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Adiabatic lapse rate of nonideal gases: The role of molecular interactions and vibrations
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We report a formula for the dry adiabatic lapse rate that depends on the compressibility factor and the adiabatic
curves. Then, to take into account the nonideal behavior of the gases, we consider molecules that can move,
rotate, and vibrate and the information of molecular interactions through the virial coefficients. We deduce the
compressibility factor in its virial expansion form and the adiabatic curves within the virial expansion up to any
order. With this information and to illustrate the mentioned formula, we write the lapse rate for the ideal gas, and
the virial expansion up to the second and third coefficient cases. To figure out the role of the virial coefficients
and vibrations, under different atmospheric conditions, we calculate the lapse rate for Earth, Mars, Venus, Titan,
and the exoplanet Gl 581d. Furthermore, for each one we consider three models in the virial expansion: van
der Waals, square-well, and hard-sphere. Also, when possible, we compare our results to the experimental data.
Finally, we remark that for Venus and Titan, which are under extreme conditions of pressure or temperature, our
calculations are in good agreement with the observed values, in some instances.
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I. INTRODUCTION

The lapse rate, �, of an astronomic object’s atmosphere
is by definition the rate of change of its temperature with
respect to height. It has been observed for many objects
within the solar system with the help of space missions, for
instance, cassini, Venera, Mariner, MESSENGER, rovers, Pi-
oneer, Voyager, and others [1–4]. One of the hot topics of
astronomy is the search for habitable planets beyond Earth. A
critical and necessary condition for a planet to be habitable is
that the atmospheric conditions allow the existence of perma-
nent liquid water on its surface [5,6]. This is one of the reasons
that render the study and the determination of the lapse rate for
other astronomical objects necessary.

The usual theoretical approach to study the lapse rate is
the so-called dry adiabatic lapse rate (DALR). In this model,
each parcel of the atmosphere is considered to be in thermal
equilibrium and exchange no heat with its surroundings. Also,
it makes use of the hydrostatic equation and the equation of
state of the gas. The most elemental estimation of the DALR is
obtained by considering the ideal gas model (denoted hence-
forth as �IG), but this calculation yields a value that is far
from experimental data [7]. This is expected, on one hand,
since the atmospheres are composed of many other elements
(Earth’s atmosphere contains traces of vapor, for example).
On the other hand, the molecules of a real gas can vibrate and
interact between them (nonideal gas behavior).
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Some authors try to incorporate these nonideal gas effects
of the molecules using experimental information about the gas
in the formula of �IG [7,8]. This is an incorrect procedure
because the �IG strongly depends on the initial assumptions.
A derivation of a DALR for real gases is found in Ref. [9],
where the author applied his formula for Venus, obtaining a
good approximation to the experimental value. A limitation
of this approach is the availability of experimental data in the
range of atmospheric conditions for other astronomic objects.
From the theoretical point of view, a shortcoming of this
method is the impossibility of quantifying the origin of the
correction, namely, the molecular vibrations, or the molecular
interactions, or both.

An attempt to quantify the contribution of molecular in-
teractions can be found in Ref. [10]. There, the authors
analyze the effect of the second virial coefficient on the
DALR. This means that they include the possibility of two-
particle interactions only (by n-particle interactions, we mean
that the interaction potential takes place between n parti-
cles). This is quite restrictive; in fact, in some instances,
the n-particle interactions or molecular vibrations could be
relevant. Nevertheless, they find that in Titan, given its atmo-
spheric conditions, these interactions have a strong effect on
the DALR towards the observed value. The purpose of this
paper is to incorporate the information of n-particle interac-
tions and the possibility of molecular vibrations to the DALR
model.

The plan of the paper is the following. In Sec. II we deduce
a formula for the DALR that depends on the compressibility
factor (for fluids) and the adiabatic curves. Next, from sta-
tistical mechanics, in Sec. III we deduce the compressibility
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factor and the adiabatic curves within the virial expansion up
to any order and allowing molecular vibrations. In Sec. IV,
we combine the results of Secs. II and III to compute the
DALR for some particular cases of the virial expansion for
vibrating and nonvibrating molecules. There, we also discuss
three instances of virial coefficients related to simple fluid
models, namely, van der Waals, square-well, and hard-sphere.
As an application of the formulas obtained, we devote Sec. V
to calculate the DALR for Earth, Mars, Venus, Titan, and the
exoplanet Gl 581d. Finally, in Sec. VI we compare our results
to the observational data and in the case of Venus to those
reported in Ref. [9], and we present our conclusions.

II. DRY ADIABATIC LAPSE RATE

In this section, we shall determine a general expression for
the DALR for nonideal gases. The mathematical definition of
the lapse rate is

� := −dT

dz
, (1)

where T is the temperature and z is the height. We show below
that it turns out to be proportional to the well-known DALR
of monocomponent ideal gases given by

�IG = Mmolg

CIG
P

, (2)

where Mmol is the molar mass of the gas of the atmo-
sphere, g denotes the magnitude of the acceleration due
to gravity close to the surface of the astronomical object,
and CIG

P is the specific heat at constant pressure for ideal
gases, the value of which is CIG

P = 5+ fr

2 R, where fr = 0, 2,
and 3 for monoatomic, diatomic or linear, and polyatomic
molecules, respectively [11]. R is the gas constant (R =
8.31 J mol−1 K−1). Notice that, as is usual in the literature, we
take g as a constant even when it depends on the height (this
can be easily incorporated [12]). The justification is that, in
the examples, the variation of the value of g from the surface
to the top of the troposphere is less than 1% . In the equation
above and in what follows, we consider 1 mole of gas.

We start our derivation from the definition of the compress-
ibility factor, Z:

Z := PV

RT
, (3)

where P is the pressure, V is the volume, and T is the absolute
temperature of the gas [13]. The value of Z can be determined
experimentally (see, for example, Ref. [14]), obtaining then an
equation of state that describes real gases. As we mentioned,
a shortcoming of this approach is the availability of data for
the conditions of interest in the astronomical objects under
study. As an alternative, there exist theoretical models that
propose some specific functions for Z , that can be physically
interpreted, such as ideal gas (Z = 1), van der Waals [15], and
Redlich-Kwong [13] models, among others. Within the theo-
retical approaches, we are interested in the virial expansion
[16], which accounts for interactions between successively
larger groups of molecules. For completeness, we derive the
corresponding Z in Sec. III from statistical mechanics. At this
moment it is sufficient to know that in this approach Z can be

expressed as a function that only depends on V and T , i.e.,
Z = Z (V, T ).

Furthermore, we are interested in the analysis of the adi-
abatic lapse rate. The adiabatic process dictates the specific
forms of the curves in the different diagrams, which are called
adiabatic curves. We obtain these curves in Sec. III. For the
general formula that we are after, it is enough to use the fact
that, in the region we are interested in, the volume can be
written as a function of the temperature, V = V (T ), on each
adiabatic curve. From now on, for functions that only depend
on T we denote with a prime its derivative with respect to the
temperature, for example, V ′.

According to the general considerations discussed above,
from (3) we have

dP = R

V

(
Z + T

∂Z

∂T
− ZT

V ′

V
+ T

∂Z

∂V
V ′

)
dT . (4)

On the other hand, using the fact that the density of the gas, ρ,
in the atmosphere is given by ρ = Mmol/V we can write the
hydrostatic equation as

dP = −Mmolg

V
dz. (5)

Substituting (5) in (4) and taking into account (1) and (2), we
obtain

� = �IG CIG
P

R

(
Z + T

∂Z

∂T
− ZT

V ′

V
+ T

∂Z

∂V
V ′

)−1

. (6)

Let us make some remarks about Eq. (6).
(1) Regarding the compressibility factor, this equation only

makes use of the fact that Z can be expressed as a function of
the volume and temperature. This happens in the virial expan-
sion to any order and this is also true for the compressibility
factor obtained from other equations of state, for example, the
van der Waals equation.

(2) As we have mentioned before, in the virial expansion Z
accounts for interactions between successively larger groups
of molecules. However, by itself, it is not sensitive to the
vibrational state of the molecules.

(3) We must emphasize that this equation is evaluated on
an adiabatic curve V = V (T ). We show in Sec. III that the
energy, which is used to derive the adiabatic curves, is not
only modified by the virial coefficients, but it also takes into
account the contribution of molecular vibrations.

(4) Of course, Eq. (6) reproduces (2), because for the
ideal gas case Z = 1, and the adiabatic curves of ideal gases
satisfy V ′/V = −CIG

V /(RT ), where CIG
V is the specific heat at

constant volume for ideal gases, which fulfills CIG
V = CIG

P − R
(= 3+ fr

2 R). Using this, we have � = �IG.
(5) Notice that, so far, the consideration of a monocompo-

nent gas in (6) is only explicit in �IG and CIG
P which can be

generalized to the case of multicomponent gases. However,
in that scenario the compressibility factor and the adiabatic
curves are modified in a nontrivial way. In what follows, we
restrict ourselves to the monocomponent case, which suffices
to understand the atmospheric features of the astronomical
objects that we are interested in.
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III. EQUATION OF STATE AND ADIABATIC CURVES

We start from the partition function for the nonideal gases
in which we are interested. This allows us to compute the aver-
age pressure and the average energy. Then, using the ensemble
postulate of Gibbs, we obtain the thermodynamic variables
of interest, the pressure and the internal energy. From the
pressure expression, we derive the equation of state for this
system. Then, we identify the compressibility factor, which
corresponds to the well-known functional expression of Z in
the virial expansion. On the other hand, we need the internal
energy to describe the adiabatic processes, i.e., the adiabatic
curves, which we calculate at the end of this section.

The partition function, in Mayer’s representation, of a gas
constituted by N indistinguishable particles is given by [17]

Q = QMI
(qtransqrotqvib)N

N!
, (7)

where QMI is the partition function that codifies the molecular
interactions, while the other factors are the partition functions
corresponding to the fact that the particles move in a three-
dimensional space (qtrans), rotate (qrot), and vibrate (qvib).
These partition functions are given by [16–18]

QMI = exp

(
−N

∑
k=1

Bk+1

kV k

)
, (8a)

qtrans =
(2πMkBT

h2

)3/2

V, (8b)

qrot = T fr/2

θrot
, (8c)

qvib =
m∏

j=1

exp(−θ j/2T )

1 − exp(−θ j/T )
, (8d)

where (8a) is valid only at gaseous regimes up to the saturation
point [19–21] and the Bk+1 are the so-called virial coefficients,
which generically are sums of the cluster integrals involving
the (k + 1)-particle interactions [22]. They are, by construc-
tion, functions that can only depend on the temperature T [13]
(this statement becomes invalid at the vicinity of the boiling
point [23]). In (8b), M, kB, and h are the mass of the molecule,
the Boltzmann constant, and the Planck constant, respectively.
In (8c), θrot is a constant related to the characteristic rotational
temperatures. Finally, in (8d), m is the number of natural
vibrational frequencies, ν j , and θ j := hν j/kB are known as
vibrational temperatures [16]. Concerning qvib notice that (a)
its value is gas dependent and (b) for models where there is
no need to incorporate the molecular vibration information
it is enough to set qvib = 1. This allows us to turn off the
vibrational modes, and (c) it is a function that only depends
on T .

Now, the average pressure and average energy, in the
canonical ensemble, are calculated as [16]

〈P〉 = kBT
( ∂

∂V
ln Q

)
N,T

, (9a)

〈E〉 = kBT 2
( ∂

∂T
ln Q

)
N,V

. (9b)

Therefore, using (9) and the partition function (7), for
1 mole, we obtain

〈P〉V
RT

= 1 +
∑
k=1

Bk+1

V k
, (10a)

〈E〉 = CIG
V T + RT 2� − RT 2

∑
k=1

B′
k+1

kV k
, (10b)

where � := q′
vib/qvib. Furthermore, through the ensemble

postulate of Gibbs, we have that the average pressure and
average energy coincide with the pressure and internal energy
of the system in the thermodynamic context, i.e., 〈P〉 = P and
〈E〉 = U . Using the latter result, (10a), and comparing with
(3), we have that

Z = 1 +
∑
k=1

Bk+1

V k
. (11)

In this way, we obtain the well-known virial expression for the
compressibility factor Z . This is the function needed in (6) to
compute the lapse rate.

Notice that the expression of Z confirms remark 2, which
says that the vibrations do not modify the equation of state and
that the energy (10b) takes into account not only the molecular
interactions but also the vibrational state of the molecules
(through �), which confirms the claim we made in remark 3.

Additionally, for (6) we need the adiabatic curves. From
the first law of thermodynamics, if we consider an adiabatic
process we have

dU + PdV = 0. (12)

Plugging the equation of state (10a) and the energy (10b) into
(12), we obtain that the adiabatic curves in the V -T diagram
are given by

T

[
V qvib exp

(
T � −

∑
k=1

Bk+1

kV k

)]R/CIG
V

= ε0, (13)

where Bk+1 := T B′
k+1 + Bk+1 and ε0 is a constant, that can be

determined by the atmospheric conditions on the surface of
the astronomical object. However, to be able to use (13) in (6),
we need to solve for the volume in terms of the temperature.
This last step cannot be analytically done for an arbitrary order
of the virial expansion. We remark that it strongly depends on
the order considered of the virial expansion and that, on the
other hand, the vibrations pose no difficulty.

IV. PHYSICAL MODELS AND THEIR DALR

Here, we discuss the following models: ideal gas, the virial
expansion up to the second coefficient (both with and without
vibrations), and the virial expansion up to the third coefficient
with vibrations. We use these models in Sec. V to calculate the
DALR for some astronomical objects and compare the results
with the available observations.

A. Ideal gas with vibrational modes

Let us consider the case of an ideal gas and incorporate the
effect of vibrational modes. Physically, this case represents
a gas composed of noninteracting molecules that can move,
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rotate, and vibrate. Under these circumstances Bk = 0 for all
k. Then (13) reduces to

TV R/CIG
V [qvib exp(T �)]R/CIG

V = ε0. (14)

The volume as a function of the temperature is

V =
(ε0

T

)CIG
V /R exp(−T �)

qvib
. (15)

Then,

V ′

V
= −CIG

V

RT
− T �′ − 2�. (16)

Using (15), (16), and Z = 1 in (6), we obtain that the DALR
is given by

� = �IG CIG
P

CIG
P + RT 2�′ + 2RT �

. (17)

Notice that the corresponding value of ε0 is not needed in (17).

Ideal gas case without vibrations

As we have mentioned, if we do not want to consider the
contributions of molecular vibrations it suffices to set qvib =
1, then � = 0. Using this in (16) and (17), we find

V ′

V
= −CIG

V

RT
, (18a)

� = �IG. (18b)

This proves the claim we made in remark 4.

B. Virial expansion up to second order including vibrations

Now, we add to the case in Sec. IV A the possibility of two-
particle interactions. Mathematically, this means we consider
the virial expansion up to second order, i.e., Bk = 0 for k > 2,
therefore (13) reduces to

T
[
V exp

(
−B2

V

)
qvib exp (T �)

]R/CIG
V

= ε0, (19)

from which

V (T ) = B2

W (x)
, (20)

where x := B2qvib exp(T �)( T
ε0

)
CIG

V /R
and W (x) is the Lambert

function [24].
Now, using Z = 1 + B2/V and (20) in (6), we obtain the

following DALR:

� = �IG CIG
P

R

{
1 + W (x) − T

[
1 + 2B2W (x)

B2

]

×
[B′

2

B2
− 1

1 + W (x)

x′

x

]}−1

, (21)

where the quotient x′/x is explicitly given by

x′

x
= B′

2

B2
+ CIG

V

RT
+ 2� + T �′. (22)

Notice that the corresponding value of ε0 is needed in (21)
because x depends on it.

Virial expansion up to second order without vibrations

We can directly obtain the case without vibrations from the
analysis in Sec. IV B. The formula for the DALR looks like
(21). By setting qvib = 1, now we have

x = B2

( T

ε0

)CIG
V /R

, (23a)

x′

x
= B′

2

B2
+ CIG

V

RT
. (23b)

It is worth mentioning that this case was studied in
Ref. [10] by the authors and collaborators. There, the follow-
ing formula for the DALR was obtained:

� = Mmolg

2B2P′

(√
1 + 4P

RT
B2 − 1

)
, (24)

where P is the pressure on the adiabatic curve. Equation (24)
looks different from (21); the reason is that in Ref. [10] the
adiabatic curves were used in the P-T diagram. The equiva-
lence between (21) and (24) can be proved in the following
way. We need the equation of state over the adiabatic curve,
that is, (

P

RT

)( B2

W (x)

)
= 1 + B2

(
W (x)

B2

)
. (25)

We have used (20), with x given by (23a), to substitute the
volume. From (25), we obtain P and P′, and plugging them
into (24) we obtain (21).

We believe that the derivation presented here is conceptu-
ally clearer and shorter than the one appearing in Ref. [10].
Moreover, here we have obtained a formula for the DALR to
any order in the virial expansion, not only up to the second
one as in Ref. [10].

C. Third order virial expansion including vibrations

The last model that we want to analyze includes also
the possibility of three-particle interactions. This case corre-
sponds to the third order virial expansion, Bk = 0 for k > 3.
For the adiabatic curves, (13) reduces to

T

[
V exp

(
− B2

V
− B3

2V 2

)
qvib exp (T �)

] R
CIG

V = ε0. (26)

Unfortunately, from (26) we cannot write the volume as a
function of the temperature in closed form. However, we can
use numerical methods to obtain the volume in the region of
interest. To be precise, we search for a solution of (26) using
Newton methods (starting in the ideal gas volume with or
without vibration, accordingly), starting with the temperature
at the surface of the astronomical object and decreasing it in
steps of 
T = 0.01 K until reaching the value of the temper-
ature that corresponds to the highest part of the troposphere.
Moreover, the derivative is computed by using the five-point
stencil method (with a spacing between points of 0.001).
Both the volume and its derivative are interpolated with cubic
splines.
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Finally, under these circumstances and using Z = 1 +
B2/V + B3/V 2, the DALR is given by

� = �IG CIG
P

R

[
1 + B2

V
+ B3

V 2

− TV ′

V

(
1 + 2B2

V
+ 3B3

V 2

)]−1

. (27)

D. Virial coefficients

As we have mentioned B2 and B3 take into account two-
particle and three-particle interactions, respectively. Their
explicit functional form is dictated by the molecular in-
teraction model. For the analysis of the lapse rate in the
astronomical objects of interest, we have chosen three models:
van der Waals, square-well, and hard-sphere. Their second
virial coefficients are given by

BvdW
2 = a + b

T
, (28a)

BSW
2 = ã[1 − (d3 − 1) f ], (28b)

BHS
2 = ã, (28c)

respectively [25–28]. The function f in (28b) is f =
exp(c/T ) − 1. The parameters a, ã, b, c, and d have a physical
interpretation and their values are gas dependent. As it is well
known, the van der Waals model takes into account the volume
of the molecules and the molecular interactions. In (28a), a
represents the average excluded volume and b is associated
with the attractive interaction. The square-well model also
considers the volume of the molecules and an attractive inter-
action. In (28b), ã is the volume of the molecules, considered
as hard spheres, while d and c are related to the range and
amplitude of the attractive interaction potential. Therefore,
the square well is a generalization of the hard-sphere model,
which only considers the volume ã in (28c).

Using the parameters introduced in (28), we can write the
third virial coefficient [25–28] as

BvdW
3 = a2, (29a)

BSW
3 = ã2

8
[5 − (d6 − 18d4 + 32d3 − 15) f

+ (−2d6 + 36d4 − 32d3 − 18d2 + 16) f 2 (29b)

− (6d6 − 18d4 + 18d2 − 6) f 3] if d < 2,

BHS
3 = 5ã2

8
. (29c)

Notice that (29b) is valid only if d < 2; for the case d � 2
the corresponding formula is reported in Ref. [27]. For the
gases that we consider below (29b) suffices.

The parameters that appear in (28) can be obtained by
fitting these equations to the experimental data for the second
virial coefficient of the gas of interest. In our case, we are
interested in N2 and CO2 (see Sec. V). We show in Table I the
values obtained for the parameters and in Fig. 1 the curves
fitting the experimental data (see Ref. [29]) for the three
models considered.

TABLE I. Values of the parameters in (28) obtained by fit-
ting these equations to the experimental data for the second virial
coefficient.

Model Parameters N2 CO2

vdW a (cm3 mol−1) 63.6 ± 0.9 125 ± 3
b (cm3 K mol−1) −20786 ± 266 −74780 ± 1281

SW ã (cm3 mol−1) 44.5 ± 0.2 50.4 ± 0.3
d 1.619 ± 0.003 1.400 ± 0.002

c (K) 87.8 ± 0.7 324 ± 2
HS ã (cm3 mol−1) 44.5 ± 0.2 50.4 ± 0.3

V. RESULTS

Here, we present an application of the formulas developed
in Sec. IV. As we want to illustrate the role of the virial
coefficients and vibrations, we pick out astronomical objects
having diverse atmospheric conditions. Our selection is Earth,
Mars, Venus, Titan, and the exoplanet Gl 581d. In Table II
we present the relevant information for each astronomical
object, namely, the most abundant gas in its atmosphere (ma-
jor constituent), �IG; the experimental lapse rate (denoted
by �Obs); the atmospheric conditions on the surface (for the
exoplanet Gl 581d there is a wide range of pressures and
temperatures allowing the presence of liquid water [6,30,31]);

FIG. 1. Experimental data (points) of the virial coefficients B2

(a) and B3 (b) for N2 (squares) and CO2 (circles). In (a), blue (gray)
and yellow (medium gray) lines correspond to the curve fits to the
B2 data for the van der Waals and square-well models, respectively.
Green (light gray) lines are the B2 value for the hard-sphere in-
teraction. Solid and dot-dashed lines denote the information about
the gases N2 and CO2, correspondingly. In (b), color lines are the
closed-form expressions of B3 in (29) using the corresponding fit
parameters of B2.
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TABLE II. Information about the astronomical objects under consideration.

Astronomical object Major constituent Composition (%) �IG (K km−1) �Obs (K km−1) P0 (kPa) T0 (K) g (m/s2)

Earth N2 78 9.44 6.5 101 288 9.80
Titan N2 94.2 1.30 1.38 150 94 1.35
Mars CO2 96 5.61 2.5 0.6 215 3.71
Venus CO2 96.5 13.42 8.4 9200 737 8.87
Gl 581d (A) CO2 96 30.70 100 217 20.30
Gl 581d (B) CO2 96 30.70 2000 343 20.30
Gl 581d (C) CO2 96 30.70 5000 375 20.30

and their corresponding g value. In the computation of the
DALR, the atmosphere constitution is considered as mono-
component, composed of the most abundant gas. Remember,
for the astronomical objects under discussion, these gases are
N2 and CO2. The microscopic information required for the
calculations is the following: the rotational degrees of freedom
are fr = 2 due to the linearity of these molecules. For the
vibrational temperatures, θ j , we use the wave numbers: (i)
for CO2, 667.3 cm−1 (with degeneracy 2), 1341.5 cm−1, and
2349.3 cm−1 [32], and (ii) for N2, 2328.72 cm−1 [33].

In order to improve notation, we will denote the different
models in Sec. IV as follows: ideal gases with (without) vi-
brations by IG+ vib (IG), virial expansion up to the second
order with (without) vibrations by B2 + vib (B2), and virial
expansion up to the third order with vibrations by B3 + vib.

A. Adiabatic curves

The adiabatic curves, given in the general case by (13),
require the information of at least one point lying on the curve
to calculate the constant ε0. We choose to take the atmo-
spheric conditions at the surface of the astronomical object
in question. This information is provided in Table II in terms
of the temperature T0 and the pressure P0, but (13) is defined
in the V − T diagram. For our calculations, it is necessary
to compute the corresponding volume of 1 mole of the gas
under these pressure and temperature conditions. To do this,
we substitute T0 and P0 in the equation of state and then solve
for V . In particular, for the virial expansion up to B2 and B3,
we obtain two and three V0 values, respectively. Then, we
discard complex or negative solutions, and also those that do
not reduce to the ideal gas case when B2 and B3 are equal to
zero and there are no vibrations. In Table III, we summarize
the values of ε0 for all the models discussed in Sec. IV.

As an example, and to illustrate the effect of the interac-
tions and vibrations, we show in Fig. 2 the adiabatic curves for
the third order virial expansion with vibrations together with
the IG and IG+vib cases for Earth, Titan, Mars, and Venus.
Those of the exoplanet Gl 581d, under the three atmospheric
conditions shown in Table II, are depicted in Fig. 3. Let us
make some comments.

(a) The major deviation due to the molecular vibrations
occurs in Venus. This is to be expected as a consequence of
the high atmospheric temperatures.

(b) On the other hand, the deviations on Titan are primar-
ily due to the molecular interactions, since its atmospheric
conditions are close to the boiling point of N2 (≈ 77K at
101 kPa).

(c) The different atmospheric conditions in the exoplanet
are such to avoid phase transitions, as we illustrate in Fig. 3.

B. Lapse rate

Here, we show the DALR under the conditions described
in Sec. IV, together the values obtained in Sec. V A, for the
astronomical objects in Table II.

Notice that the DALR is a function of the temperature T
only. It is possible to express � in terms of the height z. To do
this, we solve the differential equation for the corresponding
DALR by the fourth order Runge-Kutta method. In this way,
we write T = T (z), and thus � = �(T (z)).

In order to enhance the exposition, we divide the presenta-
tion into three groups: astronomical objects with atmospheres
close to ideal gases (Earth and Mars), atmospheres in extreme
conditions of temperature or pressure (Venus and Titan), and
the exoplanet G1 851d under the considered three atmospheric
conditions (see Table II).

TABLE III. Values of ε0.

IG IG+vib Van der Waals Square well Hard sphere

B2 B2+vib B3+vib B2 B2+vib B3+vib B2 B2+vib B3+vib

Earth 64.3729 64.4586 64.2943 64.2971 64.2973 64.3076 64.3104 65.2783 64.3729 64.3758 65.5306
Titan 11.5267 11.5267 11.3274 11.3274 11.3799 11.2154 11.2154 11.2654 11.5265 11.5265 11.5783
Mars 332.655 350.177 332.639 350.16 350.16 332.628 350.148 350.148 332.655 350.177 350.177
Venus 39.742 86.9272 37.4769 81.9728 82.5694 38.3444 83.8704 83.9243 39.7043 86.8447 86.8916
Gl 581d (A) 43.5396 45.9154 43.2026 45.56 45.5605 42.9642 45.3086 45.3025 43.5395 45.9154 45.9154
Gl 581d (B) 24.9368 30.6176 23.3244 28.6379 28.7145 23.3532 28.6732 28.684 24.9311 30.6106 30.6147
Gl 581d (C) 19.5838 25.1675 16.8087 21.6012 22.07 17.0629 21.928 22.0244 19.5626 25.1403 25.1557
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FIG. 2. Adiabatic curves obtained by considering the third order virial expansion and molecular vibrations for Earth (a), Titan (b), Venus
(c), and Mars (d). The colors of the lines are the same as in Fig. 1. The ideal gas predictions with vibrations and without vibrations are
represented by a black solid and a red (gray) dot-dot-dashed line, respectively.

1. Atmospheres under conditions close to the ideal gas

There are two circumstances in which a gas shows an
ideal-gas behavior: (i) if its temperature is close to the Boyle
temperature [the temperature value satisfying B2(T ) = 0] [35]
and (ii) if it is a diluted gas [13]. The atmospheres of Earth and
Mars are examples of these conditions, respectively.

In the case of Earth, neither the molecular interactions
nor the molecular vibrations have a significant contribution
to the DALR, as we show in Fig. 4. On one hand, the vibra-
tion temperature of N2 is ≈ 3349 K, which is much higher
than the temperature on Earth’s surface, 288 K (see Table II).
The molecular vibration contribution to the heat capacity is
0.000 05–0.01 J K−1 in the troposphere, which is negligible.
On the other hand, Earth’s temperature is close to Boyle’s
temperature (≈326.65 and 327.51 K for van der Waals and
square-well models, respectively). This means that attractive

FIG. 3. Adiabatic curves considering the virial expansion up to
third order with molecular vibrations and ideal gas prediction with
and without vibrations for the exoplanet Gl 581d, for the three
atmospheric conditions appearing in Table II. Lines and colors are
the same as Fig. 2. The dashed black lines correspond to the phase
diagram of CO2 [34].

and repulsive interaction forces are almost balanced [35]. This
makes the total molecular interactions negligible.

In Fig. 5 we show the DALR of Mars. Notice that the
dominant contribution to the deviation of the lapse rate with
respect to the ideal-gas prediction towards the observational
value comes from the molecular vibrations. The reason for
the negligible contribution from the virial coefficients is the
low probability of observing molecular interactions since the
atmosphere is diluted. This fact is consistent with the effects
observed in the adiabatic curves [see Fig. 2(d)].

2. Atmospheres under extreme conditions of pressure
or temperature

We call extreme conditions those that are close to con-
ditions that allow phase transitions or to the vibrational

FIG. 4. Lapse rate for Earth. Lines for the ideal gas prediction
with and without vibrations are denoted by black solid and red (gray)
dot-dot-dashed lines, respectively. The considered virial expansions
are denoted as follows: B2 (dotted lines), B2+vib (dash-dotted lines),
and B3+vib (solid lines). Finally, colors represent the models as
follows: van der Waals [blue (gray)], square-well [yellow (medium
gray)], and hard-sphere [green (light gray)].
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FIG. 5. Lapse rate for Mars. Lines and colors are the same as in
Fig. 4. The observational value is represented by a black dashed line.

temperatures, near the surface of the body. For example, com-
paring Titan’s atmospheric conditions (see Table II) with the
boiling point of N2 (≈ 77 K at 101 kPa) and its vibrational
temperature (≈ 3349K), we expect that molecular interactions
play a more important role than molecular vibrations in the
resulting DALR. This is shown in Fig. 6. This fact is also
observed in the adiabatic curves [see Fig. 2(b)]. Notice that
virial coefficients that also model attractive interactions (van
der Waals and square-well) give values of DALR closer to the
observational value. On the other hand, the hard sphere model,
which represents a repulsive force only, gives a DALR that is
worse than the ideal gas prediction.

Venus is another planetary body under extreme conditions.
In Fig. 7 we show the value obtained for the DALRs. Notice
that Venus’s surface temperature is close to the first vibra-
tion temperature of CO2 (≈960 K). Therefore, the molecular
vibrations have a more important effect on the DALR than
the virial coefficients [we already observed this effect in the
adiabatic curves in Fig. 2(c)]. Remarkably, in those cases
considering molecular vibrations, we obtain a DALR that is
in a good agreement with the observed value.

3. Exoplanet Gl 581d

The exoplanet Gl 581d was discovered in the habitable
zone of M-dwarf Gl 581 in 2007 [36]. According to Ref. [6],
it has around eight times Earth’s mass. We emphasize that
the range of atmospheric conditions considered in Table II

FIG. 6. Lapse rate for Titan. Lines and colors are the same as in
Fig. 4. The observational value is represented by a black dashed line.

FIG. 7. Lapse rate for Venus. Lines and colors are the same as in
Fig. 4. The observational value is represented by a black dashed line.

includes those allowing for the presence of liquid water on
the planet surface [6].

This example allows us to illustrate, on the same astro-
nomic object, how the atmospheric conditions dictate the
contributions of molecular vibrations and interactions. In
Fig. 8, we show the DALR for Gl 581d under the atmospheric
conditions A, B, and C in Table II. For A, we observe that the
dominant contribution to the DALR comes from the vibrations
(as in the Mars case). On the other hand, in conditions B
and C, which can be considered as extreme conditions, the
molecular interactions also become relevant. Notice that in
case C the contribution of vibrations and those of the van der
Waals and square-well models are almost balanced, and then
we get a DALR close to the ideal gas prediction.

In this case, it is not possible to compare our results with
any observational value because the real conditions for this
exoplanet are unknown, but we can make comparisons with
the ideal-gas prediction to observe the effect of the molecular
interactions and vibrations. Additionally, one application of
our results is the estimation of the height of the top of the
troposphere. If we restrict the adiabatic curves to the region
where no phase transitions are allowed, we obtain 1, 5, and
6 km for conditions A, B, and C, respectively. Notice that
if the atmosphere contains traces of vapors (such as CO2 or
H2O clouds) the use of the moist lapse rate is necessary (as
in Earth). In this case, the estimated height of the top of the
troposphere could increase.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we obtain a formula for the DALR that de-
pends on the compressibility factor and the adiabatic curves.
As our interest is to study the nonideal behavior of atmo-
spheric gases, we take into account the translation, rotation,
and vibration of molecules as well as interactions between
them. We consider the virial expansion for three models,
namely, van der Waals, square-well, and hard-sphere. We
analyze in detail the following cases: ideal gas, and virial
expansion up the second order both with and without vi-
brations. We also consider third order contributions together
with vibrational modes. We study the DALR for Earth, Mars,
Venus, Titan, and the exoplanet Gl 581d under the previous
circumstances.

042107-8



ADIABATIC LAPSE RATE OF NONIDEAL GASES: THE … PHYSICAL REVIEW E 102, 042107 (2020)

FIG. 8. Lapse rate for the exoplanet Gl 581d: A (a), B (b), and C (c) (see Table II). Lines and colors are the same as in Fig. 4.

Notice that in all these cases the contribution of the molec-
ular interactions to the DALR becomes negligible as the
height increases. The reason is the decrease in the density,
pressure, and temperature. In these conditions the ideal gas
behavior is recovered. Regarding the observed value, �Obs,
we show it in the figures of Sec. V, except for the exoplanet
Gl 581d the �Obs of which is unknown. To quantify how
much our DALR approaches to �Obs, we define the following
auxiliary function:

η = �IG − �

�IG − �Obs
, (30)

where � denotes the quotient of 
T , the temperature dif-
ference between the surface and the top of the troposphere
(calculated with �), over the corresponding 
z. In this way,
we obtain a mean-type value for the DALR. In Fig. 9 we show
the values of η for the cases analyzed in Sec. V B.

The interpretation of η is straightforward: if η takes val-
ues around zero then � is close to �IG. Earth and Mars are
examples of this. We conclude that in these cases there are
other contributions to the DALR that are more important
than the molecular vibrations and interactions. For Earth,
it is known that the atmosphere contains traces of vapors,
and then we must use the moist lapse rate approach, which

FIG. 9. Value of η for the equations of state: IG+ vib [red (gray)
stars], B2 (triangles), B2+vib (squares), and B3+vib (circles). The
virial coefficient models are van der Waals [blue (gray)], square-well
[yellow (medium gray)], and hard-sphere [green (light gray)].

gives 6–7 K km−1 in the middle layer of the troposphere [7],
that is a better approximation to �Obs. On Mars, we observe
an improvement of 20% by including molecular vibrations
in the computation of the DALR, but it also has additional
heating that comes from the absorption of solar radiation by
suspended dust particles [4].

On the other hand, η ∼ 1 means that � is a very good ap-
proximation to �Obs. This is the case for astronomical objects
under extreme conditions for some models. In Titan, we have
that the contributions of the interactions are more important
than that of the vibrational ones, as we explain in Sec. V B 2.
Conversely, for Venus, the vibrations are more important than
molecular interactions (see Sec. V B 2).

Let us compare our approach to the results reported by
Staley in Ref. [9], where the author analyzes Venus consid-
ering an atmosphere of 100% CO2 and using experimental
data for the compressibility factor and heat capacity. Staley
obtains a DALR of 7.8486 K km−1 at 10100 kPa and 750 K.
Under the same conditions, we obtain for the third order
virial expansion and including vibrations the following val-
ues: 7.67024 K km−1, 8.07806 K km−1, and 7.18384 K km−1,
for van der Waals, square-well, and hard-sphere models, re-
spectively. The hard-sphere model gives the worst prediction.
Notice that the difference between the first two models and
the Staley prediction is less than ±0.24 K km−1. It is worth
mentioning that the square-well model gives the closest value
to �Obs.

Finally, as we state in Sec. II, our approach can be ap-
plied for the compressibility factor of other equations of state,
not only in the virial expansion, to incorporate the molecu-
lar interactions. We intend to analyze this in a future work.
Furthermore, a feasible extension to this paper is to take
into account that atmospheres are composed of several gases
(mixed gases). This modifies the molecular mass, the heat
capacity, and the virial coefficients Bmix

k , that now take into
account all possible interactions into the mixed gases [37]. A
step forward in the understanding of the lapse rate is to include
the molecular vibrations and interactions in other approaches
to the computation of the lapse rate, for instance, the moist
lapse rate. However, to be applied, these generalizations could
face the problem of data availability.
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