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Stochastic nodal surfaces in quantum Monte Carlo calculations
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Treating the fermionic ground state-problem as a constrained stochastic optimization problem, a formalism
for fermionic quantum Monte Carlo is developed that makes no reference to a trial wave function. Exchange
symmetry is enforced by nonlocal terms appearing in the Green’s function corresponding to an additional walker
propagation channel. Complemented by a treatment of diffusion that encourages the formation of a stochastic
nodal surface, we find that an approximate long-range extension of walker cancellations can be employed without
introducing significant bias, reducing the number of walkers required for a stable calculation. A proof-of-concept
implementation is shown to give a stable fermionic ground state for simple harmonic and atomic systems.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) methods have provided
some of the most important results in computational
physics [1] and remain among the most accurate methods
available for calculating ground-state properties of quantum
systems [2]. However, for certain systems, QMC suffers from
the infamous fermion sign problem, the general solution to
which has been shown to be NP-hard [3]. We focus on the
specific case of diffusion Monte Carlo (DMC) methods [4–6],
which converge on the many-body ground state by iteratively
projecting out exited state components from the wave func-
tion. Here the sign problem arises due to exchange symmetry
dividing the wave functions into regions of different sign,
known as nodal pockets, separated by a nodal surface. This
increases the fermionic ground-state energy relative to that
of the bosonic ground state, and, as a result, the former is
projected out, typically exponentially decaying away as the
iterative procedure progresses [7].

Despite this exponential decay of the fermionic com-
ponent, methods such as release-node DMC can extract
information about the fermionic ground state from the tran-
sient behavior of the wave function [8]. However, this
transient behavior leads to a statistical error that grows with
system size, requiring a formidable computational effort to
mitigate [9]. The most popular approach to obtain a stable
fermionic ground state in DMC is known as the fixed-node
approximation, developed in the early 1980s [10,11], whereby
the nodal surface is fixed to that of some trial wave func-
tion, which must be known a priori. We focus on electronic
systems, where it is conjectured that the presence of many-
body correlation leads to the minimal case of only two nodal
pockets [12], which may make the electronic problem more
tractable than the general NP-hard case.

In this work, we develop a formalism of fermionic DMC
that makes no reference to a trial wave function. In Sec. II
we show that including exchange symmetry as a constraint in
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the energy minimization problem leads to a modified DMC
scheme, resulting in a propagation channel in the Green’s
function that couples populations of signed walkers. In Sec. III
we go on to show how this propagation results in the for-
mation of a stochastic nodal surface, constructed from the
entire population of walkers, that is free to vary and minimize
the energy. We propose a diffusion scheme to maximize its
stability.

Compared to previous methods employing signed walk-
ers (such as the fermion Monte Carlo method of Kalos and
Pederiva [13], the early work of Anderson and Traynor [14],
or the second-quantized approach of Umrigar [15]) our work
presents an alternative way to manage the propagation, and
cancellations between, signed walkers, informed by the un-
derlying optimization problem. In Sec. IV we discuss the
relationship to these previous schemes, which themselves can
be thought of as having fluctuating nodal surfaces due to
walker-walker cancellation processes. Finally, we provide an
open-source implementation of the method [16] and demon-
strate that it obtains a stable fermionic ground state for the
harmonic and atomic systems considered.

II. FORMALISM

We start by formulating the fermionic problem for N parti-
cles in d dimensions as the following constrained optimization
problem:

Find arg min〈ψ |H |ψ〉 such that
|ψ〉

〈ψ |ψ〉 = 1 (Normalization), (1)

〈x |ψ〉 = −〈Pix |ψ〉 (Antisymmetry), (2)

∀ Pi ∈ E, x ∈ RdN ,

where E is the set of pairwise identical-fermion exchanges.
If the system contains M identical fermions, there are
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M(M − 1)/2 such exchanges. These exchanges can be com-
bined to generate the set P of the M! permutations of identical
fermions. Introducing the Lagrange multipliers ET and μi(x)
the optimization problem is equivalent to extremizing the
Lagrangian

L = 〈ψ | H |ψ〉 + ET [1 − 〈ψ |ψ〉]
+

∑
i

∫
ψ∗(x)μi(x)(Pi + 1)ψ (x) dx (3)

with respect to ψ , ψ∗, ET , and the μi(x)’s. We note that L can
be written as

L = ET + 〈ψ |
HX︷ ︸︸ ︷

H − ET +
∑

i

μi(x)(Pi + 1) |ψ〉 (4)

allowing us to define an effective Hamiltonian HX . The term
involving the Lagrange multipliers μi can be interpreted as
a cost function that penalizes the appearance of a symmet-
ric component in the wave function so long as we require
μi(x) > 0. Extremization of L with respect to ψ and ψ∗ [17]
leads to

HX ψ = 0 = Hψ − ET ψ +
[∑

i

μi(x)(Pi + 1)

]
ψ. (5)

From Eq. (2) we see that the term in square brackets vanishes
at the extremum of L, leading to the Schrödinger equation
Hψ = ET ψ . This allows us to identify ET as the fermionic
ground-state energy.

To perform the extremization we propagate the imaginary
time (τ = it) Schrödinger equation for HX ,

∂ |ψ (τ )〉
∂τ

= −HX |ψ (τ )〉 , (6)

which can be written in integral form as

〈x |ψ (τ + δτ )〉︸ ︷︷ ︸
Propagated wave function

ψ (x,τ+δτ )

=
∫

〈x| exp(−δτHX ) |x′〉︸ ︷︷ ︸
Green’s function

G(x,x′ ,δτ )

〈x′ |ψ (τ )〉︸ ︷︷ ︸
Old wave function

ψ (x′ ,τ )

dx′. (7)

Following traditional DMC, we sample our wave function
with a discrete set of walkers, each representing a particular
point in configuration space xi and carrying a corresponding
weight wi:

ψDMC(x, τ ) =
∑

i

wi(τ )δ[x − xi(τ )]. (8)

Equation (7) can then be interpreted as an evolution equa-
tion for the walkers, where the Green’s function G(x, x′, δτ )
enters as a generalized transition probability from x′ → x.
Substituting ψDMC into this evolution equation, we obtain the
propagated wave function:

ψDMC(x, τ + δτ ) =
∑

i

wi(τ )G(x, xi(τ ), δτ ). (9)

Writing H = T + V , where T is the kinetic energy operator
and V is the (local) many-body potential, allows us to define

FIG. 1. Schematic of wave function formation arising from com-
peting walker propagation channels (shown for three fermions in a
harmonic well as in Fig. 4).

the well-known [4] potential and diffusive parts of the Green’s
function:

GV (x, x′, δτ ) ≡ exp{−δτ [V (x) + V (x′)]/2},

GD(x, x′, δτ ) ≡ 〈x| exp(−δτT ) |x′〉 ∝ exp

(
−|x − x′|2

2δτ

)
.

For sufficiently small time steps δτ � 1, our full Green’s
function can then be written (see Appendix A) as

G(x, x′, δτ ) =

GX ⇐⇒ Exchange moves︷ ︸︸ ︷[
N (x′) −

∑
i

Xi(x
′)Pi

]

× GV (x, x′, δτ )︸ ︷︷ ︸
Potential weighting

× GD(x, x′, δτ )︸ ︷︷ ︸
Diffusion

exp(δτET )︸ ︷︷ ︸
Population control

,

(10)

with

Xi(x
′) = δτμi(Pix

′), N (x′) = 1 −
∑

i

δτμi(x
′). (11)

We note that if we were to neglect the fermionic con-
straint, we would recover the Green’s function of traditional
DMC [4]. The part arising from this constraint is labeled GX

and can be applied to a walker at x′ with weight w by carry-
ing out the fermionic exchange {x′ → Pix′,w → −w} with
probability Xi(x′). These nonlocal exchange moves enforce
the antisymmetry of the wave function by allowing walkers
sampling one nodal pocket to stochastically switch to sam-
pling any symmetry-related nodal pocket (see Fig. 1). The
tiling theorem [18] then implies that any walker can access
and contribute weight to all nodal pockets. As a result, rather
than each walker simply contributing to the wave function at
a particular point in configuration space, it can now contribute
to all symmetry-related points. For simplicity, in our imple-
mentation we choose the probabilities Xi(x′) and N (x′) so
that each of the exchange moves (including no exchange) are
equiprobable.
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FIG. 2. The diffusive propagation of two nearby walkers of
opposite sign located at x1 and x2 ⇒ ψD(x) = GD(x, x2, δτ ) −
GD(x, x1, δτ ) ≡ G2 − G1 (black dashed line). The red (blue) shaded
region shows the portion of G2 (G1) that can be canceled in the
propagation.

III. IMPLEMENTATION

A. Stochastic nodal surface

To maximize the effectiveness of the exchange moves, we
also consider how best to apply the other parts of the Green’s
function. The diffusive part of the Green’s function applied to
a set of walkers leads to the diffused wave function

ψD(x) =
∑

i

wiGD(x, xi, δτ ) (12)

as shown in Fig. 2 for two opposite-sign walkers. If we rep-
resent this new wave function as a combination of walkers
with weights ±1 with configurations sampled from the distri-
butions P±(x), respectively, we must have

P+(x) − P−(x) = ψD(x). (13)

In traditional DMC each walker diffuses independently by an
amount sampled from GD, resulting in

P+(x) = ψ+(x) ≡
∑
wi>0

wi(τ )GD(x, xi, δτ ),

P−(x) = ψ−(x) ≡
∑
wi<0

|wi(τ )|GD(x, xi, δτ ). (14)

A drawback of this scheme when applied to signed walkers is
that it allows +ve walkers to move into a region where ψD is
−ve, and vice versa, as can be seen from the overlap of P+(x)
and P−(x) in Fig. 3(a). This prohibits the emergence of well-
separated regions of +ve and −ve walkers, corresponding to
nodal pockets. Without stable nodal pockets, the walkers end
up sampling the bosonic ground state with a randomly fluctu-
ating sign. This is known as bosonic collapse and arises in a
similar fashion to the exponentially decaying signal-to-noise
ratio in so-called release-node DMC [7]. An example is shown
in Fig. 4(a) for a system of three noninteracting fermions in a
harmonic well.

To avoid bosonic collapse, one particular sign of walker
should dominate at each point in configuration space. Typ-
ically this sign is chosen according to the fixed-node
approximation as being equal to that of the trial wave function.
We instead derive a propagation scheme that encourages the

FIG. 3. Propagation schemes satisfying Eq. (13), applied to the
walkers in Fig. 2. (a) Traditional DMC propagation [Eq. (14)].
(b) Our propagation scheme [Eq. (16)]. Note that in (a) there is
overlap of the +ve and −ve walker distributions. The same is not
true for (b).

formation of a stochastic nodal surface which, in contrast to
fixed-node DMC, is free to vary and minimize the energy. In
order to encourage the formation of such a nodal surface, we
seek the form of P±(x) that maximizes the expected separation

FIG. 4. The wave function of three noninteracting fermions with
coordinates x, y, and z in a one-dimensional harmonic well, inte-
grated and viewed along the (1,1,1) projection. The analytic nodal
surface is shown as a dotted black line. From this projection,
the nodal pockets can be clearly seen. (a) Bosonic collapse from
DMC with exchange moves but without a stochastic nodal surface.
(b) From DMC with exchange moves and a stochastic nodal surface.
(c) Analytic bosonic ground state. (d) Analytic fermionic ground
state.
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of +ve and −ve walkers, given by

〈|x+ − x−|〉 =
∫

P+(x+)P−(x−)|x+ − x−| dx+ dx−. (15)

This leads, independently of the form of ψD(x) (see
Appendix B), to

P±(x) =
{|ψD(x)| if sgn(ψD(x)) = ±1,

0 otherwise. (16)

These distributions have no overlap, as can be seen in
Fig. 3(b). However, because P±(x) are no longer simple sums
of Gaussian terms (as ψ± were), they are difficult to sample
moves from directly. This can be remedied by noting that

P±(x) = ψ±(x) f±(x), (17)

where [17]

f±(x) = max(1 − ψ∓(x)/ψ±(x), 0) ∈ [0, 1] (18)

can be interpreted as reweighting functions, as shown in
Fig. 3(b). We can then interpret Eq. (17) as a diffusion ac-
cording to ψ±(x) [corresponding to moves sampled from
GD(x, x′, δτ )] followed by a corrective reweighting w →
f±(x)w, due to cancellation of +ve and −ve walkers.

Applying this scheme to the same system of three non-
interacting fermions in a harmonic well results in the wave
function shown in Fig. 4(b). Comparing to Fig. 4(d) we see
that the analytic nodal surface is reproduced.

B. Initialization

We initialize the walkers in such a way as to speed up their
equilibration into an antisymmetric state. This is achieved
by defining a unique ordering of the walker configurations,
whereby the particles are ordered by their increasing coordi-
nates. For example, in two spatial dimensions, the particles are
ordered first by increasing x coordinate, then by increasing
y coordinate. Starting with walker configurations distributed
according to a normal distribution xi ∼ N (μ = 0, σ = 1 a.u),
we apply exchange moves to the walkers x = (r1, r2, . . . , rN )
until their constituent particles are increasing according to this
order (i.e., r1 � r2 � r3 · · · ), and set their weights to +1. This
is the same as the ordering used in Ref. [19], except here
we use this procedure only for initialization of the walkers.
As the simulation proceeds, walkers will be propagated into
antisymmetric images of this initial positive-definite group,
quickly setting up a large antisymmetric component.

C. Energy estimation

The Lagrange multiplier associated with normalization,
ET , corresponds to an energy offset which appears in our
effective Hamiltonian HX . As the algorithm progresses, the
value of ET is updated to keep the total weight of walk-
ers, W (τ ) = ∑

i |wi(τ )|, roughly constant. The expected total
weight after propagation from τ to τ + δτ is given by

〈W (τ + δτ )〉 =
∑

i

|〈wi(τ + δτ )〉|

=
∑

i

|wi(τ )G(xi(τ + δτ ), xi(τ ), δτ )|. (19)

Separating this into contributions from different parts of the
Green’s function [see Eq. (10)] we have

〈W (τ + δτ )〉 =
∑

i

|wi(τ )G(i)
X G(i)

V G(i)
D exp(δτET )|, (20)

where we have used the shorthand notation G(i) ≡ G(xi(τ +
δτ ), xi(τ ), δτ ). We keep the total weight roughly constant by
requiring

〈W (τ + δτ )〉 != W (τ ) =
∑

i

|wi(τ )|

⇒ ET (τ ) = 1

δτ
ln

[ ∑
i |wi(τ )|∑

i

∣∣wi(τ )G(i)
X G(i)

V G(i)
D

∣∣
]
. (21)

This is known as the growth estimator of the energy and,
in order to keep the population stable, will converge to the
lowest eigenvalue of HX , which we can therefore estimate by
averaging the value of ET (τ ) (after equilibration) over many
iterations. However, because each iteration is correlated with
the previous iteration, one must be careful in estimating the
uncertainty of such averages. In this work we use the widely
employed reblocking method [20] to estimate statistical un-
certainties.

If one has access to a suitable trial wave function ψT (x),
that has nonzero overlap with the exact fermionic ground
state, the fermionic energy can be estimated directly using the
so-called projection estimator:

Eproj(τ ) =
∑

i wi(τ )HψT (xi )∑
i wi(τ )ψT (xi )

. (22)

Note that it is H , not HX , that appears in Eq. (22). It is well
known [19] that the statistical uncertainties in Eproj(τ ) are
typically smaller than that of ET (τ ), due to the reduced depen-
dence on the fluctuating population. Cancellations between
signed walkers contribute to these fluctuations, resulting in
larger statistical errors for fermionic systems when using the
growth estimator. This can be clearly seen by comparing DMC
calculations of the ground state and first exited state of the
helium atom in Fig. 5. However, in order to use Eq. (22), its
denominator must remain finite for sufficiently many DMC
time steps to build up accurate statistical averages. In transient
methods, such as release-node DMC, the exponential decay
of the fermionic component leads to an exponential decay of
the denominator of Eq. (22) and a correspondingly small set
of usable iterations from which to build up such averages.
In contrast, we find that the fermionic state obtained from
propagating the Green’s function of HX leads to stable (at least
on the timescales we have probed in obtaining the results for
this work) nonzero denominator of Eq. (22), as can be seen
in Fig. 6, allowing straightforward use of projection-based
estimators. However, both for simplicity and as a proof-of-
concept, we restrict ourselves to considering implementations
that require no trial wave function, and so are limited to
using the growth estimator. In doing this we are computing
the “bosonic” (lowest) energy of the Green’s function, rather
than estimating just the fermionic component. As a result,
any symmetric component that remains (despite the exchange
moves and cancellations) will influence the estimator towards
the symmetric ground-state energy (see, for example, Fig. 8
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FIG. 5. DMC calculations of the helium atom ground state, with
electrons having opposite spin (parahelium), and the exited (triplet)
state with electrons having parallel spin (orthohelium), calculated
using a stochastic nodal surface. A time step of δτ = 10−3 atomic
units was used with δτeff = 0.5 atomic units (see Sec. III D). It is
clear to see that the exited (fermionic) state shows larger fluctuations
than the (bosonic) ground state. This is due to cancellations between
oppositely signed walkers contributing to fluctuations in the growth
estimator of the energy. The reference energies are from VMC op-
timization of many-parameter trial wave functions [21], accurate to
within a few μHa.

below), rather than being removed by a projection-type esti-
mator. The extension of the method to include a trial wave
function to allow the use of both the projection estimator and
importance sampling (see Ref. [4]) is a high priority for future
work.

As is typical in DMC, after modifying the weights ac-
cording to each part of the Green’s function, we treat them
with a birth-death algorithm. This algorithm is designed to
stop a single walker (usually in a low-potential region) simply
accumulating all of the weight and exponentially dominating

FIG. 6. The denominator of Eq. (22) vs DMC time step for the
simulation used to produce Fig. 4(b) (104 walkers, δτ = δτeff = 10−3

atomic units). Note the y-axis scale. For the purposes of this plot,
the trial wave function was set to the analytic fermionic ground
state [shown in Fig. 4(d)]. We can see that the denominator remains
large and roughly constant. Inset: the denominator as a fraction of its
maximum possible value (obtained if the walkers are all of the same
sign as the analytic wave function).

over the rest. In our implementation a walker with weight wi is
replaced with �|wi| + u� walkers, each with weight sgn(wi).
Here u is a uniform random number ∈ [0, 1] and �·� is the
floor function. This procedure leaves 〈W 〉 unchanged while
preventing individual weights from becoming too small or
large.

In atomic systems, time step error can lead to a walker
diffusing too close to a configuration where an electron over-
laps with a nucleus and obtaining a correspondingly divergent
(+ve) weight. This is known as a population explosion. We
mitigate this outcome by defining a maximum walker weight
wmax and reverting any DMC iteration where max(|wi|) >

wmax (in this work wmax � 4 resulting in only 1 in every
∼5000 iterations being reverted). We also use a softened
version of the Coulomb interaction of the form

Vc,soft(r, rs) = 1

r + rs
. (23)

For the calculations performed in this work rs � 10−5, which
introduces a bias that is much smaller than the time step error.
We note that schemes to reduce the error due to Coulomb
singularities exist [22,23], but they are not employed here.

D. Effective nodal surface time step

For systems existing in one spatial dimension the nodal sur-
face is entirely specified by the antisymmetry constraint [18].
As a result, fermionic methods must be tested on higher-
dimensional systems, which present a significantly increased
challenge. For a fixed number of walkers, the average walker-
walker separation 〈|xi − x j |〉i �= j increases exponentially with
the dimensionality of configuration space—a manifestation of
the sign problem. This allows the +ve and −ve walkers more
space to slip past one another and induce the bosonic collapse
of the wave function. To mitigate this outcome we introduce
an effective time step δτeff � δτ and enforce the nodal surface
of the corresponding diffused wave function

ψD,eff(x) =
∑

i

wiGD(x, xi, δτeff ). (24)

By increasing δτeff we obtain a long-range ansatz for the
nodal surface which, as before, is still free to vary in order
to minimize the energy. Taking δτeff > δτ can be justified on
physical grounds, as the kinetic energy contribution penal-
izes wave functions that fluctuate over small length scales.
By increasing δτeff, we are effectively smoothing out such
fluctuations, as can be seen in Fig. 7. However, this is still an
approximation, and, as such, large values of δτeff introduce a
bias into the DMC energy which grows larger as more features
of the nodal surface become unresolvable on the scale of δτeff.
In order to keep this bias as small as possible, the long-range
nodal surface is applied post hoc; δτeff does not enter into the
diffusive step or into evaluation of the functions f±(x) (see
Sec. III E).

We can see how increasing δτeff takes us from the bosonic
ground state to the fermionic ground state of a lithium atom in
Fig. 8. The DMC energy plateaus at the fermionic energy as
δτeff increases above ∼0.6 atomic units. We note that the re-
sulting fermionic state is stable for long times, in contrast with
transient methods such as release-node DMC. On increasing
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FIG. 7. The effect of δτeff on the nodal surface of a two-fermion system in one dimension. Left: δτeff = 0.1 Right: δτeff = 1.0. Red circles
(blue squares) represent the location of positive (negative) walkers. The background is shaded according to ψD,eff(x), where the nodal surface
can be seen as a bright line separating the positive (red) and negative (dark blue) nodal pockets. It is clear that increasing δτeff leads to a
smoother nodal surface that is closer to the analytic nodal surface at x = y.

δτeff beyond ∼1.5, we enter the regime where δτeff is too large
to resolve the analytic nodal surface, and a positive bias is
introduced to the energy. This is similar to the situation in
fixed-node DMC where the energy is bounded from below by
the true ground-state energy and variational with respect to
antisymmetric trial wave functions.

Clearly, it would be useful to be able to identify a sensible
value for δτeff without having to construct plots such as Fig. 8.
From the form of Eq. (24), δτeff can be interpreted the range
of influence of a walker on the nodal surface (see also Fig. 7).
A natural choice for its value is then given by the expected
midpoint distance between a +ve walker and its nearest −ve

FIG. 8. The DMC energy of a lithium atom as a function of the
effective time step δτeff used to define the stochastic nodal surface.
For each value of δτeff, the energy was obtained from a simulation
of 104 walkers for 105 iterations with a time step of 10−3 atomic
units. The DMC energy is shaded to ± the reblocked error. The blue
dotted line is at the nonrelativistic fermionic energy obtained from
a Hylleraas-type expansion, accurate to within a basis set error of
<10−9 Ha [25]. The inset shows the effect of increasing δτeff beyond
sensible values.

neighbor:

δτeff =
〈
min

x−

|x+ − x−|
2

〉
x+

, (25)

where the minimization is over the positions x− of all of the
negative walkers, and the average is over the positions x+ of
all of the positive walkers. In a preliminary calculation of
the beryllium atom, the value given by Eq. (25) fluctuates
around δτeff = 1.35. Carrying out an extended DMC calcula-
tion of the beryllium ground-state energy using this value for
δτeff produces Fig. 9, from which the ground-state energy is

FIG. 9. The evolution of a DMC calculation of a beryllium atom.
The calculation was carried out using 104 walkers for 104 time
steps, each of δτ = 10−3 atomic units. An effective time step of
δτeff = 1.35 atomic units, derived in a preliminary calculation from
Eq. (25), was used to describe the stochastic nodal surface. In the
upper panel, the dashed line is at the target population. In the lower
panel, the dashed line is at −14.66654 Ha, the energy obtained from
a Hylleraas-type expansion, accurate to within 2 × 10−4 Ha of the
exact value [24]. The DMC estimate of the energy is −14.665 ± 0.07
Ha.
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estimated as −14.665 ± 0.07 Ha, well within errors of
the exact value of −14.66654 ± 2 × 10−4 Ha obtained via
Hylleraas-type expansions [24].

E. Summary of method

Combining the propagation stages explored in the preced-
ing sections, we arrive at the following scheme:

(1) Initialization: Initialize the walkers according to the
procedure discussed in Sec. III B.

(2) Exchange moves: To each walker, apply one of the
exchange moves x → Pix, w → −w (or no exchange x →
x, w → w), each with equal probability.

(3) Diffusion: Diffuse each walker from x → x′ with
probability GD(x, x′, δτ ).

(4) Potential reweighting: For each walker, apply the
potential reweighting w → wGV (x, x′, δτ ).

(5) Cancellation: Reweight positive walkers according
to w → f+(x′)w and negative walkers according to w →
f−(x′)w and, if δτeff > δτ , enforce the extended-range nodal
surface of Eq. (24).

(6) Branching: Replace each walker with M = �|w| +
u� walkers each of weight sgn(w) where u is a uniformly
distributed random number in [0, 1].

(7) Loop: Return to step 2 and repeat until expectation
values have converged to the required tolerance.

We note that steps 2–5 commute and can be applied in any
order.

IV. DISCUSSION

A. Relation to previous schemes

1. Step 5: Cancellation

In this work we opted not to explicitly pair walkers for
cancellation and instead enforce a stochastic nodal surface de-
fined by the entire population (see Fig. 10). However, the two
methods are closely related. If we consider the limiting case
of cancellation between two walkers with weights w1 > 0 and
w2 < 0 at x1 and x2, respectively, then Eq. (14) reads

ψ+(x) = w1GD(x, x1, δτ ), ψ−(x) = |w2|GD(x, x2, δτ ).

(26)

From which we can construct the cancellation function f±(x)
according to Eq. (18). The reweighting given by w → f±(x)w
now takes the form

w1 → max(w1 − w2GD(x, x2, δτ )/GD(x, x1, δτ ), 0),

w2 → max(w2 − w1GD(x, x1, δτ )/GD(x, x2, δτ ), 0).

(27)

This pairwise cancellation is the same as that proposed in
Refs. [14] and [13]. Reference [14] goes on to show that it
is possible to extend this scheme to facilitate cancellations
within a collection of more than two walkers, from which
Eq. (18) can be recovered in the entire-population limit. In
this work, Eq. (18) was instead obtained directly by requiring
maximal separation of the walkers into nodal pockets (see
Appendix B). The schemes given in Refs. [14] and [13] can
therefore be thought of as limiting cases of the maximal-

FIG. 10. Schematic of cancellations via explicit pairing (upper
two panels) and a stochastic nodal surface (lower two panels). Red
circles represent positive walkers, blue squares represent negative
walkers, and empty shapes represent canceled walkers. When using
explicit pairing, walkers are first paired according to some criterion
and then canceled. This cancellation is often only partial and may
take place over several iterations [13–15]. When using a stochastic
nodal surface, the diffused wave function is evaluated for the con-
figuration of each walker, and any walker with the wrong sign is
immediately removed from the simulation.

separation scheme when only subsets of the population are
considered for cancellation. This is a sensible approximation
to make if each subset consists of walkers that are near to
one another, due to the limited range of the diffusive Green’s
function. Indeed, one could approximate ψD(x) by consider-
ing only the k nearest-neighboring walkers to x, leading to

ψD(x) ≈ ψ
(k)
D (x) =

k∑
i=1

wiGD(x, xi, δτ ), (28)

where xi are understood to be in order of increasing distance
from x. Taking the k = 1 case corresponds to a Voronoi tiling
of configuration space, where the sign of the diffused wave
function at x is given by the sign of the nearest walker to
x (as shown in Fig. 11). The same form of nodal surface is
obtained on heuristic grounds in Ref. [26], where it is shown
that it produces sensible results for low-dimensional (D < 20)
configuration spaces. It is also known that the nodes of the
free fermion density matrix approach that of the Voronoi wave
function in the high-temperature limit [18].

2. Step 2: Exchange moves

It is clear that the strictly local influence of a DMC walker
is the limiting factor in describing antisymmetric wave func-
tions. In this work, nonlocal information is introduced via
the exchange moves. However, it is possible to incorporate
this information implicitly in the form of the DMC walker
itself. The simplest way to do this is to modify each walker
to represent a set of symmetry-related points in configuration
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FIG. 11. A Voronoi wave function for two noninteracting
fermions in a 1D harmonic oscillator. Red circles (blue squares)
represent positive (negative) walkers. The wave function is positive
(negative) in red (dark blue) shaded regions. The emerging stochastic
nodal surface at x1 = x2 can be clearly seen. Any walker crossing this
surface in the next iteration will be removed from the simulation.

space, rather than just a single configuration:

δ(x − xi ) →
∑
P∈P

sgn(P)δ(x − Pxi ), (29)

where P is the set of all fermionic permutations of the system.

We can obtain this representation by imposing antisymmetry
constraints for the wave function under any of the permuta-
tions P , rather than the pairwise exchanges E that we have
used thus far (see Ref. [17]). While these are equivalent prob-
lems (the exchanges E generate the permutations P), they lead
to different propagation schemes. The scheme arising from
Eq. (29) is equivalent [17] to the so-called second-quantized
walkers introduced in Ref. [15]. As pointed out in Ref. [15],
evaluating the combinatorially many additional terms that
appear in the modified form of the Green’s function can be
reduced from an O(M!) operation to an O(M3) operation
(where M is the number of fermions). Whilst this is still
more expensive per iteration than stochastic sampling of the
permutations via exchange moves (where the evaluation of the
Green’s function is an O(M ) operation), the additional permu-
tations provide additional information. Employing a suitable
cancellation scheme, the additional walker images introduced
by the permutations can be used to increase the cancellation
rate between +ve and −ve walkers [15,17]. However, the
efficiency of the resulting method depends strongly on how
this cancellation step is implemented and on its effectiveness.
Indeed, in the current work, evaluating Eq. (18) for the pur-
poses of cancellations is the rate-limiting step. For this reason,
it is difficult to say in general whether permutations should be
sampled directly, or via exchange-type moves.

FIG. 12. The DMC energy as a function of target population for
three noninteracting fermions in a 1D harmonic well. The result
for each population was calculated using 5 × 104 iterations with a
time step of δτ = 10−3 atomic units. Shown are calculations using
two different values of δτeff (0.1 is shown in blue and converges
faster than 0.05, shown in orange). The inset shows the same data
plotted against the inverse population. For large populations, we
found a deviation from power-law behavior where the convergence
is instead exponential. For δτeff = 0.1 the best fit converges as
N−0.79 exp(−N/3542) and gives an energy of 4.497 ± 0.003 hartree
in the infinite population limit. The analytic energy is 4.5 hartree.

B. Scaling

The sign problem manifests itself as an exponential in-
crease in the computational effort required to keep the bias
in the energy estimator small as the number of fermions in-
creases. In the method described in this work, the scaling is
determined by the population of walkers required to obtain a
stable fermionic ground state and how much this population
can be reduced by increasing δτeff.

In Ref. [7] it is shown that the convergence of the energy
to the infinite population limit can be sped up by reducing the
Bose-Fermi gap (the difference in energy between the bosonic
and fermionic ground states). Typically the Bose-Fermi gap is
a constant property of the Green’s function being sampled.
However, in the present method, the Green’s function is itself
constructed from the entire walker population via interwalker
cancellations in Eq. (18) and the approximate nodal surface of
Eq. (24). For small populations (without a large value of δτeff

to compensate) the cancellations due to exchanges become
vanishingly probable and we sample the bosonic dynamics
of H rather than fermionic dynamics of HX (this is the cause
of bosonic collapse as discussed earlier). As the population
increases, we approach the dynamics of HX and the Bose-
Fermi gap decreases. This leads to a departure from fixed
Bose-Fermi gap (power-law [7]) behavior, as can be seen in
Fig. 12.

To decrease the population required to describe a particular
fermionic system we can increase the effective time step δτeff.
The improvement in convergence as a function of population
obtained by doubling δτeff can be seen in Fig. 12, allowing
us to use around a quarter of the population for the same
level of convergence. However, the amount that δτeff can be
increased is bounded by the length scale needed to resolve
the analytic nodal surface, as can be seen in Fig. 8 (inset),
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FIG. 13. The DMC energy as a function of the target walker
population for a boron atom. The result for each population was cal-
culated using 5 × 104 iterations with a time step of δτ = 10−3 atomic
units. δτeff was set to 1.35 atomic units, to facilitate comparison with
our calculations of the beryllium atom. The inset shows the same
data, plotted against the inverse population. The exact energy shown
is at −24.65386608 ± 2 × 10−9 Ha, which is the result obtained in
the infinite-basis limit of an explicitly correlated Gaussian basis set
expansion [28]. The best-fit power law converges as N−0.6 and gives
an energy of −24.67 ± 0.1 hartree in the infinite population limit.

where large values of δτeff lead to a positive bias in the energy
estimator. The optimal value of δτeff can be estimated using
Eq. (25), and, as can be seen in Fig. 14 below, using this
value allows the description of larger systems than would
otherwise be possible; we note none of the calculations in
Fig. 14 would lead to a fermionic result in the limit δτeff →
δτ . However, as the number of fermions increases, the number
of walkers required to describe the nodal surface eventually
also increases, regardless of the choice of δτeff (forcing one
to perform infinite population extrapolations as in Figs. 12
and 13). This can also be seen in Fig. 14, where, on increasing
the number of fermions, (partial [27]) bosonic collapse even-
tually occurs leading to a large underestimation of the energy.
As a result, even though increasing δτeff enables a finite set

FIG. 14. The energy of a system on noninteracting fermions in
a 1D harmonic well, as a function of the number of fermions. The
DMC calculations were carried out using 5000 walkers for 104 it-
erations with a time step of δτ = 10−3 atomic units. The statistical
errors in the energy are smaller than the widths of the lines.

of walkers to describe larger systems than would otherwise be
possible, it cannot be increased fast enough with system size
to completely overcome the sign problem.

V. CONCLUSION

We have constructed a scheme for fermionic diffusion
Monte Carlo that makes no reference to a trial wave function.
We have shown how the resulting propagation scheme can
be interpreted as the formation of a stochastic nodal surface,
which is free to vary and minimize the energy. We go on
to derive a diffusion scheme that maximally stabilizes the
nodal surface and show that stable fermionic ground states
for simple harmonic systems and light atoms can be obtained.
We have demonstrated that the number of walkers required to
resolve the nodal surface can be reduced, without introducing
significant bias, by introducing an approximate long-range
influence on the nodal surface and have provided a method
for estimating a sensible choice for the associated parame-
ter (δτeff). Extending the method to employ a guiding wave
function for the purposes of importance sampling and to al-
low the use of projection estimators should allow the study
of larger systems, but the sign problem still persists for the
method in its current form. We hope that methods based on
the constrained-optimization formalism of DMC introduced
in this work will enable studies to improve the understanding
of nodal surfaces in electronic wave functions. We also plan
to apply this method to the study of exchange and correla-
tion in periodic systems, with the ultimate goal of generating
exchange-correlation functionals for DFT calculations that do
not depend on a choice of trial wave function at the DMC
level. An open-source C++ implementation of the methods
in this work is available [16].
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APPENDIX A: THE GREEN’S FUNCTION OF HX

For small time steps, we derive the form of the Green’s
function

G(x, x′, δτ ) = 〈x| exp (−δτHX ) |x′〉 . (A1)

Writing H = T + V where T is the kinetic energy operator
and V is a local potential we can apply the Suzuki-
Trotter [4,29] expansion of the Green’s function to obtain

G(x, x′, δτ ) ≈ GV (x, x′, δτ )

×〈x| exp

(
−δτ

[
T +

∑
i

μi(x)(Pi+ 1)

])
|x′〉 .

(A2)
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For small time steps, the exponential can be factorized, allow-
ing us to write

〈x| exp(−δτT )[1 −
∑

i

δτμi(x)(Pi + 1)] |x′〉

≈
[

1 −
∑

i

δτμi(x
′)

]
GD(x, x′, δτ )

−
∑

i

δτμi(Pix
′)GD(x, Pix

′, δτ ). (A3)

Noting that

|x − Pix
′| = |Pi(x − Pix

′)| = |Pix − x′|
⇒ GD(x, Pix

′, δτ ) = GD(Pix, x′, δτ ) (A4)

and that, because Pi corresponds to exchanging identical par-
ticles,

V (Pix) = V (x) ⇒ GV (Pix, x′, δτ ) = GV (x, x′, δτ ), (A5)

we can finally write the Green’s function as

G(x, x′, δτ ) =
{[

1 −
∑

i

δτμi(x
′)

]
−

∑
i

δτμi(Pix
′)Pi

}

× GV (x, x′, δτ )GD(x, x′, δτ ), (A6)

where Pi now acts on the unprimed (prepropagation) coordi-
nates.

APPENDIX B: MAXIMUM-SEPARATION PROPAGATION

In order to encourage the formation of nodal pockets, we
seek the form of P±(x) that maximizes the expected separation
of +ve and −ve walkers, given by

〈|x+ − x−|〉 =
∫

P+(x+)P−(x−)|x+ − x−| dx+ dx−. (B1)

This is equivalent to extremizing

S =
∫

S2
+(x+)S2

−(x−)|x+ − x−| dx+ dx−

+
∫

λ(x)[S2
+(x) − S2

−(x) − ψD(x)] dx (B2)

with respect to S2
±(x) = P±(x) (introduced to ensure

P±(x) � 0) and the Lagrange multiplier λ(x) which enforces
the constraint ψD(x) = P+(x) − P−(x). Extremization of S
leads to

δS
δS+(y)

=
∫

2S+(y)S2
−(z)|z − y| dz + 2S+(y)λ(y)

!= 0,

(B3)
δS

δS−(y)
=

∫
2S−(y)S2

+(z)|z − y| dz − 2S−(y)λ(y)
!= 0.

(B4)

Now, if we assume that both S+(y) �= 0 and S−(y) �= 0,
Eqs. (B3) and (B4) read

1

2S+(y)

δS
δS+(y)

=
∫

S2
−(z)|z − y| dz + λ(y) = 0, (B5)

1

2S−(y)

δS
δS−(y)

=
∫

S2
+(z)|z − y| dz − λ(y) = 0. (B6)

Adding these equations gives∫
[S2

+(z) + S2
−(z)]|z − y| dz = 0 ⇒ S2

+(z) + S2
−(z) = 0,

(B7)
a contradiction. This means that at most one of S2

+(y) = P+(x)
and S2

−(y) = P−(x) is nonzero (i.e., the distributions of +ve
walkers and −ve walkers are mutually exclusive). Combined
with the condition ψD(x) = P+(x) − P−(x), we must have

P±(x) =
{|ψD(x)| if sgn(ψD(x)) = ±1,

0 otherwise. (B8)

Note that this derivation does not depend on the form of

ψD(x). It also results in the same distributions P±(x) for any
measure of separation that is symmetric in x+ and x−, not just
|x+ − x−|.
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