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Formation of disks with long-lived spiral arms from violent gravitational dynamics
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By means of simple dynamical experiments we study the combined effect of gravitational and gas dynamics
in the evolution of an initially out-of-equilibrium, uniform, and rotating massive overdensity thought of as in iso-
lation. The rapid variation of the system mean-field potential makes the pointlike particles (PPs), which interact
only via Newtonian gravity, form a quasistationary thick disk dominated by rotational motions surrounded by
far out-of-equilibrium spiral arms. On the other side, the gas component is subjected to compression shocks and
radiative cooling so as to develop a much flatter disk, where rotational motions are coherent and the velocity
dispersion is smaller than that of PPs. Around such gaseous disk long-lived, but nonstationary, spiral arms
form: these are made of gaseous particles that move coherently because have acquired a specific phase-space
correlation during the gravitational collapse phase. Such a phase-space correlation represents a signature of the
violent origin of the arms and implies both the motion of matter and the transfer of energy. On larger scales,
where the radial velocity component is significantly larger than the rotational one, the gas follows the same
out-of-equilibrium spiral arms traced by PPs. We finally outline the astrophysical and cosmological implications
of our results.

DOI: 10.1103/PhysRevE.102.042108

I. INTRODUCTION

Self-gravitating systems, like other ones that interact with a
pair potential decaying with an exponent smaller than that of
the embedding space, i.e., with long-range interactions, give
rise to macroscopic behaviors that are very different from the
ones arising in short-range interacting systems (SRISs). Their
origin and properties represent an open theoretical problem
because the long-range nature of the interaction displays
several behaviors that prevent the use of equilibrium statistical
mechanics [1–12]. In particular, the relaxation mechanism
driving a long-range interacting system (LRIS) towards a
quasiequilibrium state is different from that acting in SRISs.
These latter systems typically tend towards thermal equilib-
rium through a rather rapid collisional relaxation process,
in which particles exchange energy predominantly by binary
encounters. In this case, to obtain an out-of-equilibrium state it
is necessary to force the system with an external field. Instead,
LRISs typically show a mean-field (or violent) relaxation
process in which their global characteristic quantities (e.g.,
size, potential gravitational energy, etc.) rapidly vary until
they reach a configuration close to a quasistationary state
(QSS) [1–4,6,13]. This does not correspond to a true (i.e.,
thermodynamical) equilibrium state, but it is such that the
system is close to being virialized and it is almost time-
independent. The violent relaxation phase is then followed
by a slow adiabatic evolution driven by collisional processes
(see, e.g., Refs. [1,14]). However, this is not the only way

LRISs relax; for instance, in the cosmological context, self-
gravitating systems often relax through a soft and slow re-
laxation mechanism. This occurs when density fluctuations
are long-range correlated so that quasistationary nonlinear
structures of increasing size are formed via a bottom-up
hierarchical aggregation process [15].

Gravitational relaxation and the formation of QSSs were
studied also in (simpler) one-dimensional (1D) systems be-
cause in that case one can work out exact solutions [16–20].
For the full three-dimensional problem, given the theoret-
ical difficulties to treat out-of-equilibrium LRIS dynamics,
an important tool to study their behaviors is represented by
numerical experiments.

While the bottom-up gravitational clustering is usually
studied in the context of cosmological simulations, many
systematic studies of finite and isolated self-gravitating sys-
tems that undergo a global collapse phase have been reported
in the literature [21–37]. These experiments use molecular
dynamics and start from simple classes of initial conditions
(ICs) that do not have the complexity of real astrophysical
objects and that, of course, do not aim to represent specific
realistic systems. The motivation for their study is to try to
improve the understanding of the basic physical mechanisms
at play in the evolution of these systems, such as the details
of the relaxation toward virial equilibria, the dependence
of the equilibria properties on the ICs, phenomena such as
symmetry breaking, radial orbits instability, etc. Although,
from the statistical mechanics point of view, a complete
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understanding is still lacking, these studies have shown that
the relaxation dynamics acting during a monolithic collapse is
very generically the same for a broad class of ICs and gives
rise to quasivirialized configurations with ellipsoidal shapes.
However, the QSS properties such as the density and velocity
profiles depend on the details of the ICs.

It was recently found that a key role in modifying the
simple picture outlined above is played by the system’s initial
spatial anisotropy. Indeed, the gravitational collapse phase of
initially out-of-equilibrium overdensities amplifies any initial
spatial anisotropy both when they are initially at rest or when
have a small isotropic velocity dispersion [36,37]. Initially
spherical systems give rise to almost spherical virialized
states with a characteristic density profile that decays as r−4

[22,30,31]. Systems that initially break spherical symmetry
form a two-component state whose inner part is virialized
and close to spherical, and its outermost regions are out-of-
equilibrium and flat. This occurs because the initial devia-
tion from spherical symmetry is amplified by the collapse
mechanism: in particular, the system is stretched along the
plane identified by the major and medium axes of the initial
configuration.1

Moreover, when the initial overdensity has a nonzero angu-
lar momentum, the gravitational (and dissipationless) collapse
gives rise to a thick quasiequilibrium disk surrounded by out-
of-equilibrium spiral arms with or without bars and/or rings
[38,39]. These transient structures involve only a fraction of
the system’s mass and thus represent nonequilibrium pertur-
bations of a substantially virialized state. Such transients, still
bound to the system but dominated by radial motions, may
continue to evolve for times that are very long compared
with the intrinsic gravitational collapse characteristic time
τ ∼ 1/

√
Gρ, with ρ being the system’s average mass density.

This fast and violent dynamics is rather different from the
slow and soft dynamical mechanisms usually considered in
astrophysical contexts. Concerning the latter ones, attention
was focused on two complementary physical systems. On
the one hand, it is well known since the pioneering work in
Refs. [40,41] that galactic disks are remarkably responsive to
small disturbances. For this reason there has been a great ef-
fort to study the evolution of small-scale disturbances in sim-
plified models of rotating self-gravitating disks with and with-
out a dissipational gas component (see, e.g., Refs. [42–44]
and references therein, and Refs. [45,46] for reviews). These
models assume that a disk is already formed and has reached
a rotational equilibrium (often in the gravitational field of
a spherical halo): the problem that is considered concerns
how instabilities can give rise to spiral arms and/or bars. As
such instabilities represent small perturbations to the system’s
gravitational mean field, their effects on the global system’s
conditions are small and the overall dynamical mechanism is
thus soft.

On the other hand, the question of the disk formation is
studied in the cosmological framework. Favored cosmological
models, like cold dark matter (CDM)-type scenarios, assume

1The simple numerical experiments considered in Refs. [36–39]
focused mainly only ellipsoidal ICs, but in a few cases more irregular
situations have been considered.

matter density fluctuations that are long-range correlated.
Such correlations induce a bottom-up hierarchical clustering:
that is, a structure of size R is formed by the aggregation of
smaller substructures of size <R rather than by the global
collapse of an overdensity of size R. This kind of hierarchical
aggregation, being statistically isotropic, gives rise to quasi-
spherical structures with a quasi-isotropic velocity dispersion.
These are the so-called halo structures [47], whose formation
is ubiquitous in the context of CDM-type cosmological sim-
ulations. The halos are not isolated but evolve in a complex
gravitational field generated by neighboring structures and
thus are subjected to tidal effects and merging. However,
both mechanisms do not violently change the halos’ mean-
field potential, and thus halos form through a slow and soft
dynamical mechanism that does not involve a large variation
of their mean field. In this scenario it remains open the
question of a disk formation. As first envisaged in Ref. [48],
in the cosmological context, a disk can be formed by the
dissipational gas collapse: indeed, gas can shock and dissipate
energy through radiative cooling and thus during the gravi-
tational contraction forms a thin disk if it initially has some
angular momentum. Such a disk is thus embedded in the much
larger gravitational field of the spherical halo structure that is
formed by a hierarchical aggregation dynamics: during such a
process the system mean-field potential does not substantially
vary. This situation has motivated the study of simplified
ICs (see, e.g., Refs. [49–51]) in which structures are formed
via a hierarchical bottom-up aggregation process driven by
gravitational clustering with the inclusion of gas that can cool
radiatively.

In this work we present several numerical experiments of
relatively simple ICs to study the combined effects of grav-
itational and gas dynamics during the fast and violent phase
occurring in the monolithic collapse of an isolated overdensity
with some initial angular momentum. Such a process has been
overlooked in the literature but, we argue, can give some
interesting insights for the formation of real astrophysical
structures. Indeed, despite the fact that the problem of the joint
effect of gravity and gas dynamics has been studied through
numerical experiments of increasing sophistication, the focus
has been pointed towards a different kind of physical case, i.e.,
when a slow and soft dynamical process takes place.

The paper is organized as follows: we start in Sec. II by
describing the way in which gravitational and gas dynamics
are implemented in the hydrodynamical code we use to make
numerical simulations and by presenting the properties of the
ICs we have considered. Then in Sec. III we we briefly review
the main features of the collapse dynamics of an isolated
overdensity made of purely self-gravitating particles and show
how the results change when a gaseous component is added
into the system. Finally we draw our main conclusions in
Sec. IV.

II. MODELS AND METHODS

In this section we summarize the main features of the
numerical simulations that we have performed with the aim
of investigating the collapse and the subsequent relaxation
to a quasistationary state of a two-phase (i.e., purely self-
gravitating particles and gas) system. In particular the ICs
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chosen correspond to an isolated overdensity with a simple
shape that, in an astrophysical context, can be thought to
represent a protogalaxy detached from the Hubble flow.

A. Gravitational dynamics of a two-phase system

Our numerical experiments consider isolated systems con-
sisting of N pointlike or gaseous particles interacting by both
body force and surface force (i.e., pressure gradients and
viscosity). This particle discretization represents a sampled
Lagrangian representation: in particular, we use the smoothed
particles hydrodynamics (SPH) approach for the gas dynam-
ics, as described in what follows.

The representative point-particles (PPs) and gas particles
(GPs) are initially randomly distributed according to a uni-
form space distribution in the volume corresponding to the
initial system. The inner density fluctuations are small enough
that an actual monolithic gravitational collapse starts from the
initial subvirialized state (see below for more details).

All our simulations have been performed with the hydrody-
namical SPH code Gadget-3. This represents an up-to-date
version of the already publicly available (and widely used)
code Gadget-2 [52] that has been kindly made available to
us by the author. Gadget-3 computes the hydrodynamical
evolution of a gas distribution via a SPH scheme, by sub-
dividing the fluid into a set of interpolating particles whose
spatial distribution is proportional to the density field. The
GPs interact via Newtonian force and pressure gradient and
by the Newtonian force only with the other ensemble of PPs
(i.e., point-mass and pressureless objects). The gravitational
interaction is evaluated by direct summation over close neigh-
bors and via a multipolar expansion on a larger scale. In this
way, the number of computations is sensibly lower compared
to the usual N2 scaling, characteristic of the direct-summation
N-body algorithms.

The gravitational interaction on the small distance scale is
regularized with the so-called “gravitational softening” ε: the
force has its purely Newtonian value at separations greater
than ε (r � ε) while it is smoothed at shorter separations.
The assumed functional form of the regularized potential is
a cubic spline interpolating between the exact Newtonian
potential at r = ε and a constant value at r = 0 where the
mutual gravitational force vanishes (the exact expression can
be found in Ref. [52]).

A detailed study of the parameter space of the code
Gadget-2, for simulations considering only Newtonian grav-
ity, has been reported elsewhere (see Refs. [35–37,39]): here
we stress that in purely gravitational simulations performed
by using only PPs without GPs, we always kept energy,
momentum, and angular momentum conservation at a level
of precision better than 1%. In this work we consider ICs for
which the initial virial ratio is

1

2
� Q0 ≡

∣∣∣∣2K (0)

W (0)

∣∣∣∣ � 1 (1)

[where K (t ) and W (t ) are, respectively, the kinetic and po-
tential energy of the system at time t]. In such cases, the
maximum system contraction is of about a factor ∼2, i.e.,
it is not as extreme as for a purely cold collapse (see, e.g.,
Refs. [23,30,31,34]).

B. Gas dynamics

The gas component is represented as an inviscid fluid
whose time evolution is governed by the set of continuity,
Euler (motion), and energy equations. The Lagrangian form
of the continuity equation is

Dρ

Dt
+ ρ∇ · v = 0 (2)

(where ρ is the fluid density and v its velocity), while Euler’s
equation of motion is

Dv
Dt

= −∇P

ρ
− ∇�, (3)

where P is the pressure and the body force is given by the
gradient of the gravitational potential �(r). The above time
derivatives are the usual Lagrangian time derivatives along the
flow:

D

Dt
≡ ∂

∂t
+ v · ∇. (4)

Finally, the thermal energy per unit mass, u, evolves according
to the first law of thermodynamics, viz.,

Du

Dt
= −P

ρ
∇ · v − �(u, ρ)

ρ
, (5)

where �(u, ρ) � 0 represents the radiative cooling function
per unit volume, and we have set the heating function equal to
zero.

The gas cooling is modeled by adopting the same for-
malism discussed in Ref. [50], which considers an optically
thin medium in ionization equilibrium, characterized by a
primordial cosmological composition. Under the, justified, as-
sumption of optically thin medium no heating term is needed
in the energy equation.

The cooling rate, expressed as a function of density and
temperature, plays an important role since it helps the gas
component to lose thermal energy and collapse. Compared
to the case in which �(u, ρ) is neglected, more compact
structures can be then formed. The radiative cooling function
�(u, ρ) is evaluated by considering several two-body pro-
cesses involving both helium and hydrogen atoms: collisional
excitation, collisional ionization, recombination, and dielec-
tric recombination. Moreover, free-free radiation emission
processes are taken into account for all the possible ions.

The cooling rate function, �(u, ρ), used in Gadget-3 ac-
counts for the various free-bound, bound-bound, and free-free
processes and is given by the sum of various terms �i(u, ρ)
(i = 1, 2, . . . , n), each one accounting for the contribution
from a specific cooling mechanism. Basically, each �i(u, ρ)
term has the form

�i(u, ρ) = Ai h(T ) ni ne, (6)

where Ai is a constant, h(T ) is a function of the temperature,
while ni and ns are, respectively, the number density of the
particular “chemical” specie involved and the electron number
density. The species considered are those typical of primordial
gas, i.e.,neutral hydrogen and helium (H0, He0) and their ions
(H−, H+, He+, He++). Furthermore, a proper treatment of
the cooling by molecular hydrogen, H2, is implemented in
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Gadget-3 accounting for a nonequilibrium evolution of the
abundances of all the ions (see Refs. [53–55]).

As an equation of state we consider the simplest one,

P = (γ − 1)ρu, (7)

where γ is is the adiabatic exponent. If we take γ = 5/3
(mono-atomic ideal gas), the particle sound speed is

cs =
√

5

3

P

ρ
. (8)

As we said above, the Gadget-3 code calculates the evo-
lution of a gas distribution using an SPH scheme that was
introduced in Refs. [56,57] as a Lagrangian method particu-
larly suited to treat the evolution of self-gravitating systems.
An SPH representation of a gas is that of an ensemble of
moving particles which sample the fluid density distribution.
The particles interact with both surface, small-scale, forces
(pressure and contact forces) and body, large-scale, forces
(gravity). In the SPH scheme, each particle is characterized
by a specific value of density, pressure gradient, and other
relevant hydrodynamical quantities, each evaluated by means
of a suitable interpolation over a set of neighbor points. With
such a technique the algorithm can work out the quantities
useful to solve Eqs. (2)–(7) and to find, for the ith particle,
the density ρi, the velocity vi, and the internal specific energy
ui, which characterize the average status of the system in
that specific ith point. For an exhaustive explanation of the
formalism see, e.g., Refs. [58,59].

Despite we model the gas as an inviscid fluid, the SPH
scheme needs an artificial viscosity to treat properly the fluid
evolution during strong compression and to avoid nonphysical
oscillations. The Gadget-3 code adopts the same form of arti-
ficial viscosity as the Gadget-2 version, i.e., that suggested in
Ref. [60]. Additional details about the artificial viscosity used
in our simulations are found in Ref. [52]. Similarly, Gadget-3
includes the same numerical scheme indicated in Ref. [52] for
the implementation of the radiative cooling in SPH, although
that was not included in the public release of Gadget-2.

C. Initial conditions

The initial overdensity is characterized by its total mass M,
gravitational radius

rg = GM2

|W (0)| , (9)

and total angular momentum J. This last is given in the
form of a solid body rotation and can be quantified by the
nondimensional spin parameter [61,62]

λ = |J|
G

√
M5/|W |

. (10)

We have also examined cases where we gave to the system
both random motion and solid-body rotation (see discussion in
Sec. III I). In this case the initial kinetic energy has a rotational
Krot and a random Kran term such that

η = Kran

Krot
. (11)

We considered prolate, oblate, and triaxial ellipsoids, but
hereafter we focus in more detail on the case of a prolate
ellipsoid with the three semiaxes such that b = c and a/c =
a/b = 3/2.

Let NGP the number of GPs of mass fixed to mGP. The gas
thermal energy per unit mass is

u = χT, (12)

where T is the absolute temperature, and

χ ≡ kB

μmH (γ − 1)
, (13)

where kB is Boltzmann’s constant, μ = 2.33, is the mean
molecular weight [63,64], and γ = 5/3. We fix NPP = NGP

in the range ∈ [105, 106], and we have taken

ψ ≡ mPP

mGP
(14)

to be ψ ≈ 10 so that the mass of the gaseous component is
∼1/10 of the total mass.

For the simulation discussed in more detail in what follows,
and that we consider as a paradigmatic example of the class
of systems we explored, PPs and GPs are assumed to have
the same initial velocity profile, corresponding to a rigid body
rotation, and T0 = 40 000 K is the initial uniform temperature.
The total mass is M0 = 5 × 1010 M�, the initial gravitational
radius is Rg ≈ 10 kpc, and the spin parameter is λ = 0.3,
corresponding to a virial ratio Q ≈ 3/4.

In summary the parameters that define a simulation in this
class of models are 12: [M, rg, Q, λ, η, a, b, c, T, ψ, γ ]. In
order to explore the phase space of this class of systems we
note the following:

(1) By changing the two parameters that determine the
timescale of the collapse τ [see Eq. (15) below], i.e., M, rg,
the typical velocities v ∼ √

GM/rg of the postcollapse system
also vary. These parameters can be changed if one wants to
simulate a specific astrophysical object: in this work we have
considered the case of a medium-size galaxy with rg ∼ 10 kpc
and v ∼ 100 km/s.

(2) The three parameters Q, λ, η define the amount of
kinetic energy, the angular momentum, and the ratio between
rotational and random motions, respectively. We have done
several tests to check their effect by taking all other parame-
ters constant.

(3) The three parameters a, b, c determine the shape of
the initial ellipsoid. Depending on the initial shape of the
overdensity the type of structures that are formed after the
collapse may change. We stress that the qualitative features
of the collapse dynamics do not depend on these parameters,
and thus the results we discuss are quite general for this class
of models. However, the quantitative characteristics of the
postcollapse systems finely depend on the properties of the
ICs and, in particular, on their shape.

(4) The three parameters T, ψ, γ define the physical prop-
erties of the gas component. If T is high enough, then the
thermal energy prevents the collapse, while if T is very low
GPs behave initially as PPs. We have also varied ψ in the
range 10–50, and we have not observed relevant differences
with the case ψ = 0.1. We have fixed γ so that the gas is a
mono-atomic one.
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(5) Note that we have performed a series of tests by
varying both the parameters of the code (i.e., the softening
length, the time step accuracy, etc.) and the physical parame-
ters discussed above. We found that the results are stable for
variation of these parameters in a broad range, and we refer to
Ref. [34–37] for a more extensive discussion of the problem
of resolution for the crucial case of purely self-gravitating
simulations.

III. DYNAMICS OF THE COLLAPSE AND
POSTCOLLAPSE STATE

A. Formation of disks and structures
in purely self-gravitating systems

The violent gravitational dynamics of systems composed
by point masses that start from far-out-of equilibrium config-
urations generally gives rise to a rich phenomenology, which
we summarize below (see for more details Refs. [38,39]). The
ICs consist of a subvirial self-gravitating and isolated system
with initial uniform mass density, a nonspherical shape (e.g.,
an ellipsoid), and some angular momentum assigned in the
form of a solid-body rotational velocity field. The overdensity
undergoes a monolithic collapse, driven by its own gravita-
tional mean field contrasted by the internal pressure and PP
velocity dispersion. This occurs whenever the initial internal
density fluctuations are small. Indeed, internal density fluctu-
ations grow during the system’s collapse, forming larger and
larger substructures. A simple analytic treatment of the growth
of fluctuations, neglecting the system’s finite size, is based
on the linear perturbation analysis of the self-gravitating fluid
equations in a contracting background [30]. This is the same
approach used in cosmology but for the case of an expanding
universe [15] (a more detailed approach that considers the
system’s finite size may be found in Ref. [23]). In these
conditions the growth of perturbations is controlled by the
amplitude of the initial fluctuations and by their correlation
function.

The collapse characteristic timescale for a system with
uniform density is of the order of

τ ∼ r3/2
g√
GM

, (15)

where rg is the initial gravitational radius of the system and M
is its mass. The criterion to define the time t∗ when the col-
lapse is halted is the following [30,65]: t∗ corresponds to the
time when the size of nonlinear perturbations (defined, e.g., as
the scale λ0 at which the normalized mass variance is equal to
one) becomes of the order of the system’s gravitational radius
rg. Thus, if the initial fluctuations have a small enough am-
plitude and/or they are not strongly correlated, then t∗ ≈ τ so
that the system has had time to contract by a large factor. Oth-
erwise, if density fluctuations have a large amplitude and/or
are spatially correlated, bottom-up perturbations grow rapidly
enough that a large contraction does not occur because of
the quicker system fragmentation into many substructures. In
that case clustering proceeds through a bottom-up aggregation
process, i.e., a slow and soft dynamics. If the system is initially
not spherically symmetric, the monolithic collapse eventually
leads to the formation of a quasistationary thick disk, in which
rotational motions dominate but with a large velocity disper-

sion. In the outermost regions spiral arms are formed, possibly
with bars and/or rings, in which particles do not follow steady
circular orbits because their velocity has both a rotational and
a radial component. While, globally, the system reaches a
quasiequilibrium state close to a virial configuration, its ex-
ternal parts, which contain only a fraction of the system mass,
expand (i.e., they are out-of-equilibrium) for a much longer
time than the gravitational collapse timescale τ . Let us further
consider the origin of the out-of-equilibrium structures.

The variation of the mean gravitational field during the
collapse triggers a change of the particle energy distribution,
which in turn, induces a reassessment of the system’s phase-
space macroscopic properties. This mechanism is both rapid
and energetically violent, and it works as follows. Although
initially all particles are bound, during the collapse a fraction
of them can gain some kinetic energy. The mechanism of par-
ticle energy gain originates from the coupling of the growth
of inner density fluctuations with the finite size of the system.
Particles originally placed close to the system boundaries de-
velop a net lag with respect to the bulk because the density in
the outer regions of the system decreases during the collapse
as a consequence of the growth of density fluctuations and of
the corresponding peculiar motions. While in an inner shell
at R the flow of particles from <R or >R is statistically
symmetrical, in the outermost regions there is an asymmetry
because of the system’s finite size: for this reason, during
the collapse, there is a net outflow of particles in the outer
regions so that their density becomes smaller than that in the
inner ones. Correspondingly the collapse time becomes larger
than that of the others, and thus a time lag is developed. Thus
such particles arrive at the system center when the others are
already reexpanding. In such a way, these particles move for a
short time interval in a rapidly varying gravitational field, and
for this reason they can gain kinetic energy. In consequence of
this mechanism the whole particle energy distribution largely
changes. Given the complex interplay between the growth
of density fluctuations and the system’s finite size, both the
IC shape and the nature of correlations between density
fluctuations determine the details of this process. The larger
the deviation from spherical symmetry of the ICs, the larger
the spread of particles’ arrival times at the center and thus the
larger the particles’ energy gain [36].

The initial anisotropic distribution is thus amplified by the
collapse mechanism because the particles that initially lie in
the outermost regions, and that are thus strongly anisotropi-
cally distributed if the system breaks spherical symmetry, get
the largest energy increase. For instance, in the case of a sim-
ple prolate ellipsoid with semiaxis a > b = c these particles
are initially located in the region a < r < b = c [36], and they
are not spherically symmetric either after the collapse. Indeed,
the collapse amplifies their initial asymmetry, because of such
positive energy gain, so that the final distribution becomes
very anisotropic, with a shape close to a thick disk whose
minor axis coincides with the rotation axis as the system is
stretched along the plane identified by the major and medium
axes of the initial configuration. In addition, such a disk is
surrounded by out-of-equilibrium spiral arms that are formed
because the most energetic particles, having both a transverse
and a radial velocity component, move in an almost central
gravitational field and thus conserve angular momentum [38].
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FIG. 1. Time evolution of the normalized gravitational radius
Rg(t ) [see Eq. (16)]. Results for longer times are illustrated by the
inner panel. The vertical lines correspond to t = τ and t = 5τ .

In summary, the asymmetric collapse and reexpansion
induce a mass loss from the system, as some particles may
gain enough kinetic energy to escape from it, and this leads
to a new, marginally stable, configuration of lower energy. If
the initial angular momentum is nonzero, such a state forms a
thick disk whose minor axis is oriented parallel to the angular
momentum.

B. Evolution of global system quantities

For the initial conditions described in Sec. II C, the collapse
and the subsequent relaxation to a QSS, in the system internal
region, is characterized by three different time phases. They
can be identified (see Fig. 1) by analyzing the behavior of the
system’s dimensionless gravitational radius [17]:

Rg(t ) = W (0)

W (t )
, (16)

where W (t ) is the gravitational potential energy at time t and
W (0) that at the initial time. The first phase corresponds to
an initial decrease of Rg(t ) up to when it reaches its absolute
minimum at t ≈ τ ≈ 0.1 Gyr where τ is given by Eq. (15).
This phase is thus driven by an overall contraction of the
system and, as we will discuss below, by the dissipation
of the gas internal energy. The gravitationally collapsing
nongaseous matter rapidly changes its shape becoming flat—
along the rotation axis—to a lesser extent compared to the
gas distribution. Together with the gravitational radius, the
mean gravitational potential energy of the system decreases.
Such a rapid potential variation triggers a large change of the
particles’ total energy2 distribution and thus, in turn, of the
system’s phase-space properties.

This first phase is then followed by a second one, for τ <

t < 5τ ≈ 0.5 Gyr, characterized by a few damped oscillations

2The total energy of a particle, per unit mass, is ε = (1/2)v2
i +

φi + ui where vi is the velocity of the ith particle, φi its gravitational
potential per unit mass, and ui the specific internal energy (that is
zero for a PP).
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FIG. 2. Upper panel: time evolution up to t = 5τ ≈ 0.5 Gyr of
the kinetic (K) and potential energy (W ) for all particles. Note that
both energies are normalized to the initial potential energy, Bottom
panel: time evolution of the kinetic (Kgp), potential (Wgp), and thermal
energy (Ugp—multiplied by 102) for the GPs.

of Rg(t ) and of the total gravitational potential energy. During
such oscillations the system shows rapidly varying transient
configurations both in real and in velocity space. Then, in the
third phase, for r > 5τ , the system is relaxed to a QSS in its
inner region and Rg(t ) has reached its asymptotic value. How-
ever, in the outermost regions there are out-of-equilibrium
structures that yet continue to evolve for times t 	 τ .

Figure 2 shows the temporal evolution of the system’s
kinetic, potential energy (top panel) and of the solely gas
component (bottom panel) together with its thermal energy.
The kinetic K and potential energy W of the PPs are initially
of the same order of magnitude as the virial ratio is Q ≈ 3/4.
Even for the GPs the kinetic energy Kgp is of the same order
of the potential energy Wgp amounting to ∼10% that of the
PPs. In addition, the total thermal energy Ugp of the GPs gives
a negligible contribution to the GP kinetic energy, being Ugp

about the 1% of Kgp Indeed, given the values of T, M, rg we
have used, the ratio between the initial internal energy per unit
mass and the typical particle’s potential energy is

u

|φ0| = χT
GM
rg

≈ 10−2. (17)

C. The three dynamical phases

During the first phase the GPs develop a very flat distri-
bution along the plane orthogonal to the rotation Z axis. This
occurs because the gas quickly increases its central density
during the rapid system’s collapse. When the gas becomes
dense enough the radiative cooling function �(u, ρ) [see
Eq. (5)], according to the schemes adopted in the literature and
used in this work, becomes proportional to ρ2 and the cooling
processes acquire more and more efficiency (see Sec. II B).
Thus, thermal energy may be easily dissipated reducing the
Z component of the velocity as a particle crosses the XY
plane. In such a way the GP component develops a much
flatter distribution than that of the PP component. Such further
dissipation lets the GPs lower their temperature. For this
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FIG. 3. Time evolution of the vertical velocity dispersion σvz .
Results for both gas and particle components are shown.

reason, together with a decrease of the vertical thickness, the
GPs drastically reduce their vertical velocity dispersion at
t ≈ τ Gyr (see Fig. 3).

The probability density function (PDF) of the temperature
P(T ) of the GPs is shown in Fig. 4: we can observe a
progressive redistribution of the SPH particles’ temperatures
towards lower values. At t = 0.3 Gyr the distribution P(T )
is already peaked at ∼18 000 K; then, at longer times, the
GPs slowly cool down so that the maximum of P(T ) reaches
T ≈ 15 000 K. In consequence of the overall system’s col-
lapse also the PPs rapidly change their spatial distribution
by contracting along the Z axis, although forming a less flat
structure compared to the gaseous disk. As the PP component
is gravitationally dominant, this contraction modifies the sys-
tem’s mean gravitational potential (see Fig. 5).

The differences acquired by the vertical configurations of
the density distributions of the two components are clear in
Fig. 6, which shows the vertical density profile of both the
PPs and the GPs: they both display an exponential decay

n(z) ∼ exp(−z/z0)

0 1×104 2×104 3×104 4×104

T [K]
0

1×10-4

2×10-4

3×10-4

4×10-4

 P
(T

)

t=0 Gyr
t=0.3
t=10 Gyr

FIG. 4. PDF of the gas temperature at different times: t =
0, 0.3, 10 Gyr. The GP initial temperature distribution is plotted too,
and it is a Dirac δ function centered at T = 40 000 K.

FIG. 5. Density map of the PP component (upper panel) and
of the GP component (bottom panel) on the XZ plane at time t =
0.21 Gyr. The density is computed in cells in the XZ plane, and it is
integrated over the Y axis; the color scale is logarithmic.

with z0 ≈ 0.7 kpc for the PPs and z0 ≈ 0.12 kpc for the GPs.
Thus, at t � 0.2 Gyr the GPs form an extremely flat disk and
the PPs a thicker disk: when the density increases such that the
cooling becomes very efficient, the gas component decouples
from the PP component, and it starts to have a different time
evolution. Note that PPs and GPs have a different velocity
dispersion, and this is the reason why the GPs do not follow
the same trend of the PPs in their vertical density profile (see
Fig. 6).

The difference in the motion of GPs and PPs after the col-
lapse can be noticed by looking at the profile of the azimuthal
velocity vφ (R), i.e., the mean azimuthal velocity evaluated
in concentric circular coronas in the disk as a function of
the two-dimensional (2D) disk radius R and of its dispersion
profile σvφ

(R).3

3Unless differently specified we adopt a cylindrical coordinates
system (R, φ, z).
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FIG. 6. Time evolution of the vertical number density profile of
the GPs (upper panel) and PPs (bottom panel) at t = 0.3 Gyr and t =
3 Gyr. As a reference we report (dashed lines) an exponential decay
n(z) ∼ exp(−z/z0) where z0 = 0.12 kpc for the gas component and
z = 0.7 kpc for the nongaseous component.

In particular, the amplitude of vφ (R) of the GP component
is larger (by about a factor ∼2) than that of PPs, while the
dispersion is smaller by a factor ∼6–8 (see Fig. 7).

Such a noticeable difference is due to the fact that the
motion of the gas component, being confined on a thin disk,
is much more coherent than that of nongaseous matter. The
signature of such a coherence is shown by the PDF P(vφ ) of
the azimuthal velocity: this is more peaked for GPs than for
PPs (see Fig. 8). Note that the maximum radial anisotropy,

β = 1 −
〈
v2

t

〉
2
〈
v2

R

〉 → 1, (18)

is reached in the outermost regions of the system correspond-
ing to the peak of P(vφ ) for vφ → 0. Indeed, when a particle
increases its distance from the system’s center, it decreases
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FIG. 7. Azimuthal velocity profile (upper panels) and its disper-
sion profile (bottom panels) for the GPs (left panels) and PPs (right
panels) at different times (see upper left labels).

0 50 100 150 200 250 300

vφ [km/s]

0

0.01

0.02

P(
v φ)

t=0 Gyr
t=10 Gyr

0 50 100 150 200 250 300
vφ [km/s]

0

0.01

0.02

P(
v φ)

GP

PP

FIG. 8. PDF of the azimuthal velocity for GPs (upper panel) and
PPs (bottom panel) at t = 0 and t = 10 Gyr.

its tangential velocity because it approximately moves in a
central potential conserving its angular momentum.

The radial velocity profile vR(R) (computed in circular
coronas) and the relative dispersion profile σvR (R) of both
the PPs and GPs show a large-distance time-dependent tail
(see Fig. 9): this is due to the out-of-equilibrium particles that
have gained the largest amount of energy during the collapse
phase. At small distances the dispersion σvR (R) is also larger,
by a factor 2–3, for PPs than for GPs. The PDF of the
radial velocity is shown in Fig. 10: one may note that while
PPs have an approximately symmetric PDF, the GPs show an
asymmetrical one with a persistent tail both at positive values.

At the end of the second phase, at t ≈ 5τ ≈ 0.5 Gyr,
the system has almost reached its asymptotic state. In par-
ticular, the particle energy PDF P(ε) quickly relaxes to an
almost time-independent shape that determines the properties
of the QSS (see Fig. 11). This distribution has undergone
a substantial change at t ∼ τ in consequence of the rapid
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FIG. 9. Radial velocity profile (upper panels) and its dispersion
profile (bottom panels) for the GPs (left panels) and PPs (right
panels) at different times (see labels).
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FIG. 10. PDF of the radial velocity for GPs (upper panel) and
PPs (bottom panel) at the initial time and t = 10 Gyr.

variation of the system’s mean gravitational field. Indeed,
particles moving in a rapidly varying potential field do not
conserve energy, and the variation of the mean-field potential
triggers the change in the system’s macroscopic properties as
we discussed above for the PP case.

The energy change is, however, different for the PPs and
the GPs, reflecting their different dynamical evolution. In
particular, because GPs can dissipate energy they have an
energy distribution with a negative tail that is more extended
than for PPs. Note that the fraction of the GP mass for r > 10
kpc is less than 10% of the total GP mass. The boundary
conditions are open, and thus the escaping particles increase
their distance indefinitely.

The density profile (see Fig. 12) shows a flat core and
an approximate n(R) ∼ R−4 decay at large distances: both
behaviors are typically formed after a violent enough collapse
[31]. Note that the large-distance tail continues to evolve for
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FIG. 11. Energy distribution at t = 0 and t = 9 Gyr for the GPs
(upper panel) and PPs (bottom panel).
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FIG. 12. Number density profile for both the PPs and GPs (arbi-
trarily rescaled on the Y axis) at different times (see labels).

long times, due to the particles with energy close to or larger
than zero. Finally, the behavior of integrated mass versus
radius is reported in Fig. 13: we show both the integrated mass
M(R) computed in a tiny cylinder with thickness �Z = 2
kpc (in cylindrical coordinates) and the integrated mass M(r)
computed in spheres. The difference between the two is due
to the fact that the PP is not confined on the thin disk as its
mass is distributed in a larger volume around it.

D. The inhomogeneous gas velocity field

Given the complex dynamical mechanism at work, the
velocity field of the system formed after the collapse is rather
heterogeneous: not only the PPs and the GPs have a different
velocity field, but, in both cases, its properties depend on
scales. Let us now focus on the GP component given that the
PP component shows the evolution we described above for
the case of a purely self-gravitating collapse: GPs represent
indeed a small perturbation of the system mass, and thus the
evolution of the PPs is unperturbed by the presence of the GPs.
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FIG. 13. Integrated mass as function of the radius of a cylinder of
thickness �Z = 2 kpc and in spheres. Note that the mass is in units
of 1010M�.
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FIG. 14. Projection of various times slices of the GP component on the XY plane: the color code corresponds to the logarithm of the
density integrated over the Z axis. The corresponding time is reported at top of each each panel.

Figures 14–16 show the projection (on the XY plane) of
several snapshots, with a color code corresponding respec-
tively to the logarithm of the number density integrated over
the Z axis and the radial and the azimuthal velocity component
of the gas distribution [66]. One may note a rapid initial
change of shape and then the relaxation to a QSS, i.e., a
phase in which the system inner disk becomes almost stable.
In particular, for 0.1 Gyr < t < 0.3 Gyr the GP forms almost
1D filaments that get later warped, forming a sort of spiral
arms. Note that the core and the spiral structures do not rotate
with synchronized rotation as the tangential velocity is not
constant at different distances.

Such a disk has major axis ∼14 kpc and minor axis ∼6 kpc
so that its ellipticity is e ≈ 0.4, i.e., its size is of the same

order of magnitude of the initial size of the system. Instead,
the ellipticity is related both to the major to minor axis
ratio of the initial system and to the amplitude of the initial
angular momentum. These parameters control how violent the
collapse is and thus how large is the particle energy gain as
a function of direction. The smaller the angular momentum,
the stronger the collapse and the larger is expected to be the
ellipticity of the quasistationary disk formed by the gas.

From the visual inspection of these figures one may note
that the compact and elliptical gaseous disk is surrounded by
a sparser region in which there are long-lived but changing
in time (i.e., nonstationary) spiral arms. There is then, in
the outermost regions of the systems (not visible in these
figures; see below for a discussion), a fraction of particles
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FIG. 15. Projection of various time slices of the GP component on the XY plane: the color code corresponds to the modulus of the radial
velocity. The corresponding time is reported at the top of each panel.

that is evolving in an out-of-equilibrium manner. Let us now
consider the time evolution of the structures present in these
three regions. We have identified particles belonging to the
three mentioned regions in a snapshot at t = 6 Gyr, where they
can be easily disentangled, and we have traced backward and
forward their evolution at the initial time and at t = 10 Gyr.

E. Energy and velocity probability distributions

Both the velocity and energy PDF are rather different in the
three regions. One may note (see Fig. 17) that particles in the
inner region, i.e., the elliptical disk, have a very spread PDF
P(vR) with a variance of σvR ∼ 50 km/s. In the intermediate
region P(vR) is still peaked around zero but with a smaller

dispersion of about σvR ∼ 10 km/s. In the outermost regions
of the system P(vR) develops a long tail toward large vR

values, which, however, involves a small fraction (i.e., ∼10%)
of the gas matter. Complementary to this tail the PDF of vφ

develops a peak for vφ → 0 for the reasons we have already
discussed above. The PDF of the azimuthal velocity is peaked
at high values of vφ in the intermediate region, while in
the inner region particles have smaller azimuthal velocities
with a larger dispersion. By considering the behavior of the
energy per unit mass distribution (see Fig. 18) in the three
different regions we can conclude that particles in the inner
region (the disk) are strongly bound and have decreased their
energy since the initial time and particles in the intermediate
region (the arms) have energy close to, but smaller than, zero
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FIG. 16. Projection of various times slices of the GP component on the XY plane: the color code corresponds to the modulus of the
azimuthal velocity. The corresponding time is reported at the top of each panel.

and have increased their energy from the initial state. Finally
particles in the outermost regions are those which have mostly
increased their energy, and some of them can even escape
from the system. Thus, there is a correlation between the
energy gain or loss rate and the distance of the particles from
the system center: the origin of such a correlation can be
traced back to a particle’s initial position.

Indeed, Fig. 19 shows the conditional probability for a par-
ticle of being member of a given group (i.e., inner disk, arms,
and outermost regions) as a function of its initial position.
The conditional probability that a randomly chosen particle
at distance r in the initial configuration is in the outer region
at t = 9 Gyr is much larger if it was initially in the outermost
shells. On the other hand, if a particle was initially in the inner

regions of the system, the probably that it remains there is
larger than for particles initially placed in the outer regions.
Particles in the arms were initially placed in an intermediate
region.

F. Origin of the spiral arms

The formation of such a correlation implies that the change
of energy and velocity during the collapse is correlated with
the particle initial position. This implies that groups of par-
ticles coming from specific regions of the systems have a
similar dynamical history and thus remain correlated during
the evolution. Such a correlation is thus the specific signature
of the monolithic collapse. The underlying mechanism was
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FIG. 17. PDF at t = 9 Gyr of vR (black lines) and vφ (red
lines) respectively in the inner region (the disk—bottom panel),
intermediate region (the arms—middle panel), and outermost region
(upper panel).

outlined above: particles in the outer region of the initial
distribution increase their energy because are still collapsing
when the others (that will decrease their energy) are already
reexpanding.

Figure 20 shows the evolution of spiral arms in the XY
plane. The particles that form the arms are identified in an
evolved snapshot, at t = 6 Gyr: the position of these same
particles is then tracked back to t = 0 and forward to t =
10 Gyr to reconstruct the temporal evolution of the arms.
One may see that particles move in a coherent way and that
the majority of the particles in a given arm remain the same
from its formation till the end of the simulation: that is, the
arms are not density waves as they involve the motions of
particles. The correlation in both configuration and velocity
space is developed during the collapse phase and persists over
the whole run. On the very long timescales, i.e., t 	 10 Gyr,
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FIG. 18. Particle energy PDF of the GPs in the three different
regions at t = 0 and t = 9 Gyr.
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FIG. 19. Conditional probability as a function of the initial dis-
tance for a particle to be in the inner, intermediate, or outer region of
the system at t = 9 Gyr.

the arms will be washed out for the effect of the velocity
dispersion inside them.

Particles forming the arms were originally in the outer
region of the system, and thus their energy changes by a
positive amount that is smaller than the absolute value of the
energy variation of particles in the inner disk (see Fig. 18). For
this reason their radial velocity remains peaked at zero, while
that of the inner disk particles spreads and the PDF is close
to uniform. Given that the azimuthal velocity is larger than
the radial velocity, the orbits are closer to circular ones than
those of the inner disk particles. The symmetry of the arms
is related to the symmetry of the initial conditions, as the two
arms are formed by particles initially lying in a symmetric
position along the system’s major axis. During the evolution,
the particles in the arms increase their spread in position
and velocity, and for this reason the arms are expected to be
washed out in the long run. However, for what concerns the
range of times we have considered (i.e., ∼10 Gyr) the arms
remain well formed.

It is interesting to note that in the 2D phase space of 1D
gravitational systems, spiral structures are formed as a result
of filamentary patterns that appear due to differential rotation
of an incompressible fluid [16–20]. Such spiral structures are
apparently similar to those observed in the present work in the
projected 2D plane occupied by the cooled compressed gas;
whether the dynamical origin of these spiral arms is the same
in the two cases is, however, an open question and requires
a complete analysis of the six-dimensional (6D) phase space:
this goes beyond the scope of this work. In what follows we
will discuss only the properties of some projections of the 6D
phase space.

G. Structures in phase space

The projection of the phase space into the vR-vφ plane (see
Fig. 21) reveals the presence of some nontrivial structures. It
also reveals most notably that particles belonging to the inner
disk have a spread distribution in both velocity components
with some correlated structures which reflect the elliptical
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FIG. 20. Evolution of the spiral arms in the XY plane: the particles belonging to the arms have been identified at t = 6 Gyr and then traced
backward or forward in time to t = 0 Gyr and t = 9 Gyr.

FIG. 21. Projection of the phase-space distribution of the GPs into the vR-vφ plane. The upper row shows the spiral arms, and the bottom
row the outer regions and different times: from left to right at t = 3, 4.5, 7.5 Gyr.

042108-14



FORMATION OF DISKS WITH LONG-LIVED SPIRAL … PHYSICAL REVIEW E 102, 042108 (2020)

FIG. 22. Projection of two snapshots of the GP component on the XY plane at t = 6, 6.15 Gyr: the velocity and its direction for a subsample
of the system’s GPs has been shown with an arrow.

motions and particles in the arms occupying a very localized
region in which vφ is close to maximum and vR close to zero:
such a region is, however, not symmetrical either with respect
to vφ or to vR and there are several substructures in it. Such
substructures in phase space correspond to the presence of the
real-space structures, i.e., the spiral arms. Finally particles in
the outer regions can be recognized by having a correlated
stream corresponding to a decrease of vφ , when vR increases,
that is, as a consequence of particles’ angular momentum
conservation.

Let us now focus on the inner elliptical disk. It is not
surprising that particles move on elliptical orbits in this region
as shown by Fig. 22: one can see also that there is an overall
precession of the whole disk. These motions can be easily
explained by considering that when a particle moves in an
elliptical orbit from the perigee to the apogee it increases
its distance from the center, and thus it has a positive radial
velocity component. Clearly, the opposite occurs when a
particle moves from the perigee to the apogee. It should be
stressed that GPs move in the gravitational potential of the
whole system that is dominated by the PP distribution that,
as mentioned above, also form a disk (although with a larger

thickness). These particles are strongly bound and confined
in phase space, and their velocity is predominantly oriented
along the azimuthal direction, but a relatively large radial
component was developed in the second phase of the collapse
(i.e., τ < t < 5τ ). For this reason, after the transient phase,
they relax to elliptical orbits.

Finally Fig. 23 shows the comparison of the GP and PP
distributions at large distances from the center of mass of the
system. The spiral arms in the outermost regions are out-of-
equilibrium and dominated by radial motions; GPs trace the
same structures formed by the heavier PPs, although the latter
component, having a larger velocity dispersion, traces more
spread arms than the former one.

H. Jeans’ equation

The circular velocity is defined to be the velocity with
which test particles would move on circular orbits at radius R
from the center of a self-gravitating disk with an axisymmetric
gravitational potential � [45]:

v2
c (R) =

(
R

∂�

∂R

)
z≈0

. (19)

FIG. 23. Projection of the GPs (left panel) and PPs (right panel) on the XY plane at t = 6 Gyr.
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Let us assume that the system is in a steady state and that is
axisymmetric so all derivatives with respect to t and φ vanish.
Under these hypotheses and by neglecting collisions, one may
derive from the collisionless Boltzmann equation the Jeans’
equation which links the density and the moments of the
velocity distribution to the gravitational potential [45]. From
the Jeans’ equation (in cylindrical coordinates) we can then
derive the circular speed, by neglecting the cross-term 〈vφvR〉
that represents a negligible correction [67], obtaining

v2
c,J (R) = 〈

v2
φ

〉 − 〈
v2

R

〉(
1 + ∂ ln(ν)

∂ ln R
+ ∂ ln〈v2

R〉
∂ ln R

)
, (20)

where ν = ν(R, z) is the density and we have labeled the
circular velocity as vc,J to recall that it is derived under the
assumptions of the Jeans’ equation.

We have estimated vc in Eq. (19) from the direct gravi-
tational force summation and vc,J in Eq. (20) by estimating
both the radial behavior of the density ν and of the radial
velocity dispersion 〈v2

R〉 on the plane (i.e., z ≈ 0) and by
computing numerically their logarithmic derivatives (for a
more detailed discussion see Ref. [68]). Results, as expected,
show that vc,J ≈ vc in the inner disk, while at large distances
(i.e., r > 30 kpc) vc,J > vc: the deviation of vc,J/vc from unity
correlates with the amplitude of the mean radial velocity 〈vR〉
that describes the deviation from equilibrium of a system.

I. Discussion

The main result of our simulations is that a quasistationary
rotating disk can be formed from the monolithic collapse of
an isolated out-of-equilibrium overdensity of self-gravitating
matter with a dissipational gas component. Around such a disk
long-lived but nonstationary spiral arms are formed whose
velocity field is dominated by rotational motion but that also
show large-scale gradients in all velocity components. At
larger distances the whole system is surrounded by out-of-
equilibrium spiral arms. The physical mechanism that gives
rise to such an heterogeneous system is the variation of
the system’s mean-field potential energy in the short time
interval around the global collapse. Such a variation amplifies
any initial deviation from spherical symmetry and causes a
large change of the particle energy distribution. There are
two very different timescales: (1) the characteristic collapse
timescale τ ∼ 1/

√
Gρ (where ρ is the initial density) and

(2) the lifetime of the spiral arms tarms that we have shown
to be 	 τ . Because τ  tarms, the formation of this kind of
QSS can be compatible with astrophysical constraints both at
small and high redshifts.

As a result of this process the purely nongaseous matter
forms a thick disk that is dominated by the (azimuthal) rota-
tional motion but in which there is a large velocity dispersion.
Instead, the gas forms a thin disk, almost 2D with a vertical

FIG. 24. Comparison of the same initial configuration and initial virial ratio, but for one case the kinetic energy is fully rotational (upper
panels), and for the other case the kinetic energy is half rotational and half random (bottom panels). In each row, the left panel shows the
projection on the XY plane and the right panel the phase-space distribution projected on the vR-vφ plane at the same time (i.e., t = 3 Gyr
≈ 10τ ).
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height scale far shorter than the horizontal size, where there
are coherent rotational motions and a small velocity disper-
sion. Such a difference in the density configuration evolution
between the nonvolatile matter and the gas occurs because
when the system approaches its maximum contraction the
latter component increases its density and thus can radiatively
cool and sink to the nongaseous clumps. Since the gas is
subjected to compression shock and radiative cooling with
consequent kinetic and thermal energy dissipation, it develops
a much flatter disk, where rotational motions are coherent and
the velocity dispersion is smaller than that of the nongaseous
matter. The quasistationary thin gaseous disk is thus embed-
ded in the gravitational field of the thicker nongaseous disk
that dominates the system mass and thus the potential energy.
The thin disk is in general elliptical, where the eccentricity
depends on the violence of the collapse, i.e., on how much the
system’s gravitational radius has contracted, and thus on the
shape of the ICs and on the initial angular momentum.

By analyzing the evolution of the spatial distribution of
the SPH particles used to represent the gas, we have found
that the they form long-lived but nonstationary spiral arms.
Such structures are formed by particles that have undergone
a similar dynamical history and that, consequently, remain
correlated in both position and velocity. Their energy is larger
than that possessed by the other particles forming the inner
disk, even though they are still bound to the system. They

show a rough velocity field in which both radial and rotational
motions are time-dependent and correlated. The spiral arms
are nonstationary mainly due to this latter characteristic. On
the other hand, the long-lived spiral nature of the spiral arms
arises from the correlation in phase space that the particles
develop during the gravitational collapse. Finally both GPs
and PPs form far-out-of equilibrium spiral arms in the very
outermost regions of the system, where the velocity field is
dominated by radial motions.

We have discussed in detail the time evolution of a single
numerical experiment in which the ICs were constituted by
a prolate ellipsoid. We have, however, performed many other
simulations, and here we summarize our main results:

(1) Systems with two-spiral arms, in both the gas and
nongaseous components, are formed provided that the starting
configuration breaks spherical symmetry in the XY plane,
such as the case of a prolate ellipsoid. Starting with an
initial system consisting in an oblate ellipsoid, a multiple-arm
system with a ring structure on the XY plane can be formed,
whose velocity field is characterized by a combination of ro-
tational and radial motions. When the initial system presents a
configuration more irregular than a simple ellipsoid it evolves
acquiring more complex shapes: however, as long as there is
a major axis that is enough larger than the others, a two-arm
spiral structure is formed. In this regard, we performed some
numerical experiments introducing some randomness in the

FIG. 25. In this case the initial condition is again an ellipsoid but with a configuration close to a quasistationary state, i.e., Q = 1. Upper
panels: projection of the self-gravitating particles in the XY plane (left) and XZ plane (right) at t = 3 Gyr ≈ 10τ . Bottom panels: same for the
gas.
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shape of the ICs by considering uniform but irregular shapes.
Results do not change qualitatively, but they are quantitatively
different: for instance, multiple-arm systems may arise and/or
the systems can be characterized by subclumps that first
collapse independently and then merge (some examples for
systems constituted by only PPs are reported in Ref. [39]). It
should be noticed that in various simulations bars of different
size scale may be formed. If the bar is as large as the system
itself, then it presents a transient structure in which radial and
rotational motions are of the same order. Instead, in some
cases it can be formed a small bar in the inner regions that can
typically survive for many dynamical times. A more detailed
characterization of these structures will be presented in a
forthcoming work.

(2) If we give to the ICs some random motions in addi-
tion to solid-body rotational velocity, the evolution notably
changes only when the kinetic energy associated to the former
becomes of the order of the kinetic energy associated to the
latter. Figure 24 shows the comparison of the same initial
configuration and initial virial ratio, but for one case the
kinetic energy is fully rotational, and for the other case the
kinetic energy is half rotational and half random. One may see
that in the former case the phase-space correlation is broken,
i.e., the projection of the phase-space distribution in the vR-vφ

plane shows a much less structured shape when the random
velocity is larger. Correspondingly the spiral arms are washed
out, and the gas forms a structureless disk.

(3) If the initial ratio Q tends to 1 then the system is
initially close to a stationary situation. In this condition the
self-gravitating particles do not undergo a strong collapse,
and the gravitational radius of the system remains close to
its initial value. Indeed, the system gently changes its phase-
space configuration to reach a quasiequilibrium state and its
mean field only slightly varies, so that the main source for
the large changes of the phase-space properties is not active.
In these conditions the system is closer to spherical symmetry
but undergoes a small contraction around the rotation axis (see
the upper panels of Fig. 25): the velocity dispersion of the
PP component remains almost isotropic. On the other hand,
the GP component, because of energy dissipation, forms a
thin disk that is, however, structureless as the mechanism
originating structures like spiral arms is not active, the vari-
ation of the system’s mean field being too small (see the
bottom panels of Fig. 25). Figure 26 shows the phase-space
distribution projected on the vR-vφ plane: not surprisingly, this
is structureless.

(4) If the initial temperature of the gas is too high so that
the internal energy u becomes of the order of the particles’
potential energy per unit mass [see Eq. (17)], then the gas
diffuses without clustering. On the other hand, when the
temperature is lower than ∼104 K the gas behaves almost like
the nonvolatile component, since the cooling is not efficient
in irradiating away the thermal energy. In this regard, we
have performed some simulations with solely self-gravitating
gas dynamics (i.e., no gaseous matter). In such a situation,
for a typical temperature of the gas of T ∼ 4 × 104 K, i.e.,
such that cooling is very effective, the formation of spiral
arms is inhibited and the system becomes isotropic even when
the initial density distribution assumes an ellipsoidal shape.
These tests show that the nongaseous matter plays the key

FIG. 26. Phase-space distribution of the gas for the simulation
shown in Fig. 25 projected on the vR-vφ plane at t = 3 Gyr ≈ 10τ .

role in the determination of the dynamical evolution of the
system.

IV. CONCLUSIONS

Understanding the origin and evolution of spiral structures
has proved to be one of the harder problems in astrophysics.
In this work we have studied the formation of long-lived, but
nonstationary, spiral arms as a consequence of the rapid and
violent collapse of an isolated system. This physical mecha-
nism is different from the slow and soft dynamical evolution
that takes place when a bottom-up aggregation process is at
work or when a disk at equilibrium is softly perturbed. The
key physical mechanism is the rapid variation of the system
size during the collapse, corresponding to a large change of
the mean-field potential, which, in turn, causes a substantial
variation of the particle energy distribution and thus of the
system phase-space properties.

Typical cosmological scenarios of structure formations,
like CDM models, assume that density fluctuations are
strongly correlated and give rise to a soft and slow bottom-
up clustering mechanism: for this reason the formation of
a disk and spiral arms, via a rapid and violent mechanism,
investigated in this work has been commonly overlooked in
the literature. Halo structures formed in CDM models are
almost spherically symmetric and present a quasi-isotropic
velocity dispersion, while disks are characterized by close to
rotational and very quiet velocity fields. On the other hand,
quasistationary disks formed from a fast and violent dynam-
ical mechanism are characterized by having large streaming
motions in all velocity components. In standard CDM-type
models the distribution of gas and nongas matter are com-
pletely different, while in the present case they are correlated.

It is interesting to note that the paradigmatic model for
nonlinear structure formation in cosmology, i.e., the spherical
collapse model (SCM), says that an overdensity that detaches
from the cosmological expansions starts behaving like an
isolated system when its density contrast is of order unity [15].
This purely gravitational system thus undergoes a monolithic
collapse of the type we have discussed in this work. In
CDM scenarios, instead, because density fluctuations are too
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strongly correlated, clustering proceeds through a bottom-up
hierarchical aggregation mechanism. Initial fluctuations must
be highly suppressed below some scale as occurs in warm
dark-matter-type scenarios, for a SCM-type scenario taking
place in a cosmological setting. It is worth noticing that
Peebles [69] has recently advocated precisely a monolithic
top-down scenario for galaxy formation to overcome the dif-
ficulties of standard CDM-like models in explaining the main
observations concerning galaxies. In particular, Peebles has
proposed a warm dark matter initial mass fluctuation power
spectrum that has a sharp cutoff suppressing fluctuations at
small enough scales. Such scales are not probed by the cosmic
microwave background radiation, and thus do not have to
satisfy strong observational constraints, but may be significant
for galaxy formation.

Numerical experiments in which the initial conditions
represent an isolated overdensity of massive particles with a
dissipative gas component represent a suitable playground to
explore the combined effects of gravitational and gas dynam-
ics in a system that undergoes to a monolithic collapse. We
have identified three essential features for the ICs to form a
disk with long-lived spiral arms, otherwise the system forms
an ellipsoidal quasistationary configuration without the rich
morphological structures observed in the present case.

The first is that they have to be almost uniform, i.e.,
internal perturbations must be efficiently suppressed. Indeed,
density perturbations inside the overdensity grow through
gravitational clustering during the collapse, and they form
substructures by a hierarchical aggregation process. If the
amplitude of the initial density fluctuations is too large and/or
their spatial correlations too strong, then they go nonlinear on
a scale comparable to the system’s size on a timescale shorter
than the collapse time τ . At t ∼ τ the system is made of large
subclumps, the collapse is halted and the evolution proceeds
through an aggregation of the subclumps: in this condition
the system mean-field potential is only perturbed but does not
undergo a rapid change.

The second condition is that the ICs must break spherical
symmetry. Indeed, the variation of the system mean-field
potential triggers a large change of the particle energy dis-
tribution if a fraction of the particles have a collapse time
longer than the bulk of the system mass. In this condition
those particles move for a short time interval in a rapidly vary-
ing potential field and thus gain some kinetic energy while
all others become more bound. The amount of energy gain
depends on the time lag of a particle to arrive at the center,
with respect to the largest fraction of the system mass. For
an initially uniform system, such a lag is developed because
of the coupling of the system finite size with the growth of
internal density fluctuations during the collapse phase. As a
result of this complex dynamical mechanism, particles that
initially were in the outermost regions arrive later than the
others at the center and thus gain the largest amount of energy.
For this reason any anisotropy initially characterizing such a
particle distribution contributes to the developing of the time
lag, and it is thus amplified by the collapse dynamics.

Finally, the third condition is that the system has a suffi-
cient initial amount of angular momentum, otherwise rotation
is inhibited and a disk cannot form.

Given these three conditions, the dissipationless compo-
nent of the system gives rise to a thick disk, in which rota-
tional motions are predominant but still with a large velocity
dispersion. Such a disk is surrounded by large size out-of-
equilibrium spiral arms, with or without bars and/or rings,
which are expanding on a secular timescale as the radial
motion predominates on the transversal one [36,37]. When
considering a two-phase system where gas is coupled to the
dissipationless component, then the postcollapse configura-
tion shows a more heterogeneous and richer phenomenology.
At small distances from the center, gas particles form a qua-
sistationary thin disk in which rotation dominates but where
orbits are generically elliptical and thus where radial motions
are also present.

Around such a thin disk long-lived but nonstationary spiral
arms are formed: they arise from the coherent motions of
groups of particles that have undergone a very similar dynam-
ical history. The coherence in the motion of these particles,
which maintains the spiral pattern, is originated because they
were initially close (in the outer regions of the system) so
that they could gain a similar amount of energy during the
gravitational collapse remaining correlated in both position
and velocity in their subsequent evolution. The lifetime of the
spiral arms for the system we have considered is much larger
than the characteristic collapse timescale τ and it is related to
the velocity dispersion of the particles in the arms: the larger
the dispersion, the shorter the lifetime. In the numerical exper-
iments we have presented in this work, we have considered the
mass and size of a typical spiral galaxy, getting a characteristic
collapse timescale of τ ∼ 0.5 Gyr, while the lifetime of the
spiral arms is >10 Gyr.

We notice that if the fraction of the system gas is marginal
(like is the case of a very high star formation rate leading to
a rapid gas to star phase transition), then the final QSS has
the shape of an ellipsoid whose flatness parameter, in general,
depends on both its initial value and the amount of initial
angular momentum [36]. Thus the monolithic collapse pro-
cess investigated in this work represents a viable evolutionary
path for the formation of elliptical galaxies (or of the almost
spherical globular clusters that also have no gas component)
as was first argued in Ref. [22]. As noticed in Refs. [31,34]
the signature of the violent origin of such ellipsoidal QSS
is represented by a characteristic ∼r−4 density profile in the
external regions and by an almost flat core. Such behaviors
are clearly different from the density profile of the halo
structures, that are ellipsoidal too, formed trough a bottom-up
aggregation process in the context of CDM-type cosmological
simulations [47]: such a density profile is characterized by a
cusp in the inner regions of the type ∼r−1 and by a slower
decay in the external regions, i.e., ∼r−3. A further support for
a monolithic collapse origin for elliptical galaxies is that in the
case of a merger origin of ellipticals from spirals, the phase
space density, the merger being collisionless, should remain
constant, respecting the collisionless Boltzmann’s equation,
while there are strong hints that in ellipticals it is higher
[70]. A more detailed study of the difference between purely
gravitational QSS formed through a top-down monolithic
collapse and through a bottom-up aggregation mechanism will
be presented in a forthcoming work.
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Different mechanisms to produce spiral arms and possibly
bars have been proposed in the literature, and they all assume
that the galactic disk is already formed [46]. A model in which
the spiral structure is interpreted as a stationary density wave
was introduced in Ref. [71] (see Ref. [72] for more details):
this hypothesizes that the spiral arms arise from a periodic
compression and rarefaction of the disk surface density that
propagates through the disk and remains stationary over many
orbital periods. The spiral arms characterizing the systems
that we have discussed are very different from quasistationary
density waves as they involve the motion of matter and not
just of energy. A second mechanism hypothesized to produce
spiral arms is given by the effect of local instabilities, or
of external perturbations, in a rotating disk. Indeed, self-
gravitating disks close to stationary equilibrium and dom-
inated by rotational motions are remarkably responsive to
small disturbances so that spiral arms can be transient, re-
current, and initiated by swing amplified instabilities in the
disk (see, e.g., Refs. [42–44,46] and references therein). In
this context, the continuously changing recurrent transient
patterns formed in simulations of isolated disk galaxy models,
embedded in rigid halos, have a rather quiet velocity field,
i.e., there are not present neither large amplitude streaming
motions nor a net radial velocity component and the system
is dominated by rotational motions. Indeed, the kind of per-
turbations considered do not sensibly change the system’s
mean field and give rise to a soft dynamical mechanism that
is not able to change the particle energy PDF as occurs in
the violent dynamics we have described in this work. As a
result of the violence of the collapse, correlations in phase
space are stronger, and thus the lifetime is longer, in the
former case than in the latter one. Such correlations corre-
spond to well-defined phase-space structures: in particular, we
have highlighted the properties of the phase-space projection
into the plane defined by the radial and azimuthal velocity
components.

The main difference with the standard CDM scenario is
that in that case the disk is embedded in the gravitational
potential field of an halo structure, i.e., a system close to
spherical with an almost isotropic velocity dispersion. In that
situation the gaseous matter forms a disk where rotational
motions dominate and whose dynamical properties are de-
termined by the more massive halo structure. On the other
hand, in the system we have studied in this paper, the rotating
disk is embedded in the gravitational field of a more massive
thicker disk that is also rotation dominated in its inner regions.
Then, in its outer regions, such a system is not yet relaxed and
presents out-of-equilibrium features. Such a situation implies
that in those regions it is not possible to simply recover a
mass from the measurement of a velocity. This represents an
important warning that must be considered in detail when
analyzing a given object, as in general the assumption of
stationary equilibrium with maximal rotational motions is
taken for granted in the determination of galaxy masses
from observed line-of-sight velocities or velocity dispersion.
Indeed, the estimates of the quantity of dark matter, both in
the Milky Way and in external galaxies, are generally based
on the assumption that emitters’ motion is maximally rota-
tional and/or that systems are relaxed into a quasistationary
equilibrium state. Distance-dependent deviations from these

assumptions naturally arise in the systems we have discussed:
in such a situation the estimation of the amount of dark
matter must be revised taking into account more complex
velocity fields and dynamical mechanisms. Of course, from
an observational point of view the problem is to detect the
presence of nonrotational motions: this is not at all a simple
task given the degeneracy between a radial and a rotational
velocity field for nonaxisymmtric objects [73].

In this respect, it is worth noticing that the number of
revolutions completed by an object orbiting with a velocity
of ∼200 km/s around a galaxy at a distance larger than ∼20
kpc in a Hubble’s time ∼10 Gyr is of the order of 10 or
smaller [39]. If it is not at present possible to theoretically
constrain the number of revolutions needed to reach a relaxed
configuration from a qualitative point of view, a reasonable
requirement is that they must be 	1. This simple observation
raises a serious warning about the possibility of considering
the outermost regions of a galaxy in a relaxed equilibrium
configuration, the hypothesis usually adopted to estimate the
amount of dark matter.

There are three main directions that will be pursued in
forthcoming works. First, we aim at studying the violent
collapse in a full cosmological context, including other astro-
physical effects beyond gas dynamics. In this respect, as dis-
cussed above, it is necessary to consider density fluctuations
with suitable correlations that must be suppressed at small
enough scales. Second, we will explore in more detail the
whole phase-space structure of these systems, comparing it to
both other kind of quasistationary disks originated by different
dynamical models (e.g., by the slow and soft dynamics acting
in perturbed self-gravitating disks or in disks formed in the
framework of CDM models) and to observations of the Milky
Way, by considering the forthcoming data provided by the
Gaia mission [74], and of external galaxies [73]. Such a study
is complementary to a wider investigation of different and
more complex initial conditions, which include both irregular
shapes and nonuniform and correlated matter density fluctu-
ations. Finally we plan a detailed study of external galaxy
line-of-sight velocity maps with the aim of developing an
alternative way to fit the data than the usually adopted one in
which rotational motions are taken to be maximal at all scales.

As a concluding remark it is worth mentioning that the
Milky Way velocity field was recently found to exhibit several
phase-space structures [75] together with velocity gradients
in all three components [68,76–79]. Such findings can be
understood in a model in which the galaxy has a nonstationary
nature of the type we discussed in this work, but can also
be explained as due to the effect of external perturbers. The
forthcoming data of the Gaia mission [74] will eventually
clarify the situation.
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