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Exact solution to the first-passage problem for a particle with a dichotomous diffusion coefficient
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We consider the problem of first-passage time for reaching a boundary of a particle which diffuses in
one dimension and is confined to the region x ∈ (0, L), with a diffusion coefficient that switches randomly
between two states, having diffusivities that are different. Exact analytical expressions are found for the survival
probability of the particle as a function of time. The survival probability has a multiexponential decay, and to
characterize it, we use the average rate constant k, as well as the instantaneous rate r(t ). Our approach can easily
be extended to the case where the diffusion coefficient takes n different values. The model should be of interest
to biological processes, in which a reactant searches for a target in a heterogeneous environment, making the
diffusion coefficient a random function of time. The best example for this is a protein searching for a target site
on the DNA.
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I. INTRODUCTION

In a reaction event, particularly in a biological cell, the
reactant searches for and finds the target site. In most cases,
the process is diffusion-limited: the rate of reaction strongly
depends on how fast the reacting molecule can reach the
target via diffusion, which has been studied for a long time.
Recently there has been considerable interest in problems in
which the diffusion process is more complex. For example, the
reactants may be coming together by process of subdiffusion,
such as in the ring-closing reaction between the two ends of a
long polymer molecule [1–3]. Recently there has been ample
experimental evidence to suggest that a particle which diffuses
in heterogeneous media, such as cytoplasmic environment,
exhibits non-Gaussian behavior in its spatial distribution [4,5].
One possible interpretation of such behavior is that due to
the structural rearrangement of the medium (e.g., cytoskeleton
network) on the observational timescales, the particle experi-
ences different local environments in each of its visits to the
target location. As a result, its diffusivity is a random function
of time and can be characterized on a longer timescale by
its equilibrium (average) value. This idea was introduced by
Chubynsky and Slater as the “diffusing diffusivity” model
[6] and has been further extended by many groups [7–11].
In Refs. [7,12], the diffusivity is modeled as the square of
Ornstein-Uhlenbeck process (OUP), or as a Feller process,
which means the diffusivity can take an arbitrary positive
value at any time instant. As reported in Refs. [9,13], there
are situations where the diffusivity needs to be modeled as
a two-state process or dichotomous noise where it can have
two values, and it switches between them randomly [3,14].
Of particular interest is the two-state model because it is
often used in describing biochemical processes [15–17]. In
the literature of nuclear magnetic resonance spectroscopy, it is
known as the Kräger [14] model. In the following, we discuss
a few specific cases which partially serve as the motivation for
our present study.

Gene expression is a complex biochemical process which
involves multiple steps. During transcription, the process is
initiated only after protein molecules, generally referred to
as the transcription factor (TF), bind to a specific DNA se-
quence known as the promoter. As described in the famous
Berg-Hippel facilitated diffusion model [18–22], locating
the promoter or the target by a protein molecule consists
of a sequence of events involving the excursion of the
protein, namely, its three-dimensional (3D) diffusion in cy-
toplasmic environment, one-dimensional (1D) microhopping
along a DNA segment, intersegmental transfer in a DNA
loop, and 1D sliding along the DNA chain. Among these,
1D sliding is greatly affected by the heterogeneity, which
mainly arises from the variable interaction between protein
molecule and the DNA contour (with its varying nucleotide
sequence) and the internal fluctuation of DNA. Many stud-
ies suggest that during the search, depending on the binding
strength of protein-DNA sites, the protein can exist in two
different conformations: “search” and “recognition” modes
[15,23–25]. Only in the recognition mode can the protein
identify a target, but because of the specific binding to a
DNA site with a strong interaction it engenders slow dif-
fusive motion. While binding nonspecifically in the search
mode, the protein moves faster with a higher diffusivity. Some
theoretical studies have shown that under certain conditions
conformational transition may assist in searching with a faster
rate [26,27]. Another interesting aspect of the investigation
into searching is the effect of environmental heterogeneity,
specifically here, the internal dynamics of the DNA backbone
[28]. Single-molecule experiments on proteins (e.g., LacI re-
pressor or Rad51) diffusing along a linear DNA track have
found that binding rate to the target during 1D sliding is
much larger than the Smoluchowski limit, and the diffusion
coefficients for different trajectories are distributed over a
large span, hinting at the heterogeneous nature of the envi-
ronment [29,30]. Another interesting experiment by Van den
Broek et al. is on the association of EcoRV enzymes to a
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D2 = Da + ΔState 2

D1 = Da − ΔState 1
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FIG. 1. The switching process and the associated rates.

recognition site along a DNA chain [31]. They observed that
the association rate in a coiled DNA is almost twofold higher
than the one in a fully stretched DNA configuration. A few
groups have analyzed the result theoretically [32–34], and
it appears that there are more processes (e.g., intersegmen-
tal transfer) involved other than configurational fluctuations
of the DNA backbone responsible for the enhancement of
the rate. Nonetheless, it is interesting in its own right to
understand the impact of heterogeneity induced by internal
fluctuations of the DNA chain on the search rate.

In this paper, we therefore revisit the age-old problem of
searching, but with a variation. We consider the first-passage
problem of a particle diffusing in one dimension confined
to some region (bounded or semi-infinite domain) [35,36],
with the particle switching randomly between two states hav-
ing different diffusivities. Note that, in Refs. [37,38], similar
studies have been performed where the heterogeneity is in-
corporated through the OUP model or the Feller process. It
is worth mentioning that the present model can be applied to
any generic model for heterogeneous media and can easily be
extended to any dimensionality.

The plan of the paper is as follows. In Sec. II we discuss
the model for diffusivity and formulate the propagator for
the dynamical evolution of the probability distribution of the
particle. In Sec. III the results for the survival probability,
the rate constant, and the absorption rate are discussed. In
Sec. III A 2 we consider the case where the particle starts with
a definite initial position x0 at the time t = 0 and absorption
happens at both the ends. In Sec. III A 3 the case where the
initial position is distributed uniformly in the interval (0, L)
is considered. In Sec. III B the absorption takes place only at
one end. In Sec. III C we consider the case where diffusion is
in the semi-infinite interval (0,∞) with absorption at x = 0.
In Sec. IV a summary of the findings is provided.

II. MODEL FOR DICHOTOMOUS DIFFUSIVITY AND THE
SOLUTION FOR THE FIRST-PASSAGE PROBLEM

Consider a particle undergoing diffusional motion in one
dimension, in a region of length L. We assume that the particle
can switch between two states, in which its diffusion coeffi-
cients are different. So its diffusivity is a stochastic two-value
quantity that takes the values D1 and D2 with D2 > D1. It
switches between these two values with rate γ12 from the state
1 to the state 2 and rate γ21 in the opposite direction (see
Fig. 1). The instantaneous diffusion coefficient, D(t ), at the
time t may thus be written as

D(t ) = Da + σ (t )�, (1)

where Da = 1
2 (D1 + D2), � = 1

2 (D2 − D1), and σ (t ) is the
telegraphic noise, taking the values σ (t ) = ±1. The moments

of σ (t ) are given by [39]

σ̄ = 〈σ (t )〉 = γ12 − γ21

γ12 + γ21
(2)

and

〈σ (t1)σ (t2)〉 = σ̄ 2 + 4γ12γ21

γ 2
e−γ |t2−t1|, (3)

where γ = γ12 + γ21.

The evolution of the probability density function (PDF)
P(x, t ) for the particle is described by the diffusion equation

∂P(x, t )

∂t
= D(t )

∂2P(x, t )

∂x2
. (4)

The above can be written using the operator notation as

∂

∂t
|P(t )〉 = −D(t )Ĥ|P(t )〉, (5)

with H = − ∂2

∂x2 . The solution of the equation, formally, is

|P(t )〉 = e− ∫ t
0 dsD(s)Ĥ|P(0)〉, (6)

where |P(t )〉 denotes the state of the system at the time
t , defined such that 〈x|P(t )〉 = P(x, t ). The operator Ĥ is
Hermitian, and it has a complete set of orthonormal eigen-
functions |m〉 with real eigenvalues, determined by the
boundary conditions imposed on the problem. From Eq. (6)
we get

P(x, t ) = 〈x|P(t )〉 = 〈x|e− ∫ t
0 dsD(s)Ĥ|P(0)〉

=
∫

dxi 〈x|e− ∫ t
0 dsD(s)Ĥ|xi〉〈xi|P(0)〉

=
∫

dxi G(x, t |xi, 0)P(xi, 0). (7)

In the second step of the above, we use the resolution of
identity:

∫
dxi|xi〉〈xi| = 1, and in the last step, the propagator

G(x, t |xi, 0) is defined by G(x, t |xi, 0) = 〈x|e− ∫ t
0 dsD(s)Ĥ|xi〉.

Using the property of completeness, i.e.,
∑∞

m=1 |m〉〈m| = 1,

the propagator can be rewritten as

G(x, t |xi, 0) =
∞∑

m=1

〈x|m〉e− ∫ t
0 dsD(s)λm〈m|xi〉

=
∞∑

m=1

φ∗
m(xi )e

−λm
∫ t

0 dsD(s)φm(x). (8)

φm(x) = 〈x|m〉 is the mth eigenfunction in position space,
and its conjugate, φ∗

m(x) = 〈m|x〉. As the diffusivity D(s) is
a random function of time, one needs to take the average of
Eq. (8) over all realizations of D(s), which we shall indicate
as 〈· · · 〉D(s). The averaged propagator is

G(x, t |xi, 0) =
∞∑

m=1

φ∗
m(x)

〈
e−λm

∫ t
0 dsD(s)

〉
D(s)φm(xi ). (9)

Hereafter, with the notation G(x, t |xi, 0) and P(x, t ), we re-
fer to the ensemble-averaged propagator [Eq. (9)] and PDF
[obtained from Eq. (7) using the propagator given in Eq. (9)],
respectively.
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III. SURVIVAL PROBABILITY AND AVERAGE RATE
IN A FINITE DOMAIN

A. Survival with absorption at both ends

1. The propagator

We now consider the model known as the Oster-Nishijima
model [40], in which the particle diffuses in one dimension,
with its position x ∈ [0, L]. The particle is absorbed whenever
it reaches the boundaries of this region. This means that the
probability distribution P(x, t ) obeys the boundary conditions

P(0, t ) = P(L, t ) = 0. (10)

In this case, the normalized eigenfunctions are

φm(x) =
√

2

L
sin

(mπx

L

)
, (11)

with m = 1, 2, 3, . . . and associated eigenvalues are given by

λm = m2π2

L2
. (12)

So from Eq. (9), the propagator is

G(x, t |xi, 0) = 2

L

∞∑
m=1

sin
(mπ

L
x
) 〈

e−λm
∫ t

0 dsD(s)
〉
D(s)

× sin
(mπ

L
xi

)
. (13)

It is easy to see that the above analysis is valid even in
cases where there is reflection at one end, rather than be-
ing absorbed. All that one needs to do is to modify the

eigenfunctions and eigenvalues of the operator Ĥ so as to suit
the problem.

2. The particle starts at x0

Here we take the particle to be initially located at x0, so
that the probability distribution of its initial position xi is given
by P(xi, 0) = δ(xi − x0). The survival probability S (t ) of the
particle after a time t is then given by

S (t ) =
∫ L

0
dx P(x, t ) (14)

= 2

L

∞∑
m=1

∫ L

0
dx sin

(mπ

L
x
)

〈e−λm
∫ t

0 dsD(s)〉D(s)

×
∫ L

0
dxi sin

(mπ

L
xi

)
δ(xi − xo)

= 4

π

∞∑
m=0

sin
[ (2m+1)π

L xo
]

2m + 1

〈
e−λ2m+1

∫ t
0 dsD(s)

〉
D(s). (15)

For the dichotomous noise, the quantity 〈e−λ
∫ t

0 dsD(s)〉D(s) for
constant λ can be easily found as demonstrated in the Ap-
pendix (see also Refs. [14,41,42]). The method given in the
Appendix is valid, even for the most general case where the
diffusion coefficient takes n different values D1, D2, . . . , Dn.
For a dichotomous diffusion coefficient, it is given by

〈e−λ
∫ t

0 dsD(s)〉D(s) = 1

2

(
1 − θ3

θ2

)
e−(θ1+θ2 )t

+ 1

2

(
1 + θ3

θ2

)
e−(θ1−θ2 )t , (16)

where θ1 = Daλ + 1
2 (γ12 + γ21), θ2 = 1

2

√
[2λ� + (γ21 − γ12)]2 + 4γ12γ21, and θ3 = 1

2 (γ12 + γ21) − γ12−γ21

γ12+γ21
λ�.

Now we define dimensionless variables by t̄ = tDa/L2, γ̄ = γ L2/Da, γ̄12 = γ12/γ , γ̄21 = γ21/γ , �̄ = �/(Daγ̄ ), x̄0 = x0/L
and use Eqs. (15) and (16) to get the expression for the survival probability as a function of the dimensionless variable t̄ :

S (t̄ ) = 4

π

∞∑
m=0

sin[(2m + 1)π x̄o]

2m + 1

[
1

2

(
1 − θ̄3

θ̄2

)
e−(θ̄1+θ̄2 )t̄ + 1

2

(
1 + θ̄3

θ̄2

)
e−(θ̄1−θ̄2 )t̄

]
. (17)

Here θ̄1 = (2m + 1)2π2 + γ̄

2 , θ̄2 = 1
2

√
[2(2m + 1)2π2�̄γ̄ + γ̄ (γ̄21 − γ̄12)]2 + 4γ̄ 2γ̄12γ̄21 and θ̄3 = γ̄

2 − (2m + 1)2π2�̄γ̄ (γ̄12 −
γ̄21). Equation (17) shows that the probability density decays in a multiexponential fashion. Therefore, we calculate the average
rate constant k̄ for absorption, defined by [40]

k̄ = 1∫ ∞
0 dt̄ S (t̄ )

. (18)

Note that the first-passage time (t̄FP) is related to k̄ by t̄FP =
1/k̄. It is also useful to define a time-dependent rate r(t ) by

r(t ) = −∂S (t )

∂t
. (19)

a. Constant diffusivity. For normal diffusion, diffusion
coefficient D(t̄ ) = D̄0, which is a constant, the survival prob-
ability, from Eq. (17), is given by (the subscript 0 is used for

the normal diffusion case)

S0(t̄ ) = 4

π

∞∑
m=0

sin[(2m + 1)π x̄o]

2m + 1
e−(2m+1)2π2 D̄0 t̄ . (20)

So the time-averaged rate constant k̄0, defined by k̄−1
0 =∫ ∞

0 dt̄S0(t̄ ) can be written as

1

k̄0
= 1

D̄0

4

π3

∞∑
m=0

sin[(2m + 1)π x̄o]

(2m + 1)3
. (21)

For x̄0 = 1/2, the sum can be exactly evaluated and is found to
be k̄0 = 8D̄0. The average rate is proportional to the diffusion
coefficient, as expected.
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FIG. 2. The survival probability S(t̄ ) of a particle starting at
x̄0 = 1/2 (at the center of the box), plotted as a function of time t̄ on
logarithmic scale for different values of �̄ taking the mean diffusivity
constant at D̄ = 1.20. The plots are obtained using Eq. (22) by
summing numerically the eigenmodes up to m = 300. The values
of Poisson rates are taken as γ̄12 = 3/4, γ̄21 = 1/4.

FIG. 3. The plot of survival probability S(t̄ ) on logarithmic scale
as a function of time t̄ for different values of γ̄21 taking the initial
position of the particle at x̄0 = 1/2. The values of the parameters
used for the numerical computation of Eq. (22) are �̄ = 1/20,

γ̄ = 10.

b. Dichotomous diffusivity. For dichotomous diffusivity, by virtue of Eq. (17), the survival probability can be written
explicitly as

S (t̄ ) = 4

π

∞∑
m=0

sin[(2m + 1)π x̄o]

2m + 1

⎧⎨
⎩1

2
−

γ̄

2 − (2m + 1)2π2�̄γ̄ (γ̄12 − γ̄21)√
[2(2m + 1)2π2�̄γ̄ + γ̄ (γ̄21 − γ̄12)]2 + 4γ̄ 2γ̄12γ̄21

⎫⎬
⎭

× e
−
{

2m+1)2π2+ γ̄

2 + 1
2

√
[2(2m+1)2π2�̄γ̄+γ̄ (γ̄21−γ̄12 )]2+4γ̄ 2 γ̄12γ̄21

}
t̄

+ 4

π

∞∑
m=0

sin[(2m + 1)π x̄o]

2m + 1

⎧⎨
⎩1

2
+

γ̄

2 − (2m + 1)2π2�̄γ̄ (γ̄12 − γ̄21)√
[2(2m + 1)2π2�̄γ̄ + γ̄ (γ̄21 − γ̄12)]2 + 4γ̄ 2γ̄12γ̄21

⎫⎬
⎭

× e
−
{

(2m+1)2π2+ γ̄

2 − 1
2

√
[2(2m+1)2π2�̄γ̄+γ̄ (γ̄21−γ̄12 )]2+4γ̄ 2γ̄12 γ̄21

}
t̄
. (22)

We compare this with the case of normal diffusion hav-
ing a diffusion coefficient which is the average value
of D(t ) for switching diffusion as given by 〈D(t )〉 =
Da + 〈σ 〉�. We denote the average diffusivity as D̄ af-
ter redefining it as D̄ = 〈D(t )〉/Da = 1 + �̄γ̄ (γ̄12 − γ̄21). So
the value of D̄0 is taken to be D̄0 = D̄ = 1 + �̄γ̄ (γ̄12 −
γ̄21). Note that the relation D2 � D1 � 0 ensures that
�̄γ̄ � 1.

We evaluate the sum in Eq. (22) numerically by taking the
first 300 eigenstates. Plots of the resultant survival probabili-
ties as functions of time are given in Figs. 2–4. In Fig. 2 the
small �̄ value corresponds to the case where the difference
in the diffusion coefficients between the two states is small

and the system approaches normal diffusion. The chance of
survival is the least in this case. The multiexponentiality is
clearer in the case where the value of �̄ is larger. In Fig. 3
the survival probabilities are plotted for different values of the
Poisson rate γ̄21. Note that γ̄12 + γ̄21 = 1. For larger values
of γ̄21, the particle spends more time in the state with lower
diffusivity, and hence the mean diffusivity D̄ has lower values.
Consequently, the particle has higher survival probabilities.
The effect of initial position is illustrated in Fig. 4. Evidently,
the chance of survival is smaller if the particle initially starts
nearer to a sink.

By virtue of Eqs. (18) and (22), the mean rate constant, k̄,

can be calculated, and it reads

1

k̄
= 4

π

∞∑
m=0

sin[(2m + 1)π x̄o]

2m + 1

(2m + 1)2π2[1 − �̄γ̄ (γ̄12 − γ̄21)] + γ̄[
(2m + 1)2π2 + γ̄

2

]2 − [
(2m + 1)2π2�̄γ̄ + γ̄

2 (γ̄21 − γ̄12)
]2 − γ̄ 2γ̄12γ̄21

. (23)

The above sum is evaluated numerically and is plotted in
Figs. 5–7. From Fig. 5, one finds that k̄ < k̄0, indicating that

the average rate of absorption is smaller when the diffusivity
fluctuates. Figure 6 shows that the rate constant k̄ decays
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FIG. 4. Logarithmic plot of survival probability as a function of
time t̄ for different values of initial position x̄0 for a fixed mean
diffusivity of D̄ = 1.10. The other parameters used for the numerical
computation of Eq. (22) are �̄ = 1/20, γ̄12 = 3/5.

monotonically with �̄ for γ̄21 � γ̄12. This is because of the
decrease in the mean diffusivity of the particle. Figure 7
demonstrates the dependence of initial position x̄0 on k̄. The
minimum of k̄ occurs at x̄0 = 1/2 irrespective of the values of
Poisson rates. Interestingly, the rate constant k̄ can be evalu-
ated exactly if x̄0 = 1/2. In this case Eq. (23) simplifies to

1

k̄
= 4

π

∞∑
m=0

(−1)m

2m + 1

(2m + 1)2π2[1 − �̄γ̄ (γ̄12 − γ̄21)] + γ̄

(2m + 1)2π2[(1 − �̄2γ̄ 2)(2m + 1)2π2 + D̄γ̄ ]

= 4

π

∞∑
m=0

(−1)m

2m + 1

1 − �̄γ̄ (γ̄12 − γ̄21)

(1 − �̄2γ̄ 2)(2m + 1)2π2 + D̄γ̄

+ 4

π3

∞∑
m=0

(−1)m

(2m + 1)3

γ̄

(1 − �̄2γ̄ 2)(2m + 1)2π2 + D̄γ̄

= 1

8D̄
+ 4�̄2γ̄ γ̄12γ̄21

D̄2

{
1 − sech

[√
D̄γ̄

4(1 − �̄2γ̄ 2)

]}
. (24)

FIG. 5. Plot of the average rate constant k̄ against �̄ for a particle
starting at the position x̄0 = 1/2, and diffusing inside the bounded
region with two absorbing boundaries at x = 0 and x = L. The mean
diffusivity is kept fixed at D̄ = 1.20, and γ̄12 = 3/4. The rate constant
decreases as �̄ increases.

FIG. 6. Logarithmic plot of k̄ as a function of �̄ for different
values of γ̄12 considering the initial position of the particle at x̄0 =
1/2 and γ̄ = 1. Its motion is restricted to the domain x ∈ [0, L] in
the presence of two absorbing boundaries.

Clearly for D̄ = D̄0, k̄ < k̄0.

3. Uniform initial density

We now consider the situation where the particle is ini-
tially uniformly distributed over the region x ∈ [0, L], i.e.,
P(x, t = 0) = 1

L [�(x) − �(x − L)], where �(x) is the Heav-
iside step function. Using Eq. (7), the PDF can be expressed
as

P(x, t ) = 2

L

∞∑
m=1

sin
(mπ

L
x
)

〈e−λm
∫ t

0 dsD(s)〉D(s)

×
∫ L

0
dxi sin

(mπ

L
xi

)
P(xi, 0)

= 4

πL

∞∑
m=0

sin
[ (2m+1)π

L x
]

2m + 1
〈e−λ2m+1

∫ t
0 dsD(s)〉D(s). (25)

FIG. 7. Logarithmic plot of rate constant (k̄) as a function of ini-
tial position of the particle x̄0 for different values of γ̄12, considering
the absorption occurs at x = 0 and x = L. The other parameters are
set to �̄ = 0.4, γ̄ = 1.0.
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FIG. 8. Logarithmic plot of survival probability, S(t̄ ), as a func-
tion of time t̄ for different values of γ̄21 for the case where the
particles are assumed to be uniformly distributed initially over the
entire box. The plots are obtained upon performing the numerical
summation of Eq. (28) up to the eigenmodes m = 300 by taking the
values of parameters as γ̄ = 10, �̄ = 1/20.

The survival probability within the bounded domain can be
calculated by integrating the density over whole space and is
given by

S (t ) =
∫ L

0
dx P(x, t )

= 4

πL

∞∑
m=0

〈e−λ2m+1
∫ t

0 dsD(s)〉D(s)

∫ L

0
dx

sin
[ (2m+1)π

L x
]

2m + 1

= 8

π2

∞∑
m=0

1

(2m + 1)2
〈e−λ2m+1

∫ t
0 dsD(s)〉D(s). (26)

Henceforth, we express the survival probability in terms
of dimensionless variables as defined in the previous
case.

Normal diffusion. Let us first consider the case where dif-
fusivity is a constant and is denoted by D̄0:

S0(t̄ ) = 8

π2

∞∑
m=0

1

(2m + 1)2
e−(2m+1)2π2 D̄0 t̄ . (27)

FIG. 9. Plots for uniform initial density. Logarithmic plot of sur-
vival probability, S(t̄ ), as a function of time t̄ for different values of
�̄. The plots are obtained upon performing the numerical summation
of Eq. (28) up to the eigenmodes m = 300. The values of other
parameters used for the computation are γ̄12 = 3/4, D̄ = 1.20.

Dichotomous diffusivity. For switching diffusion, Eq. (26)
becomes

S (t̄ ) = 8

π2

∞∑
m=0

1

(2m + 1)2

[
1

2

(
1 − θ̄3

θ̄2

)
e−(θ̄1+θ̄2 )t̄

+ 1

2

(
1 + θ̄3

θ̄2

)
e−(θ̄1−θ̄2 )t̄

]
. (28)

We evaluate Eq. (28) numerically by summing the eigen-
modes up to m = 300, and the results are pictorially depicted
in Fig. 8 and 9. From Fig. 8 one can see that the chances of
survival increase with the higher values of γ̄21, consistent with
the previous case (see Sec. IIIA2). Also, its dependency on �̄

for the system with a fixed average diffusivity is similar to the
previous one, as shown in Fig. 9.

The time-averaged rate constant for normal diffusion can
be calculated as

k̄−1
0 =

∫ ∞

0
dt̄ S0(t̄ ) = 1

D̄0

8

π4

∞∑
m=0

1

(2m + 1)4
= 1

12D̄0
.

(29)

For switching diffusion, the rate constant is computed as

k̄−1 =
∫ ∞

0
dt S (t ) = 8

π2

∞∑
m=0

1

(2m + 1)2

∫ ∞

0
dt̄

[
1

2

(
1 − θ̄3

θ̄2

)
e−(θ̄1+θ̄2 )t̄ + 1

2

(
1 + θ̄3

θ̄2

)
e−(θ̄1−θ̄2 )t̄

]

= 8

π2

∞∑
m=0

1

(2m + 1)2

(2m + 1)2π2[1 − �̄γ̄ (γ̄12 − γ̄21)] + γ̄

(2m + 1)2π2[(1 − �̄2γ̄ 2)(2m + 1)2π2 + D̄γ̄ ]
. (30)

The sum is evaluated numerically, and the rate is plotted in Figs. 10 and 11. Like the previous case, the rate constant k̄ becomes
smaller with increasing �̄. Equation (30) can also be computed analytically, and it reads

k̄−1 = 8

π2

∞∑
m=0

1

(2m + 1)2

1 − �̄γ̄ (γ̄12 − γ̄21)

(1 − �̄2γ̄ 2)(2m + 1)2π2 + D̄γ̄
+ 8

π4

∞∑
m=0

1

(2m + 1)4

γ̄

(1 − �̄2γ̄ 2)(2m + 1)2π2 + D̄γ̄

= 1

12D̄
+ 4�̄2γ̄ γ̄12γ̄21

D̄2

{
1 −

√
4(1 − �̄2γ̄ 2)

D̄γ̄
tanh

[√
D̄γ̄

4(1 − �̄2γ̄ 2)

]}
. (31)
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FIG. 10. The average rate k̄ is plotted on logarithmic scale as a
function of �̄, taking γ̄12 = 3/4. The particles are assumed to have
a mean diffusivity D̄ = 1.20 and were initially uniformly distributed
over the entire bounded region x ∈ [0, L].

Notice that k̄−1 > k̄−1
0 for the case where D̄ is taken to be

equal to D̄0. Clearly, the rate constant is maximum for normal
diffusion,

B. Survival in a finite region with absorption at one end

Here we consider that the Brownian particle is confined in
a box of length L with an absorbing boundary at x = 0 and
a reflecting one at x = L, and the particle is initially present
at a position, x = x0. Mathematically speaking, P(x = 0, t ) =
0, dP(x,t )

dx |x=L = 0, P(x, t = 0) = δ(x − x0).
So the propagator can be given as

G(x, t |xi, 0) = 2

L

∞∑
m=0

sin
[ (2m + 1)π

2L
xi

]
sin

[ (2m + 1)π

2L
x
]

× 〈e−λ2m+1
∫ t

0 dsD(s)〉D(s), (32)

FIG. 11. Logarithmic plot of average rate k̄ as a function of �̄

for different values of γ̄12, taking γ̄ = 1. The particles are assumed
to have initial uniform distribution inside a box having two absorbing
boundaries at x = 0 and x = L.

where λ2m+1 = (2m+1)2π2

4L2 , and m = 0, 1, 2, . . . . The survival
probability can be computed as

S (t ) = 2

L

∞∑
m=0

∫ L

0
dx sin

[ (2m + 1)π

2L
x
]
〈e−λ2m+1

∫ t
0 dsD(s)〉D(s)

×
∫ L

0
dxi sin

[ (2m + 1)π

2L
xi

]
δ(xi − x0)

= 4

π

∞∑
m=0

sin
[ (2m+1)π

2L x0
]

2m + 1
〈e−λ2m+1

∫ t
0 dsD(s)〉D(s). (33)

Notice that Eq. (33) has exact same expression as Eq. (15)
with the only difference in the box length being doubled,
which is very much evident as the particle is now being
absorbed only at a single boundary after reflected back from
the other end. A similar argument can be established for the
situation where the particle was initially uniformly distributed
inside the box. Therefore, for the present case, both Eqs. (23)
and (31) hold true with L being replaced by 2L.

C. Diffusion in the semi-infinite region with absorption at x = 0

1. Initial position at x0

Now we consider the case where the particle diffuses in
a semi-infinite region x ∈ [0,∞) with an absorbing bound-
ary at x = 0. The initial position is taken to be x0 >

0. The eigenfunctions appropriate for this problem are

φκ (x) =
√

2
π

sin(κx), which obey the normalization condi-

tion,
∫ ∞

0 dκ φκ (x) φκ (x′) = δ(x − x′), and are eigenfunctions

of the operator, −D ∂2

∂x2 , with the eigenvalue Dκ2. Using these
and following Eq. (9), we get

G(x, t |xi, 0) = 2

π

∫ ∞

0
dκ sin(κx)sin(κxi)

〈
e−κ2

∫ t
0 dsD(s)

〉
D(s).

(34)

So the survival probability is given by

S (t ) =
∫ ∞

0
dxi

∫ ∞

0
dx G(x, t |xi, 0) P(xi, 0)

= 2

π

∫ ∞

0
dκ

sin(κxo)

κ

〈
e−κ2

∫ t
0 dsD(s)

〉
D(s). (35)

For normal diffusion, D(s) is constant and is equal to D0.

So the survival probability in Eq. (35) reduces to

S0(t ) = 2

π

∫ ∞

0
dκ D0sin(κxo) e−κ2D0t = erf

(
x0

2
√

D0t

)
.

(36)

Therefore, the instantaneous rate can be obtained as

r0(t ) = −∂S0(t )

∂t
= 2

π

∫ ∞

0
dκ D0κ sin(κxo) e−κ2D0t

= xo e− x2
o

4D0t√
4πD0t3

. (37)
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FIG. 12. The rate for switching diffusion divided by that for
normal diffusion is plotted in log-linear scale as a function of time
for different � values for the case where the particle was initially
at a position x0 = 1.0 and is diffusing in the semi-infinite region
x ∈ [0, ∞). The parameters used for the numerical computation are
〈D(t )〉 = D0 = 10, γ12 = 3/4, γ21 = 1/4.

For switching diffusion, the rate can be computed by virtue of
Eqs. (19) and (35), and it reads

rδ (t ) = 2

π

∫ ∞

0
dκ

sin(κxo)

κ

[
(�1 + �2)

2

(
1 − �3

�2

)
e−(�1+�2 )t

+ (�1 − �2)

2

(
1 + �3

�2

)
e−(�1−�2 )t

]
, (38)

where �1 = Daκ
2 + 1

2 (γ12 + γ21), �2 =
1
2

√
[2κ2� + (γ21 − γ12)]2 + 4γ12γ21 and �3 = 1

2 (γ12 +
γ21) − γ12−γ21

γ12+γ21
κ2�.

We evaluate Eqs. (38) and (37) numerically at different
times and plot the results as a ratio of two rates in Figs. 12
and 13. For comparison, the value of average diffusivity for
switching diffusion, 〈D(t )〉 is taken the same as D0. At the
initial stages, the rate for switching diffusion is considerably

FIG. 13. Log-linear plot of the ratio of rates for switching and
normal diffusion as a function of time t for different initial positions
of the particle diffusing in the semi-infinite region x ∈ [0, ∞). The
parameters used for the numerical computation are given by the set
{〈D(t )〉 = D0 = 10, � = 3.0, γ12 = 3/5, γ21 = 2/5}.

lower than that for normal diffusion. But at some intermediate
stages, the absorption happens at a greater rate for switching
case. The extent at which rate is diminished or enhanced
strongly depends on the strength of noise, �. Also, in the same
way, the proximity of particles to a sink affects the rate. After
a long time, the two rates become equal.

2. Uniform initial density

In a semi-infinite region, like the previous case, the prop-
agator is given by Eq. (34). Using this, and upon doing the
nondimensionalization of the parameters, the total number
N (t ) of particles at the time t can be expressed as

N (t ) =
∫ ∞

0
dxi

∫ ∞

0
dx G(x, t |xi, 0) P(xi, 0)

= −4δo

π

∫ ∞

0

dκ

κ2

〈
e−κ2

∫ t
0 ds D(s)〉

D(s), (39)

where δo is the initial density per unit length. Note that this
integral is infinity, due to the divergence at κ = 0, which is not
surprising, as there are infinite number of particles. However,
the rate at which the particles are removed can easily be
calculated by differentiating this with respect to t , as shown
below.

For normal diffusion, D(s) is set to D0, and therefore, the
rate can be obtained, using Eq. (39), as

r0(t ) = −∂N0(t )

∂t
= 4δo D0

π

∫ ∞

0
dκ e−κ2D0t = 2δo

√
D0

πt
.

(40)

For switching diffusion, one can compute the absorption rate,
r(t ), by virtue of Eqs. (19) and (39), and it can be written as

rc(t ) = 4δo

π

∫ ∞

0

dκ

κ2

[
(�1 + �2)

2

(
1 − �3

�2

)
e−(�1+�2 )t

+ (�1 − �2)

2

(
1 + �3

�2

)
e−(�1−�2 )t

]
. (41)

Equations (40) and (41) are evaluated numerically, and
their ratio is plotted as a function of time t in Fig. 14. It can be
noted that in Eq. (41), the term on the right-hand side is well
behaved near κ = 0, the 1/κ2 term is canceled by the κ2-like
behavior of the term inside the square bracket. From Fig. 14,
one can see that for normal diffusion, the particle is absorbed
at a much faster rate in shorter timescales. But at intermediate
times, the rate in the case of dichotomous diffusivity is larger
because there is a higher probability of the particle surviving
compared to the normal case. The enhancement of rate occurs
at comparatively larger extent if � has large values. In the
long-time limit, the rate r(t ) approaches to r0(t ).

IV. CONCLUSION

We have found the exact solution for the survival proba-
bility of a particle with a dichotomous diffusion coefficient.
It is found that the survival probability, in general, is larger if
the diffusion coefficient switches, in comparison with the case
where the diffusion coefficient has a constant value which is
the average value of D(t ). Similar results have been previously
reported in the case of “diffusing diffusivity” model [37,38],
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FIG. 14. The rate for switching diffusion divided by that for
normal diffusion is plotted as a function of time t in the log-
linear scale for different values of �. The particles are assumed to
have initial uniform distribution over the entire semi-infinite region
x ∈ [0, ∞). The other parameters are {〈D(t )〉 = D0 = 10, γ12 =
3/4, γ21 = 1/4}.

and so it may hold true for any generic system which transits
among multiple states with different diffusivities.

Consequently, the rate constant for absorption strongly
depends on �—the separation between the diffusion coeffi-
cients. We have explored the effects of various parameters
in the dynamics which can provide suitable conditions for
an optimal reaction strategy. This study may be extended
to model several two-state processes, for example, target
search in the context of gene expression, stochastic gat-
ing in ion channels, and conformational switching of a
polymer.

APPENDIX: EVALUATION OF THE AVERAGE
I(t ) = 〈exp[−λ

∫ τ

0 dτ1D(τ1)]〉
The probability of finding the particle in a state with diffu-

sion coefficient Di at the time t will be denoted by Pi(t ). The
column matrix P(t ) = (P1(t )

P2(t )) obeys the equation

dP(t )

dt
= −γP(t ), (A1)

where the rate matrix γ is defined by

γ =
(

γ12 −γ21

−γ12 γ21

)
. (A2)

The solution of Eq. (A1) is given by

P(t ) = U (t )P(0), (A3)

where U (t ) = exp(−tγ ). We now proceed to the evaluation of
I (t ). On expanding the exponential as a series, we get

I (t ) =
∞∑

n=0

(−λ)n

n!

∫ t

0
dt1

∫ t

0
dt2 · · ·

∫ t

0
dtn

× 〈D(t1)D(t2) · · · D(tn)〉, (A4)

which may be rewritten as

I (t ) =
∞∑

n=0

(−λ)n
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn

× 〈D(t1)D(t2) · · · D(tn)〉. (A5)

Defining the diffusivity matrix D by

D =
(D1 0

0 D2

)
, (A6)

we can write this series as

I (t ) =
∞∑

n=0

(−λ)n
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtnFU (t − t1)

× DU (t1 − t2)D · · ·U (tn−1 − tn)DPeq, (A7)

where the row matrix F = (1, 1). The column matrix Peq =
1

γ12+γ21
(
γ21

γ12
) is the equilibrium value of P. Note that this im-

plies that the initial value of the diffusion coefficient can
be any one of the two possibilities, with probabilities given
by the equilibrium distribution. Introducing the time-ordering
operator T̂ which arranges times in the quantities that fol-
low it in the decreasing order, which is popularly used
in quantum mechanical time evolution problems, we may
write this as

I (t ) = FT̂

{
U (t ) exp

[
−λ

∫ t

0
dτD(τ )

]}
Peq, (A8)

where D(τ ) = D is actually time independent, but the
argument τ is necessary for the purpose of time or-
dering. The time dependence may be omitted once this
ordering has been done. On differentiating the ma-
trix M(t ) = T̂ {U (t ) exp [−λ

∫ t
0 dτD(τ )]} with respect to t,

we find

dM(t )

dt
= −(γ + λD)M(t ). (A9)

On using M(0) = I, the 2 × 2 identity matrix, we find

M(t ) = e−t (γ+λD), (A10)

which when used in Eq. (A8) gives

I (t ) = Fe−t (γ+λD)Peq. (A11)

Using V , the matrix of eigenvectors of the matrix γ + λD,
with the corresponding diagonal eigenvalue matrix θ, obeying
(γ + λD)V = Vθ we can write the above as

I (t ) = FV e−tθV −1Peq. (A12)

Note that Eq. (A12) is quite general and is applicable even a
more general situation where the diffusion coefficient takes
on n different values, D1, D2, . . . , Dn. In the case that we
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consider, n = 2, and the values of the eigenvalues are

θ1 = 1

2
[(D1 + D2)λ + γ12 + γ21],

θ2 = 1

2

√
[(D2 − D1)λ + (γ21 − γ12)]2 + 4γ12γ21.

(A13)

Finding the corresponding eigenvectors and using them as
well, Eq. (A12) leads to

I (t ) = 1

2

(
1 − θ1 − λDeq

θ2

)
e−(θ1+θ2 )t

+ 1

2

(
1 + θ1 − λDeq

θ2

)
e−(θ1−θ2 )t , (A14)

where 〈D(t )〉 = FDPeq = γ12D2+γ21D1

γ12+γ21
.
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