < σ < 1, we use the
same logic as in Eq. (40) to get the self-consistent solution,

(1 − η − β )(1 − σ ) = β → β = 1 − σ

2 − σ
(1 − η), (54)

R ∼ t (1−η)/(2−σ ), α = σ

2 − σ
(1 − η). (55)

If we can approximate 〈(n + μ)−σ 〉s ∝ R−σ as before, then
the self-consistent argument gives

η = σ

2
, R ∼ √

t, β = 1 − σ

2
, (56)

which cannot be consistent with Fig. 4(a), especially for small
σ . Hence, the mean-field-like approximation 〈(n + μ)−σ 〉s ∝
R−σ does not work in this case. Still, Eq. (56) gives a reason-
ably good approximation for large σ . It seems challenging to
find the correct asymptotic behavior for 0 < σ < 1 and ε < 0,
which is deferred to a later publication.

IV. BEHAVIOR OF THE DENSITY

With the two-particle initial condition, the direction of the
bias does not change and the particles can survive forever with
nonzero probability Ps, once the repulsion is strong. When
the density is finite, however, a particle should meet another
particle and is annihilated almost surely even if Ps is nonzero
and the system size is infinite. Hence the asymptotic behavior
of the density cannot be directly explained by the results in
Sec. III. The purpose of this section is to investigate how the
density ρ(t ) decreases if the system evolves from the fully
occupied initial condition.
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Assume that there are N = ρL particles at time t . Here ρ is
assumed small. The site index of the kth particle is denoted by
nk (k = 1, . . . , N , n1 < n2 < · · · < nN ). The mean distance
between the kth and (k + 1)st particles is 〈nk+1 − nk〉 = 1/ρ

and the variance is expected to be 〈(nk+1 − nk − 1/ρ)2〉 ∼
1/ρ (as we will see soon, the exact form of the variance is im-
material as long as its square root is much smaller than 1/ρ).

When ρ is small, a (mean) time gap between any two
consecutive pair-annihilation events within a region of size
O(1/ρ) is expected to be large. Assume that the kth particle is
to be annihilated. As an approximation, we assume that only
the kth particle performs random walks and all other particles
remain still before the kth particle is annihilated. Under this
approximation, dynamics of the kth particle can be mapped
to a random-walk problem with two walls, one of which is
reflecting and the other is absorbing.

To be concrete, let nk = �, nk−1 = −r, and nk+1 = r,
where |r − 1/ρ| = O(1/

√
ρ ) and � = O(1/

√
ρ ). Within the

approximation, nk+1 and nk−1 do not change and nk changes
according to the rule in Eq. (2). Since the dynamics are in-
variant under the transformation � �→ −� and nk+1 ↔ nk−1,
we can set � � 0 without loss of generality and we can treat
the origin as a reflecting wall and site r as an (immovable)
absorbing wall. In the following, we will call the kth particle
the walker.

This random-walk problem can be formulated as follows.
Let Hi(t ) be the probability that the walker is located at site
i at time t and Hi(0) = δi,�. The time t here should not be
confused with the time that appeared in the beginning of this
section. We write the master equation (0 � i � r)

dHi(t )

dt
= bi−1Hi−1 + di+1Hi+1 − (1 − δr,i )Hi, (57)

where b0 = 1, b−1 = d0 = dr+1 = 0, and (0 < k < r),

bk = 1

2
− ε

2
(r − k + μ)−σ , dk = 1 − bk . (58)

Recall that the absorbing wall is a particle in the AWL; it
exerts repulsive (attractive) interaction to the walker if ε is
positive (negative). We are interested in the mean first-passage
time, to be denoted by τ (ρ), for the walker to reach the
absorbing wall.

Since 2/τ (ρ) can be interpreted as a rate of removal per
particle in the AWL (the factor 2 is multiplied because of the
pair annihilation, but this factor does not affect the universal
behavior that we will find), the behavior of ρ(t ) can be ana-
lyzed by the equation

dρ

dt
∝ − ρ

τ (ρ)
. (59)

If we find τ (ρ), then we can obtain the asymptotic behavior
of ρ(t ). One can use Eq. (59) even if the particles perform
coalescing random walks (A + A → A).

Let Ti be the mean first-passage time if the walker starts
from site i at t = 0. By definition, we have Tr = 0. We will ap-
proximate τ (ρ) as T� with � = O(1/

√
ρ ). Due to the Markov

property, we have the recursion relation

Ti = 1 + biTi+1 + diTi−1. (60)

In other words, the walker waits unit time on average and then
jumps to site i + 1 (i − 1) with probability bi (di), after which
it should spend Ti+1 (Ti−1).

To find a formal solution, we define χi ≡ Ti − Ti+1 and we
rewrite Eq. (60) as

χi = di

bi
χi−1 + 1

bi
. (61)

Multiplying Eq. (61) by
∏i

k=1(bk/dk ), we get

χi

i∏
k=1

bk

dk
− χi−1

i−1∏
k=1

bk

dk
= 1

di

i−1∏
k=1

bk

dk
, (62)

where we assume
∏0

k=1 ≡ 1. After a little algebra, we have

χr−n =
r−1∏
k=n

dr−k

br−k
+

r−1∑
j=n

1

dr− j

j∏
k=n

dr−k

br−k
. (63)

Since Tr = 0, we can write

Ti =
r−1∑
n=i

χn =
r−i∑
n=1

χr−n, (64)

which gives

Ti =
r−i∑
n=1

r−1∑
j=n

(
δ j,r−1 + 1

dr− j

) j∏
k=n

dr−k

br−k
(65)

for i � 1 and T0 = 1 + T1.
For certain cases, we find a simple expression of T0. For

ε = 0 (or equivalently σ = ∞ with μ > 0) one can readily
get T0 = r2. For later purposes, we write

T0(σ = ∞) ∼ r2. (66)

For σ = 0, it is straightforward to get

T0(σ = 0) = 1 − ε2

2ε2

[(1 + ε

1 − ε

)r

− 1
]

− r

ε
. (67)

If ε is positive, then T0 grows exponentially with r. If ε is
negative, then T0 ∼ r for large r.

By definition, Ti cannot be smaller than r − i, so Ti for any
case increases indefinitely with r as long as i � r. Consid-
ering 0 < 1 − |ε|(1 + μ)−σ < 2d j < 2 for all positive j, we
can write

Ti ∼
r−i∑
n=1

r−1∑
j=n

j∏
k=n

1 + ε(k + μ)−σ

1 − ε(k + μ)−σ
. (68)

Since the leading asymptotic behavior of Ti for large r does
not depend on i if i/r → 0, it is sufficient to analyze the
asymptotic behavior of T0,

T0 ∼
r−1∑
i=2

i∑
n=1

i∏
k=n

1 + ε(k + μ)−σ

1 − ε(k + μ)−σ
, (69)

where we replaced the dummy index j with i and we changed
the order of the summations. For convenience, we neglect the
contribution from i = 1, which does not have r dependence.
In the following three subsections, we will study the AWL for
three different cases: σ < 1, σ = 1, and σ > 1.
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A. 0 < σ < 1

Since T0 diverges with r, the dominant contribution to T0

should arise for large k in Eq. (69). Accordingly, we approxi-
mate the product in Eq. (69) as

i∏
k=n

1 + ε(k + μ)−σ

1 − ε(k + μ)−σ
≈ exp

(∫ i+μ

n+μ

2εk−σ dk

)
. (70)

Approximating the summations in Eq. (69) by integrals as
well, we get

T0 ∼
∫ r−1

2
dxe f (x+μ)

∫ x

1
dne− f (n+μ), (71)

where f (x) = Cσ x1−σ with Cσ = 2ε/(1 − σ ). Since, for ε >

0 (Cσ > 0) and x � 2,∫ 2

1
dne− f (n+μ) �

∫ x

1
dne− f (n+μ)

�
∫ ∞

0
dne− f (n) = C1/(σ−1)

σ 	
(2 − σ

1 − σ

)
,

(72)

we get

T0 ∼
∫ r−1

1
exp(Cσ x1−σ )dx ∼ rσ exp(Cσ r1−σ ), (73)

where we have used Eq. (B5).
For negative ε (Cσ < 0), the integral with variable n in

Eq. (71) diverges as x → ∞. We again use Eq. (B5) to get

T0 ∼
∫ r−1

1
xσ dx ∼ r1+σ . (74)

To summarize, we obtain

T0 ∼
{

rσ exp (Cσ r1−σ ), ε > 0,

r1+σ , ε < 0,
(75)

where μ does not play any role. Note that Eq. (75) reproduces
the exact result for σ = 0 if we set C0 = ln(1 + ε) − ln(1 −
ε). Although we arrive at Eq. (75) by an approximation, this
result is actually exact when it comes to the leading asymp-
totic behavior.

Now we investigate the long-time behavior of the AWL by
analyzing Eq. (59) with τ (ρ) = T0(1/ρ). For 0 � σ < 1 and
ε > 0, we have

dρ

dt
∼ −ρ1+σ e−Cσ ρ−1+σ

, (76)

which can be solved approximately for small ρ (for large t) as

t (ρ) ∼
∫ 1

ρ

ρ−1−σ exp(Cσ ρ−1+σ )dρ

=
∫ 1/ρ

1
xσ−1 exp(Cσ x1−σ )dx

∼ ρ1−2σ exp(Cσ ρ−1+σ ), (77)

where we have used Eq. (B5). Here

Cσ =
{2ε/(1 − σ ), σ > 0,

ln[(1 + ε)/(1 − ε)], σ = 0.
(78)

Accordingly, we get

ρ(t ) ∼ [ln t − (1 − 2σ ) ln ρ]−1/(1−σ )

∼ (ln t )−1/(1−σ ). (79)

To confirm the prediction, we performed Monte Carlo sim-
ulations for σ = 0, 0.2, 0.5 and 0.8 with system size L = 222

(σ = 0) or L = 220 (σ � 0.2). In Fig. 5, we compare sim-
ulation results with Eq. (77). Our prediction is in excellent
agreement with simulations up to nonuniversal multiplication
factors.

Before closing this subsection, we consider the case with
negative ε. Since τ (ρ) ∼ ρ−1−σ for 0 � σ < 1, we get

dρ

dt
∼ −ρ2+σ → ρ ∼ t−1/(1+σ ), (80)

which was already confirmed numerically in Ref. [33]; see
also Eq. (4).

B. AWL for σ = 1

Since Eq. (79) breaks down when σ = 1, we treat the case
with σ = 1 separately in this subsection. Using the approxi-
mation (70), we get

i∏
k=n

1 + ε(k + μ)−1

1 − ε(k + μ)−1
∼

( i + μ

n + μ

)2ε

, (81)

which gives

T0 ∼
∫ r

dx(x + μ)2ε

∫ x

1
(n + μ)−2εdn

∼
⎧⎨⎩r2, 2ε < 1,

r2 ln r, 2ε = 1,

r1+2ε, 2ε > 1.

(82)

As in Sec. III, a logarithmic behavior appears for 2ε = 1.
Actually, we found exact expressions of T0 for σ = 1. For

2ε = 1, we find

T0 = r + 2
r∑

n=1

r−1∑
i=n

2i + 2μ − 1

2n + 2μ − 1
∼ r2 ln r, (83)

and for 2ε �= 1

T0 = 2	(μ + 1 − ε)

(4ε2 − 1)	(μ + ε)

	(r + μ + 1 + ε)

	(r + μ − ε)

+ r2 + 2μr + 2(μ2 − ε2)/(1 + 2ε)

1 − 2ε
, (84)

where we have repeatedly used Eq. (22). Using the Stirling’s
formula, one can arrive at Eq. (82).

Equations (59) and (82) now yield

dρ

dt
∼

⎧⎪⎨⎪⎩
−ρ3, 2ε < 1

ρ3/ ln ρ, 2ε = 1,

−ρ2+2ε, 2ε > 1,

(85)

whose solutions are

t ∼

⎧⎪⎨⎪⎩
ρ−2, 2ε < 1

− ln ρ/ρ2, 2ε = 1,

ρ−1−2ε, 2ε > 1.

(86)
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Inverting the function, we get the asymptotic behavior of ρ as

ρ ∼

⎧⎪⎨⎪⎩
t−1/2, 2ε < 1√

ln t/t , 2ε = 1,

t−1/(1+2ε), 2ε > 1.

(87)

Now we present our simulation results for four cases with
ε = 1

4 (L = 222), ε = 1
2 (L = 222), ε = 1 (L = 222), and ε =

2 (L = 221). We use μ = 2 for ε � 1 and μ = 0 for ε < 1.
The simulation results are presented in Fig. 6. The long-time

behavior is in excellent agreement with our prediction up to
nonuniversal multiplication constants.

C. AWL for σ > 1

Since

ln
1 + εx

1 − εx
� x ln

1 + ε

1 − ε
(88)

for 0 < ε < 1 and

ln
1 + εx

1 − εx
� 2εx (89)
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TABLE I. The asymptotic behaviors of R(t ), S(t ), and ρ(t ) for σ � 1.

σ = 1 ε > 0 ε < 0

2ε > 1 2ε = 1 2ε < 1 0 � σ < 1 σ = 0 0 < σ < 1 a

R(t )
√

t
√

t
√

t t1/(1+σ ) Constant tγ

S(t ) Constant (ln t )−1 t−(1−2ε) Constant t−3/2 exp[−(1 − √
1 − ε2)t] t−α exp[−λtβ ]

ρ(t ) t−1/(1+2ε)
√

ln t/t t−1/2 (ln t )−1/(1−σ ) t−1 t−1/(1+σ )

aγ > 0 and 0 < β < 1. Exact formulas for α, β, γ , and λ are not available in this work.

for −1 < ε < 0, where 0 < x < 1, we have an inequality

∏
k

1 + ε(k + μ)−σ

1 − ε(k + μ)−σ
� exp

[
Dε

∞∑
k=1

(k + μ)−σ

]

� exp

[
Dε

∞∑
k=1

k−σ

]
= exp [Dεζ (σ )], (90)

where ζ (σ ) is the Riemann zeta function (σ > 1) and

Dε =
{ln[(1 + ε)/(1 − ε)], ε > 0,

2ε, ε < 0.
(91)

Thus, T0 is bounded by a square function of r.
Since T0 for given r is an increasing (a decreasing) function

of σ for negative (positive) ε, we have a lower bound,

T0(σ > 1) �
{

T0(σ = ∞) ∼ r2, ε > 0,

T0(σ = 1) ∼ r2, ε < 0.
(92)

Therefore, we get T0 ∼ r2 for any ε if σ > 1 and the AWL
with σ > 1 shares the (universal) long-time behavior with the
annihilating random walk without bias. The same conclusion
was arrived at in Sec. III.

V. SUMMARY AND DISCUSSION

We have studied the annihilating random walk with
long-range interaction in one dimension. The long-range in-
teraction manifests its presence by the hopping bias in the
transition rate (2). We have investigated the survival proba-
bility S(t ) and the mean spreading R(t ) of surviving samples
for the two-particle initial condition and the density ρ for
the fully occupied initial condition. The results for σ � 1 are
summarized in Table I.

For σ > 1, the system turned out to show the same univer-
sal behavior as the unbiased annihilating random walk, which
was already anticipated in Ref. [33] for the AWLA.

For σ < 1, the sign of ε plays an important role. When
ε > 0 (AWLR), we have found that S(t ) saturates to a nonzero
value, a mean-field-like approximation gives the exact asymp-
totic behavior of R(t ), and ρ(t ) decays logarithmically. When
ε < 0 (AWLA), the mean-field-like approximation failed to
predict the right asymptotic behavior for R(t ) and S(t ) for
0 < σ < 1. We only reported the numerical results. But, when
σ = 0 and ε < 0, the exact asymptotic behaviors of R(t ) and
S(t ) are available. Actually, there is a quasistationary state in
this case.

For σ = 1, the threshold value of ε is shifted to 1
2 . When

2ε > 1, S(t ) saturates to a nonzero value, while ρ(t ) decays
with continuously varying exponent that depends on ε. When
2ε < 1, S(t ) decays with continuously varying exponent with
ε, while ρ(t ) shows a universal behavior. When 2ε = 1, S(t )
decays logarithmically and ρ(t ) has a logarithmic correction.
In all cases, R(t ) shows the universal

√
t behavior.

In a different context, continuously varying decaying ex-
ponent in coarsening dynamics was observed in Refs. [36,37].
We hope our results shed some light on deeper understanding
of the coarsening dynamics in Refs. [36,37].

For the unbiased case, the annihilating random walk was
analyzed by the RG [8,12]. It would be an intriguing task
to analyze the AWL by the RG, because the long-range in-
teraction would appear as a multiplication of many fields in
field-theoretical action.

When branching is introduced to the AWLA, rich critical
phenomena have been reported especially for the case of the
even number of offspring [33,38,39]. In this context, it is
natural to ask what would happen if branching is introduced to
the AWLR. If we think naively, then we would conclude that
as soon as branching is introduced, the steady-state density
is nonzero for σ < 1 and ε > 0, because Ps is nonzero for
σ < 1 in the AWLR. Our preliminary studies show, however,
that this scenario is not true in general and the branching actu-
ally triggers rich phenomena. These results will be published
elsewhere.
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APPENDIX A: CONVERGENCE OR DIVERGENCE OF Gn

In this Appendix, we prove that Gn defined in Eq. (17)
converges as n → ∞ if σ < 1 and ε > 0 and diverges if
σ > 1.

We first consider the case with σ < 1 and ε > 0. Using the
inequality (0 � y < 1)

ln
1 − y

1 + y
� −2y, (A1)
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we get
i∏

k=1

1 − ε(k + μ)−σ

1 + ε(k + μ)−σ
� exp

[
−2ε

i∑
k=1

(k + μ)−σ

]
. (A2)

Since ∫ i

1
(k + μ)−σ dk �

i∑
k=1

(k + μ)−σ , (A3)

we have an inequality
i∏

k=1

1 − ε(k + μ)−σ

1 + ε(k + μ)−σ
� C1 exp[−C0(i + μ)1−σ ], (A4)

where C0 = 2ε/(1 − σ ) and C1 = exp [(1 + μ)1−σC0]. Since
the sum of the right-hand side of Eq. (A4) from i = 1 to i = ∞
is obviously finite, Gn for positive ε should converge to a finite
value as n → ∞.

Now we move on to the case with σ > 1. Since

ln
1 − y

1 + y
� −2y (A5)

for −1 < y < 0 and

ln
1 − εy

1 + εy
� −y ln

1 + ε

1 − ε
, (A6)

for 0 < y < 1 and 0 < ε < 1, there is a positive C2 such that

ln
1 − ε(k + μ)−σ

1 + ε(k + μ)−σ
� −C2(k + μ)−σ , (A7)

for given ε. Since

(1 + μ)−σ +
∫ i

1
(k + μ)−σ dk �

i∑
k=1

(k + μ)−σ , (A8)

there are positive constants C3 and C4 such that

i∏
k=1

1 − ε(k + μ)−σ

1 + ε(k + μ)−σ
� C3 exp[−C4(i + μ)1−σ ]. (A9)

If σ > 1, then the lower bound of Eq. (A9) can be set C5 =
C3 exp[−C4(1 + μ)1−σ ], which gives Gn � C5(n − 1). Thus,
Gn diverges for any ε if σ > 1. In a similar manner, one can
easily show that there is a positive C6 such that Gn � C6n.
Hence, Gn ∼ n for σ > 1.

APPENDIX B: ASYMPTOTIC EXPANSION
USING INTEGRATION BY PARTS

In this Appendix, we find the leading behavior for large
r of the integral (for a general discussion, see, for example,
Ref. [40])

I1 ≡ Aα

∫ r

1
xβ exp (Axα )dx = A

∫ rα

1
yγ eAydy, (B1)

where α > 0, A > 0, and γ = (1 + β − α)/α. By an integra-
tion by parts, we get

I1 = r1+β−α exp (Arα ) − eA − γ I2, (B2)

I2 ≡
∫ rα

1
yγ−1eAydy. (B3)

For I2, we split the integral as∫ rα/2

1
yγ−1eAydy � 1

A
max

{
1,

( rα

2

)γ−1}
eArα/2,∫ rα

rα/2
yγ−1eAydy � 1

A
max{1, 21−γ }r1+β−2αeArα

, (B4)

which shows I2/I1 → 0 as r → 0. Hence, we get

I1 ∼ r1+β−α exp (Arα ). (B5)

APPENDIX C: DERIVATION OF EQ. (49)

In this Appendix, we derive Eq. (49) for σ = 0. We first
find di,n defined in Eq. (11). Let q be the probability of hop-
ping to the right. For the walker to arrive at site i after n jumps,
the number of hopping to the right should be (n + i − 1)/2,
where n + i must be an odd number and 1 � i � n + 1. Since
the probability of hopping does not depend on site index i, we
can write

di,n = Mi,nq(n+i−1)/2(1 − q)(n−i+1)/2, (C1)

where Mi,n is the number of paths that do not meet the absorb-
ing wall. Using the reflection principle of random-walk paths
[34, p. 72], we get

Mi,n =
(

n

(n + i − 1)/2

)
−

(
n

(n + i + 1)/2

)
= n!i

[(n + i + 1)/2]![(n − i + 1)/2]!
. (C2)

Plugging Eq. (C1) with Eq. (C2) into Eq. (12), we get for
i = 2k − 1 (n = 2m)

P2k−1(t ) = ie−t
∞∑

m=k−1

qm+k−1(1 − q)m−k+1t2m

(m + k)!(m − k + 1)!

= iwi

qt
e−t

∞∑
m=0

(x/2)2m+2k−1

(m + 2k − 1)!m!

= iwi

qt
e−t Ii(x), (C3)

and for i = 2k (n = 2m + 1)

P2k (t ) = ie−t
∞∑

m=k−1

qm+k (1 − q)m−k+1t2m+1

(m + k + 1)!(m − k + 1)!

= iwi

qt
e−t

∞∑
m=0

(x/2)2m+2k

(m + 2k)!m!

= iwi

qt
e−t Ii(x), (C4)

where w = √
q/(1 − q) and x = 2t

√
q(1 − q). Thus,

Pi(t ) =
(√

q

1 − q

)i−1 2i

x
Ii(x)e−t (C5)

is valid for all i � 1. Putting q = (1 + ε)/2, we get Eq. (49).
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