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Thermal properties of rung-disordered two-leg quantum spin ladders: Quantum Monte Carlo study
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A two-leg quenched random bond disordered antiferromagnetic spin−1/2 Heisenberg ladder system is inves-
tigated by means of stochastic series expansion quantum Monte Carlo (QMC) method. Thermal properties of the
uniform and staggered susceptibilities, the structure factor, the specific heat, and the spin gap are calculated over
a large number of random realizations in a wide range of disorder strength. According to our QMC simulation
results, the considered system has a special temperature point at which the specific heat takes the same value
regardless of the strength of the disorder. Moreover, the uniform susceptibility is shown to display the same
character except for a small difference in the location of the special point. Finally, the spin gap values are found
to decrease with increasing disorder parameter and the smallest gap value found in this study is well above the
weak coupling limit of the clean case.
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I. INTRODUCTION

The effect of quenched randomness on zero- and finite-
temperature properties of the different types of statistical
model systems is one of the fundamental problems in
condensed-matter physics. The spin-1/2 Heisenberg spin
chains with disorder [1,2], the spin-1/2 J-Q model on a
two-dimensional (2D) square lattice [3], and quantum spin
chains with power-law long-range antiferromagnetic (AFM)
couplings [4] are some of the recent model systems including
quenched randomness. Low-dimensional spin systems have
also been an attractive topic of research thanks to the de-
velopment of theoretical, experimental, and computational
methods [5–13]. Besides, most of the unique properties of
high-TC superconductivity in cuprates are likely linked to
the low-dimensional systems. Among the low-dimensional
systems, quantum spin systems with AFM interactions show
rich physical properties even in one dimension. For example,
Haldane’s conjecture states that AFM spin chains with integer
spins exhibit a gapped spectrum, which has been supported
by theoretical [14], experimental [15], and numerical (QMC)
[16] studies. Also, the spin-1/2 Heisenberg coupled chains
with an even number of legs have a finite spin gap (�) to the
lowest triplet excitation. Some ladder systems have an expo-
nentially decaying the spin-spin correlation function and the
uniform susceptibility, and this can be regarded as existence
of a spin gap [17]. The spin gap can be extracted from the
uniform susceptibility [χu(T )], which has the following form
for the temperature regime T � � [18–20]:

χu(T ) ∼ T −1/2e−�/T . (1)
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The width of the spin gap for a two-leg ladder spin sys-
tem with the isotropic coupling constant J can be roughly
estimated as � ≈ 0.5J by using QMC techniques within a
reasonable computational time on modern computers [21].
The value of the spin gap can be altered or even eliminated
by including disorder in the spin-spin coupling [22], choosing
a different kind of a lattice topology [23,24] or applying exter-
nal magnetic fields [25]. It has been shown that the spin gap
is drastically reduced by a light doping on the pure system
with nonmagnetic impurities [26–28]. The alteration of the
spin gap due to the external effects has been investigated
by also QMC simulations [29–31]. For instance, a quantum
phase transition is observed in a two-leg ladder spin system
with nonmagnetic impurities [30]. It is found that the random
depletion of spins introduces a random Berry phase term into
the nonlinear σ model [26]. Besides, the magnetic field has
some remarkable effects on the physical behavior of spin
ladder systems [25,32–34].

Various properties of a wide range of different ladder
models have been studied, such as spin ladder systems with
dimerization [35–41], zigzag ladders [23,42–45], mixed lad-
ders [46–50]. A gapless phase has been found in two-leg
zigzag ladders with frustration by benefiting from exact diago-
nalization and density matrix renormalization group (DMRG)
methods [23]. A ferrimagnetic spin-1 and spin-1/2 mixed
spin ladder has been analyzed by using spin-wave theory
and bosonization techniques [48]. Thermal and ground-state
properties of the similar ladder systems have been also stud-
ied by applying QMC methods [38,40,45]. The presence
of quenched bond randomness may significantly affect the
thermal and magnetic properties of the considered system
even at low disorder concentration values. Weakly disordered
anisotropic spin-1/2 ladders have been handled perturbatively
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and different phases of the clean case have been detected as
sensitive and insensitive to the changing disorder [51]. Fur-
thermore, critical properties of strongly disordered systems
have been mainly studied with strong disorder renormal-
ization group method [52,53], and in combination with the
DMRG method [22].

Modern QMC techniques are powerful tools to study the
disordered spin ladder systems. For instance, the SSE QMC
technique has been used to investigate the spin-1/2 Heisen-
berg quenched bond disordered ladders, and it has been found
that the neighboring bond energies change sensitively with
the position of the disorder in the spin-spin coupling term
[54]. In Ref. [55], some unusual and interesting effects of
disorder on collective excitations have been reported with the
calculation of the ground-state dynamic structure factor for a
ladder system with bond disorder along the legs and rungs of
the ladder. To the best of our knowledge, the static properties
of such a disordered model have not been investigated so far.
In this paper, we investigate the thermodynamic properties of
a two-leg quantum spin ladder system including a quenched
bond randomness along only the rung direction. For this aim,
we used the SSE QMC method with operator loop update
[18,56] for varying values of the system parameters. In a nut-
shell, our QMC simulations show that the spin gap value tends
to decrease with an increment in the disorder ratio. Moreover,
a crossing point has been detected at which the disorder ratio
does not play a critical role on the numerical values of both
the specific heat and the uniform susceptibility curves.

The rest of the paper is planned as follows. In Sec. II, we
give the details of the model and the simulation method with
a common notation and formalism. The numerical results and
discussion are given in Sec. III. Finally, Sec. IV contains a
summary of our conclusions.

II. MODEL AND METHOD

We write the Hamiltonian of the quantum spin ladder
model in a general manner to be in accord with the formu-
lation of the SSE technique for convenience. The following
Hamiltonian

H =
Nb∑
b

JbSi(b) · Sj(b) (2)

can technically describe a wide range of models consisting
of Nb bonds where a bond is a connected two sites (i and
j) with coupling strength Jb. Here, Si(b) are spin operators at
sites i(b). For the present two-leg ladder model with N sites,
the bonds are all the nearest-neighbor sites with Jb > 0. The
first N bonds are along the legs with Jb = J , and the remain-
ing N/2 bonds are along the rung direction with Jb = J+ or
Jb = J− that are selected randomly from a uniform distribu-
tion with equal probabilities, and they satisfy the condition
(J+ + J−)/2J = 1. An example of the quenched bond disor-
der on the system is shown in Fig. 1. Namely, the bonds along
the rungs are drawn from the bimodal distribution

P (Jb) = pδ(Jb − J+) + (1 − p)δ(Jb − J−) (3)

with probability p = 1/2.

FIG. 1. An example of the quenched bond disorder configuration
on a two-leg ladder system. Solid (red) and dashed (blue) lines along
the rungs are the bond couplings J+ and J−, respectively, satisfying
the condition (J+ + J−)/2J = 1. All the couplings (J) along the legs
are the same.

For the S = 1/2 isotropic Heisenberg antiferromagnets
(Jb > 0) within the formulation of SSE technique, the bond
operator Hb = Si(b) · Sj(b) can be divided into its diagonal and
off-diagonal parts as follows:

H1,b = (
1
4 − Sz

i(b)S
z
j(b)

)
(4a)

H2,b = 1
2 (S+

i(b)S
−
j(b) + S−

i(b)S
+
j(b) ), (4b)

where Ha,b is a diagonal and off-diagonal operator for a = 1
and a = 2, respectively. The Hamiltonian can be then rewrit-
ten as follows:

H = −
Nb∑
b

Jb(H1,b − H2,b) + const., (5)

where the constant energy term is not necessary for the im-
plementation of the algorithm (but it should be added when
calculating the energy). The nonzero matrix elements of the
operators Ha,b are all equal to Jb/2. Concisely, SSE QMC
technique, based on the Taylor series expansion of the par-
tition function, can be formulated as a sum of the products of
the operators Ha,b with a fixed length scheme. More details in-
cluding also the implementation of the algorithm can be found
in Refs. [18,56,57]. As a result, the full partition function can
be given as follows:

Z =
∑
α,SL

(−1)n2βn (L − n)!

L!
〈α|

L−1∏
p=0

Jb(p)Ha(p),b(p)|α〉, (6)

where the sums are over the configurations α and all possible
operator products Ha,b including additional unit operator H0,0

and a coupling constant J0 ≡ 1, on a string of length L. Here
n and n2 are the number of nonunit and off-diagonal operators
on the string, respectively. β is the inverse temperature with a
unit Boltzmann constant kB. The nonzero weights are bond
dependent for an allowed configuration, and which can be
written as follows:

W (α, SL ) =
(β

2

)n (L − n)!

L!

L−1∏
p=0

Jb(p). (7)

The numerical results are obtained for the quenched ran-
dom bond two-leg ladder system of the dimension Lx × 2.
Here, Lx = 256 is the system size along the legs of the ladder.
For convenience, we define a disorder strength ρ as J± =
1 ± ρ where J+ > 1 and J− < 1 for all values of 0 � ρ � 1.
ρ = 0.0 corresponds to the clean case of the system.

The specific heat (C) of the system can be easily measured
by monitoring the number of nonunit operators n in the oper-
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ator sequence [18],

C = 〈n2〉 − 〈n〉2 − 〈n〉. (8)

Static susceptibilities can be evaluated by constructing esti-
mators from the Kubo integral [57]

χAB =
∫ β

0
dτ 〈A(τ )B(0)〉, (9)

where the integrand shows the ensemble average of an
imaginary-time-dependent product with operators A(τ ) =
eτH A(0) e−τH . For the case of diagonal operators A and B
with eigenvalues a(k) and b(k), respectively, this integral can
simply be written by including eigenvalues from all the prop-
agated states [57,58],

χAB =
〈

β

n(n + 1)

[(
n−1∑
k=0

a(k)

)(
n−1∑
k=0

b(k)

)
+

n−1∑
k=0

a(k)b(k)

]〉
.

(10)

For the conserved quantity magnetization M, Eq. (10) re-
duces to the uniform susceptibility χu with a(k) = b(k) = M,

χu = β〈M2〉 (11)

and for the quantity staggered magnetization Ms,
Eq. (10) gives the staggered susceptibility χs with a(k) =
b(k) = Ms(k),

χs =
˝

β

n(n + 1)

⎡
⎣(

n−1∑
k=0

Ms(k)

)2

+
n−1∑
k=0

M2
s (k)

⎤
⎦
˛
. (12)

The staggered structure factor can be extracted from the sec-
ond part of the Eq. (12) in runtime, which can be defined as
follows:

S (π, π ) = N
〈
M2

s

〉
. (13)

For each disorder strength ρ = 0.0, 0.1, 0.2, . . . , 0.9, 1.0 the
relevant quantities have been calculated for temperature val-
ues up to T/J = 2. 1000 random realizations of the system
have been generated for each disorder parameter to get a
satisfactory statistics, and each average has been used as a bin,
which consists of at least 5 × 105 Monte Carlo steps (MCS)
after discarding 5 × 104 MCS for the data analysis. To mon-
itor the sample-to-sample fluctuations the running averages
of the uniform susceptibility and the specific heat have been
calculated in the vicinity of broad maximums and crossing
points. Based on this, it is possible to say that 1000 indepen-
dent realizations are found to be enough for good statistics.
The standard errors have been propagated with the bootstrap
resampling technique for nonlinear functions. The spin gap
values have been calculated by linearizing the Eq. (1) and
making a least-squares fit to it at low temperatures to find the
parameter �.

III. RESULTS AND DISCUSSION

The temperature dependencies of the calculated quantities
are around the clean case (ρ = 0.0) for all the disorder pa-
rameters of the system. While the disorder in the spin-spin
couplings does not cause a change in the physics of the results,

FIG. 2. Thermal variation of the uniform susceptibility for
the clean case and varying values of the disorder ratios: ρ =
0.0, 0.1, 0.2, . . . , 0.8, 0.9, and 1.0. The lines are added to guide the
eye.

the considered system has a special temperature point at which
the specific heat take the same value regardless of the strength
of the disorder. The same finding is also observed for the
uniform susceptibility with a small difference in the location
of the special point. A fine sweeping around these special
points has been performed to validate the existence of this
coincidence of the relevant curves.

Thermal variation of the uniform susceptibility for several
disorder strengths are displayed in Fig. 2. It is clear from the
figure that the uniform susceptibility is nearly independent of
the value of the disorder parameter at high-temperature region
and a Curie behavior is present in the system. The broad
maximum of the uniform susceptibility shifts to the left with
a slight increment in its value as the disorder parameter takes
larger values. Also, an exponentially decreasing behavior is
present at low-temperature region for all disorder parameters,
which indicates the existence of a spin gap.

We have calculated the crossing point for the uniform
susceptibility using the intersections of the following pairs
(ρ, ρ + 0.3) of the disorder strengths: (0, 0.3), (0.1, 0.4),
(0.2, 0.5), (0.3, 0.6), (0.4, 0.7), (0.5, 0.8), (0.6, 0.9), and
(0.7, 1.0). We should also note that a number of 106 MCS
have been used for each configuration. As shown in Fig. 3, our
numerical findings suggest that the crossing temperature point
is 1.083(3) for the uniform susceptibility. Using the same
protocol, we have also estimated the corresponding uniform
susceptibility value at the relevant crossing point to be χ∗

u =
0.1088(1). A similar point has been reported for magnetic spin
susceptibilities in the spin-1/2 stacked 2-leg ladder systems
[59].

As opposed to the uniform susceptibility, the maximum
values of the specific heat tend to decrease with increasing
value of disorder parameter as shown in the Fig. 4 and the
special temperature point is more visible. Figure 5 shows
the fine sweeping around the special temperature point. By
benefiting from the pairs of disorder strength mentioned for
the uniform susceptibility, the crossing point is estimated as
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FIG. 3. Fine sweeping of the uniform susceptibility near the
crossing point. The vertical dashed line corresponds to the calculated
value of crossing point of the uniform susceptibility: 1.083. The lines
are added to guide the eye.

0.9453(3) with a corresponding specific heat value of C∗ =
0.2912(7). These special points, for the specific heat and
the uniform susceptibility, suggest that the point where all
curves intersect can show a small difference depending on the
quantity to be measured. Simulations with different system
sizes up to Lx = 512 have shown that the crossing points are
almost size independent, which leads to negligible variations
in their values. Based on this finding, it is possible to say that
there are two distinct crossing points in the system. Crossing
points for the specific heat have been reported in various sys-
tems experimentally [60,61] and numerically [62]. The special
point is found to be independent of the parameters such as
pressure, magnetic field, and the local interaction of the Hub-
bard model. A theoretical origin of the special point has been
investigated for lattice models and continuum systems [60]
and the numerical results have been given for the half-filled

FIG. 4. Thermal variation of the specific heat curve for the clean
case and all disorder ratios: ρ = 0.0, 0.1, 0.2, . . . , 0.8, 0.9, and 1.0.
The lines are added to guide the eye.

FIG. 5. Fine sweeping of the specific heat curves in the vicinity
of the crossing point. The vertical dashed line corresponds to the
calculated value of crossing point of the specific heat: 0.9453. The
lines are added to guide the eye.

Hubbard model in all dimensions [61]. According to these
studies, the specific heat values are nearly the same despite the
corresponding crossing temperatures are different from each
other for all dimensions. A nearly universal crossing value of
the specific heat is obtained as ≈0.34/kB, which is a little bit
higher than that obtained for the rung disordered Heisenberg
ladder model considered here, i.e., ≈0.29/kB. As in the case of
Ref. [60], it should be noted that the rate of change of specific
heat values with respect to the disorder parameter changes its
sign at the crossing point to make the total entropy change to
zero for the present system. Furthermore, the crossing point
of the specific heat can be considered as an inflection point.

For even-leg ladders, the structure factor has a peak at
a temperature that is below the relevant spin gap [63]. As
it is shown in Fig. 6 for this system the peaks shift to

FIG. 6. Thermal variation of the structure factor for the clean
case and varying values of disorder ratios: ρ = 0.0, 0.1, 0.2, . . . ,

0.8, 0.9, and 1.0. The lines are added to guide the eye.
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FIG. 7. Thermal variation of the staggered susceptibility for
the clean case and all considered disorder strengths: ρ =
0.0, 0.1, 0.2, . . . , 0.8, 0.9, and 1.0. The lines are added to guide the
eye.

lower-temperature region and decrease with an increment in
disorder parameter. This shows the evidence of a decreasing
spin gap with increasing disorder parameter value and this ob-
servation is also confirmed by calculating the value of the spin
gap using Eq. (1). For high-temperature values, the numeri-
cal results seem to be independent of the disorder parameter
strength. On the other side, no crossing point is moni-
tored in the temperature interval considered in the present
study.

The staggered susceptibility has a finite value at zero tem-
perature for all disorder parameters as can be seen from Fig. 7.
It also means that adding quenched disorder does not affect
the ground-state property of the system, which is known to
be close to the rung-dimer state in the clean case [64]. Our
QMC simulation results show that the obtained results are

FIG. 8. Spin gap fit lines for the clean case and all disorder ratios:
ρ = 0.0, 0.1, 0.2, . . . , 0.8, 0.9, and 1.0. The data point at T/J = 0.1
for ρ = 1.0 has been excluded from the fitting.

FIG. 9. The disorder ratio dependence of the spin gap value. The
lines are added to guide the eye.

almost independent of the disorder parameter value at higher-
temperature region and no crossing point emerges for the
staggered susceptibility.

As depicted in Fig. 8, calculated spin gap values of the
system are below the spin gap value of the clean case for
all disorder parameters. It is also found that the spin gap
values decrease with increasing disorder strength, leading an
increment in the slopes of the relevant lines. For the limiting
disorder parameter ρ = 1.0, the spin gap is around �/J �

0.16, which is well above the weak coupling limit [63]. The
value of the spin gap does not noticeably deviate from the
clean case for ρ = 0.1. As a final investigation, the variation
of the spin gap with disorder coupling ratio is given in Fig. 9.
The decrement in the spin gap is nearly linear with the dis-
order parameter in the intermediate region. In particular, the
spin gap declines slowly near the clean case and rapidly near
to the fully disordered case.

IV. CONCLUSIONS

In the present paper, we used the SSE QMC technique to
study the thermodynamic properties of a two-leg ladder sys-
tem with the quenched random bond disorder only among the
rungs of the ladder. Our simulation results show that there is a
special point character in the system where the numerical re-
sults are independent of the disorder strengths for the specific
heat and the uniform susceptibility, separately. The numerical
values of these special points may be considered as a (nearly)
universal value for the spin ladder systems. The numerical
outcomes reported here also show that the averages of the
disordered configurations do not tend to exhibit so different
properties from the pure part. This may be a result of the bond
randomness including the same kind of interactions, which is
introduced only in the rung direction of the ladder system.
Another important result emerging in this study is that the
spin gap values are found to decrease with increasing disorder
parameter, as in the case of decreasing rung coupling values
in the clean system. Finally, it would be interesting to study
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systems with disorder along only the leg or in both directions,
as the disorder effects may exhibit interesting physical proper-
ties. Such kind of study may be the subject of future work. On
the theoretical side, the equivalence of the half-filled Hubbard
and the Heisenberg models might lead to exact expressions to
extract crossing points.
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