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Reentrant melting and multiple occupancy crystals of bounded potentials:
Simple theory and direct observation by molecular dynamics simulations
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Aspects of the phase coexistence behavior of the generalized exponential model (GEM-m) and bounded
versions of inverse power potentials based on theory and molecular dynamics (MD) simulation data are reported.
The GEM-m potential is φ(r) = exp(−rm ), where r is the pair separation and m is an adjustable exponent. A
simple analytic formula for the fluid-solid envelope of the Gaussian core model which takes account of the
known low- and high-density limiting forms is proposed and shown to represent the simulation data well. The
bounded inverse power (BIP) potential is φ(r) = 1/(aq + rq )n/q, where a, n, and q are positive constants. The
BIP potential multiple occupancy crystal or cluster crystals are predicted to form when q > 2 and a > 0, for
n > 3, which compares with the corresponding GEM-m condition of m > 2. Reentrant melting should occur
for the BIP potential when q � 2 and a > 0. MD simulations in which the system was gradually compressed at
constant temperature using the BIP potential produced cluster states in the parameter domain expected but it was
not possible to establish conclusively whether a multiply occupied crystal or a cluster fluid had formed owing to
assembly structural fluctuations. The random phase approximation reproduces very well the BIP MD energy per
particle without any discontinuities at the phase boundaries. The Lindemann melting rule is shown analytically
to give a more rapidly decaying reentrant melting curve boundary than the so-called melting indicator (MI)
empirical melting criterion which has also been investigated in this study. The MI model gives a better match to
the high-density phase boundary for small m and q values.

DOI: 10.1103/PhysRevE.102.042102

I. INTRODUCTION

Bounded pair (BP) potentials, which are those that are
finite at the origin, have attracted much attention in re-
cent decades as coarse-grained representations of polymer
molecules in solution, and in various simulation models of
liquids and soft matter [1–6]. They exhibit a number of
novel phases not seen for typical interatomic potential sys-
tems. In the polymer case the Gaussian potential φ(r) =
ε exp(−(r/σ )2), where r is the pair separation, which is
known as the Gaussian core model (GCM), has often been
used [7,8]. In the present work the properties reported are
expressed in units of the pair potential parameters, i.e., for
length σ and for energy ε. In addition, the particle mass m
is used for time-dependent properties. The temperature, T ,
is in units of ε/kB, where kB is Boltzmann’s constant. The
statistical mechanical properties and phase behavior of the
GCM were determined about two decades earlier by Stillinger
and co-workers (see, for example, Refs. [9–11]).
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The GCM exhibits a solid phase for reduced temperatures
below T � 0.009 and has a lower and higher (“reentrant”)
melting density at a given temperature, but is otherwise a
fluid for all densities at higher temperatures. The fluid-solid
coexisting density differences are very small on the scale
of the diagram and the transition is weakly first order. This
type of melting transition has been referred to as “cold melt-
ing” as it occurs at relatively large values of the coupling
parameter (the ratio of the interaction potential at the mean
nearest-neighbor separation to the thermal energy) which is
two orders of magnitude larger than for typical liquids (e.g.,
the Lennard-Jones case). Cold melting occurs for the one
component plasma, particularly when quantum effects are
taken into account [12–14].

The phase diagram of the GCM system has subsequently
been calculated more accurately using integral equation ap-
proaches [15,16], and directly by Monte Carlo simulation
[17]. Recently the phase boundary of the exponential (EXP)
potential [i.e., φ(r) = exp(−r)] has been determined by inter-
face pinning and Clausius-Clapeyron equation tracking [18].
The phase behavior of the more general potential form,

φ(r) = exp(−rm), (1)

which is referred to as the generalized exponential model
(GEM-m) [19], has also been investigated in the literature
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FIG. 1. (a) The general exponential potential (GEM-m) defined in Eq. (1) for several m values which are indicated in the figure. (b) The
BIP potential given in Eq. (2). In the examples shown the bounding parameter, a = 1, and the values of n and q are given in that order in the
figure. Data for n = 18 are given in the left-hand panel (shifted up by 1) and the n = 6 case is presented in the right-hand panel. The thick
black lines on both frames are for the GCM potential which acts a typical reference bounded potential.

[20,21]. The GCM special case of the GEM class is of partic-
ular note as for m � 2 the crystal state has a second melting
transition at high density (“reentrant melting”), whereas for
m > 2 the system forms a multiple occupancy crystal (MOC)
or cluster crystal in which more than one particle resides on
each lattice site. This phenomenon is discussed further in
Sec. II.

Another class of bounded interaction is an extension of the
inverse power (IP) potential [22–25], which has an extra con-
stant, a [26,27]. This bounded inverse power (BIP) potential
has the analytic form

φ(r) =
( 1

aq + rq

)n/q

, n > 3, (2)

where q is a positive constant which can be noninteger, and a
in Eq. (2) is taken to be positive in this work to allow for odd or
noninteger values of q, and to ensure thermodynamic stability,
n > 3 in three dimensions [28,29]. The potential is finite at
the origin when a > 0, and φ(0) = a−n. The BIP potential in
the a → 0 limit tends to the IP potential [i.e., φ(r) = r−n],
which has been widely used to represent small-molecule liq-
uids and solids, and whose phase diagram was first determined
comprehensively by Agrawal and Kofke [30,31]. The BIP
potential could be used to represent the interaction between
small molecular and polymer molecules in solution by adjust-
ing the a parameter in Eq. (2), a regime in which the GCM
might be considered to be too coarse grained. It was revealed
in Ref. [32] that the BIP potential exhibits isomorphic scaling
if a is made temperature, or equivalently density, dependent.

The phase diagrams of the BIP potential for different n,
q, and a are not known, even approximately (apart from when
a = 0). The purpose of this work is to determine some general
features of the BIP phase diagrams using a combination of
semiempirical models and more directly by molecular dynam-
ics (MD) simulations. Comparisons with the GEM-m phase
diagrams are made. The focus is mainly on real-space de-

scriptions of the phase behavior. The theoretical background,
simulation details, and issues surrounding the phase diagram
are presented in Sec. II. The simulation results and other
computations are reported in Sec. III. A summary of the main
conclusions is given in Sec. IV.

II. THEORY AND SIMULATION DETAILS

In this section the theory and techniques used to determine
the phase diagrams of bounded potentials by approximate
methods are discussed. The phase diagram is usually ex-
pressed in the form T (ρ), where ρ is the number density of
particles along the melting and freezing lines.

A. Generalized exponential model

Figure 1(a) shows the GEM-m class of pair potentials for
different values of m. As the exponent increases, the potential
approaches closer to the step or penetrable sphere potential
[33] (i.e., φ(r) = ε, r � σ ; φ(r) = 0, r > σ , where ε > 0).
The hard-sphere potential is the ε → ∞ limit. The point-of-
inflection distance, rpi, which is also where the maximum
repulsive force, fmax, occurs, is

rpi =
(

1 − 1

m

)1/m

, rpi → 1− for m → ∞,

fmax = mrm−1
pi exp

( − rm
pi

)
. (3)

The phase diagram of the GCM or GEM-2 potential is con-
sidered first. The first part of the fluid-solid boundary at low
density on the left-hand side reaches a maximum fluid-solid
coexisting temperature, Tmax, on increasing the density. At
(very) low temperature an effective hard-sphere representation
is accurate up to a temperature of about 0.0005 [15,16]. Above
this temperature the hard-sphere model increasingly underes-
timates the coexistence density. With increasing density and
temperature the density scaling exponent used in isomorph
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theory [34] can be employed to trace out the next part of the
melting line up to the maximum,

γ =
(∂ ln(T )

∂ ln(ρ)

)
Sex

= 1

3

( ∂φ(r)

∂ ln(r)

)
r=r

, (4)

where Sex is the excess entropy and r � ρ−1/3 leads to

Tf � exp
( − ρ

−2/3
f /2

)
. (5)

The formula for Tf is obtained by integrating the expression
in Eq. (4). The potential stiffness formula on the right-hand
side of the first line of Eq. (5) is taken from Ref. [35]. The co-
existence temperature given by the formula in Eq. (5) reaches
a plateau at high density which is inconsistent with the known
reentrant melting part of the phase diagram [15,16].

At higher densities in the reentrant region of the phase
diagram an approximate analytic solution which represents
the simulation data well is [36]

Tc(ρ) = Aρ exp(−Bρ2/3). (6)

Note the difference in sign of the exponent of ρ of the two
terms in ρ in Eqs. (5) and (6) which follows from the duality
relations of the GCM of the low- and high-density boundaries
at low temperature [10].

The fluid-solid boundary curve in the vicinity of the
maximum in T (ρ) is the most difficult region to represent
analytically and needs a functional form which smoothly
evolves between the low- and high-density limiting forms
[i.e., Eqs. (5) and (6), respectively]. The low- and high-density
limiting forms with different analytic density dependencies in-
tersect at approximately the same density as the Tmax value in
the GCM literature from simulation. The intersection occurs,
however, at Tmax � 0.013 rather than 0.009 from simulation.

There is a history of simple statistical theories of melting
[37,38], which provide insights into the role played by the
interaction potential and can be used to map out efficiently
the phase diagram for a wide range of φ(r) parameters. For
example, Lindemann’s melting rule (LMR) [39] can be used
to predict approximately the fluid-solid boundary envelope of
the potential types employed in this study.

B. Lindemann’s melting rule

Cell models of liquids and solids assume that the thermo-
dynamic properties are determined by a representative atom
interacting with its immediate neighbors [40,41]. Cell mod-
els of liquids were developed in the era before molecular
simulation became available [42,43]. They were applied to
hard-sphere systems in the 1960s and 1970s [44,45], and in
the 2000s again to liquids [46] and for bounded potential
systems [19]. LMR is a cell model for crystal melting which
assumes that this occurs when the root-mean-square ampli-
tude of the atom’s thermal vibration in the crystal increases to
a certain fraction of the nearest-neighbor distance, rnn (about
10%), when the crystal is presumed to be unstable. No in-
formation about the coexisting fluid is required in LMR, and
despite its simplicity, it has been used with some success in
various fields [47–50]. The Lindemann parameter used in the
theory is δ = 〈r2〉1/2/rnn, where 〈r2〉 is the mean-square dis-
placement of the atom from its average position. The potential
energy of an atom in the crystal, 	, leads to a confining force

constant, K , which within a simple harmonic approximation
is

K ≡ m
2
E = 1

3

′∑
i

∇2φ(ri),

= 1

3

′∑
i

∑
α

(
φ′(ri )

ri

[
1 − α2

i

r2
i

]
+ α2

i

r2
i

φ′′(ri )

)
, (7)

where φ′ ≡ dφ(r)/dr and φ′′ ≡ d2φ(r)/dr2, and the summa-
tion is over all the lattice site vectors, i, omitting the zero
displacement vector which is indicated by the prime on the
summation. The summation is also over the three Cartesian
coordinates, α, of the particles. The mass of the particle is m
and 
E is the Einstein frequency [51]. We refer to the treat-
ment considering, in principle, the whole lattice [i.e., Eq. (7)]
as the harmonic lattice (HL) approximation or method.

In the Lindemann model the series in Eq. (7) is truncated
at the first coordination shell, which means that the atom po-
tential energy is approximated by 	 = Nnnφ(rnn), where Nnn

is the number of atoms at the nearest-neighbor distance, rnn.
The force constant in the Lindemann model, KL, is therefore
different from K . Then,

KL = 1

3
Nnn∇2φ(r)|r=rnn ,

= 1

3
Nnn

(2

r
φ′(r) + φ′′(r)

)
r=rnn

,

= 1

3

Nnn

r2
nn

(2rφ′(r) + r2φ′′(r))r=rnn ,

= 1

3

Nnn

r2
nn

d

dr
(r2φ′(r))r=rnn . (8)

For harmonic motion, kBT = 〈r2〉K/3, which, combined
with the final expression in Eq. (8), substituting KL for K ,
gives [48]

kBTm(ρ) = Nnn

9
δ2D,

D(rnn) = d

dr
[r2φ′]r=rnn = (2rφ′ + r2φ′′)r=rnn . (9)

For the generalized exponential potential, GEM-m, defined in
Eq. (1) D is

D(r, m) = m2rm(rm − (1 + 1/m)) exp(−rm). (10)

The condition, D = 0, is satisfied when r = (1 + 1/m)1/m,
and

r = (
[3m + 1 ±

√
5m2 + 2m + 1]/2m

)1/m
, (11)

when dD/dr = 0. The nearest-neighbor distance is related to
the number density through rnn = c/ρ1/3, where the constant
c is

c = 1 (sc),

c = 21/6 = 1.122 (fcc),

c = 31/2

41/3
= 1.091 (bcc),

c =
(

6

π

)1/3

= 1.241 (ws), (12)
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FIG. 2. (a) The fluid-solid phase diagram line of the GCM taken
from Ref. [17] (“MD Pr.”), and Mausbach et al. [55] (“MS”). The
green curve (MD Pr.) is the bcc/fcc boundary line from Ref. [17].
The system is a fluid at all temperatures above about 0.009. Direct
phase change MD simulations from this work are denoted by “MD
TW,” and “MI” is Eq. (15) with L = 190. (b) The phase diagram of
the exponential potential. The magenta line is the LMR prediction.
The solid blue squares are results from MD simulations [18]. The
lines are the Lindemann (bcc) LMR formula and the melting indica-
tor (MI) defined in Eq. (15) with L = 190. The fit formula in Eq. (14)
denoted by “CM” is hardly distinguishable from the MI curve with
these parameters.

for simple cubic (sc), face-centered cubic (fcc), body-centered
cubic (bcc), and a Wigner-Seitz (ws) cell [52]. Khrapak and
Saija [48] showed that the LMR reproduces many aspects
of the phase diagram of the GCM, particularly in predicting
the existence and value of Tmax and the upper part of the
reentrant melting line. While there are extensions of the LMR
in the literature which include, for example, a more realistic
inherent frequency distribution [53] and a detailed exploration
of the critical mean square displacement [49,54], the original
LMR expression has the advantage that it produces simple
mean field expressions for the melting envelope of bounded
potentials which are analytically tractable.

The LMR expression [i.e., on taking the step from Eq. (7)
to Eq. (8)] may not be a justifiable approximation in all cir-
cumstances, especially for long-range potentials (e.g., for m
less than about 2 for GEM-m), when it truncates the inter-
actions at a relatively short distance before the potential has
decayed to an insignificant amount. The formula for Tm in the
harmonic approximation is

kBTm(ρ) = δ2r2
nn

K

3
, (13)

where K is defined in Eq. (7). The summation is carried out
over enough lattice vectors to give negligible error in K . Both
the LMR and HL models for the melting line use the same
Lindemann root-mean-square displacement criterion.

Figure 2(a) shows the predicted melting envelope for the
GCM, using the LMR formula for the three crystalline forms
referred to in Eq. (12). The height of the peak and width
decreases through the sequence fcc, bcc, to sc, which is the
same sequence of decreasing number of nearest neighbors.
The greater Nnn the larger is the nearest-neighbor distance.
The LMR fluid-solid boundaries are compared with the cor-
responding HL curves from Eq. (13). The LMR result for
the bcc lattice using δ = 0.105 gives very good agreement
with the simulation data. The HL curves and the fcc LMR

curve are all above the simulation boundary line. The force
constant increases when more interactions are included, while
anharmonic contributions which are important at melting
are neglected. This inconsistency might explain the reason
why the low-coordination-number bcc LMR model coexis-
tence curve agrees best with the simulation coexistence curve.
The smaller number of neighbors of the bcc lattice reduces
the force constant and thereby compensates for the absence of
the softening effects of anharmonicity in the model.

C. Combined model (CM)

Figure 2(a) illustrates that the LMR model reproduces the
low-density side and peak of the fluid-solid boundary of the
GCM quite well but overestimates its rate of decay at very
high density on the right-hand side of the solid-fluid coexis-
tence envelope [48]. The exponential forms in Eqs. (5) and (6)
can be combined in the following semiempirical formula:

T (ρ) = F exp(−[Gρ−m/3 + Hρm/3]), (14)

where F , G, and H are treated as parameters that can be fitted
to numerical coexistence data. The formula in Eq. (14) is
referred to here as the “combined model” (CM) as it satisfies
the known density dependence of the GCM (or m = 2) in
the low- and high-density limits. An m dependency has been
introduced in the equation as an empirical generalization. The
advantage of Eq. (14) is that it undergoes a smooth transition
between the low-density and reentrant regimes. The highest
melting temperature, Tmax, occurs at a density of ρmax. Equa-
tion (14) gives ρmax = (G/H )3/2m, which substituted back into
the equation returns Tmax. Figure 2(a) shows that the CM equa-
tion given in Eq. (14) fitted to the simulation data reproduces
the whole GCM coexistence curve very well.

The LMR formula can be used to provide numerical data
that can be fitted with Eq. (14) where simulation results are
not available or give incomplete coverage of the phase di-
agram. Data for densities up to those on the reentrant side
corresponding to 0.85Tmax were used for this fitting procedure.
For the GCM case it was found that good agreement between
Eq. (14) and the simulation data was obtained with LMR using
δ = 0.105 and taking the bcc lattice parameters with the LMR.

The Tmax(m) and ρmax(m) values obtained from LMR
and CM fitted to second-order polynomials are presented in
Table I for some values of m, and compared with the MD
results. The polynomial fit parameters are given in Table II.
Figure 3(a) presents the Tmax values as a function of m for
the LMR calculations and CM fit formula. Figure 3(b) shows
the corresponding ρmax m dependence using the fit formula
parameters in Table II. For small m the maximum tempera-
ture part of the envelope is flatter and corresponding density
more difficult to determine accurately, even by simulation
[18]. The values of F , G, and H for each m are given in the
Supplemental Material [56]. The figure also shows that the
maximum temperature peaks from LMR and CM are hardly
distinguishable for all the m values considered. For m > 2 the
system exhibits a multiple occupancy crystal phase rather than
reentrant melting and therefore some of the data in Fig. 3
represent metastable states. Nevertheless, these coexistence
values are useful as they may indicate the highest tempera-
tures at which a single occupancy crystal (SOC) (i.e., where
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FIG. 3. (a) The dependence of Tmax on m for the GEM-m potential class. Data calculated numerically at intervals of 0.25 for m using the
LMR and CM formulas. (b) The same as in (a) except that the dependence of ρmax on m is given. The polynomial fit parameters for this quantity
are given in Table II.

there is only one atom per lattice site) would be stable and,
through ρmax(m), the width of the SOC solid part of the phase
diagram.

D. Melting indicator

Another criterion for melting given in Ref. [48] was called
the melting indicator (MI), which is similar to but a simpler
formula than that of LMR. The definition is

kBT = 1

L

(
r2φ′′(r)

)
r=r, (15)

where r = 1/ρ−1/3 was used in Ref. [48], and L is an ad-
justable constant, ∼200. The advantage of MI is that it
employs only the pair potential, and also only its second
derivative. There is no dependence on a particular crystal
form, unlike the LMR model.

TABLE I. The m dependence of the maximum temperature Tmax

and the corresponding density ρmax along the T -ρ melting curve of
the GEM-m potential system. The LMR method used Eq. (9) to
produce values and then numerical evaluation and interpolation of
the maximum. The CM method used Eq. (14) to fit the LMR data
(up to 0.8Tmax). See also Figs. 8(a) and 8(b). The raw data for these
and other m values are given in the Supplemental Material [56].

ρmax Tmax ρmax Tmax ρmax Tmax

m LMR LMR CM CM MD MD

1.0 0.033553 0.0015619 0.00102940 0.00155023 0.055 0.002a

1.5 0.13244 0.0044155 0.130836 0.00440320
2.0 0.25017 0.0087824 0.248101 0.00877042 0.225 0.0085b

2.5 0.35908 0.014662 0.357202 0.0146580 0.015c

3.0 0.45293 0.022055 0.451154 0.0220660 0.0245c

3.5 0.53237 0.030962 0.530662 0.0309955

aData from Ref. [18].
bData from Ref. [17].
cData from this work.

For the GEM-m potential,

r2φ′′ = m2rm(rm − [1 − 1/m]) exp(−rm) (16)

and r2φ′′ = 0 at r = (1 − 1/m)1/m. From Eqs. (9) and (10) for
LMR and Eq. (15) for MI, the corresponding densities are

ρLMR(T → 0) = c3

(1 + 1/m)3/m
,

ρMI (T → 0) = c3

(1 − 1/m)3/m
,

ρLMR(T → 0)

ρMI (T → 0)
=

(
1 − 1/m

1 + 1/m

)3/m

< 1, (17)

and hence ρLMR(T → 0) < ρMI (T → 0) for all m, which
confirms that the LMR reentrant part of the fluid-solid coexis-
tence line decays more rapidly than that of the MI formula for
all m values. Figure 4(a) illustrates this behavior for two val-
ues of m. The maximum diminishes in height and extends to
higher density as the potential becomes longer ranged (i.e., for
smaller m). This feature makes MI more suitable than LMR
for GEM-m potentials in the range m < 2 [18], which decay
slowly on the high-density side of the fluid-solid boundary.
The nearest-neighbor-only LMR model becomes increasingly

TABLE II. The formula coefficients for the maximum tempera-
ture of the solid phase, Tmax, and the density, ρmax, at which it occurs
for the GEM-m potential as a function of m. The coefficients of the
formula X = a + bm + bm2, where X is either ρmax or Tmax for the
CM formula given in Eq. (14) and LMR from Eq. (9), are shown.

X Method a b c

ρmax LMR −0.2621081 0.3017423 −0.02158801
Tmax LMR 0.0003961835 −0.001861262 0.003026966
ρmax CM −0.2931339 0.3201196 −0.02417634
Tmax CM 0.0003350350 −0.001812605 0.003017723
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FIG. 4. (a) A comparison of the T (ρ ) fluid-solid boundary lines from Eqs. (9) and (10) for LMR and Eq. (15) for MI. The parameters
used were for a bcc lattice with L = 200, for the GEM-m potential with m = 1 and m = 2. The figure confirms that the high-density boundary
passes through T = 0 at a lower density for the LMR formula, as discussed in the main text in regard to Eq. (17). (b) The same as for (a) except
using the curves for the BIP potential, i.e., where Eq. (21) is used in Eq. (9) (LMR) and Eq. (15) was taken for the MI method.

unrealistic in the small-m limit. Figure 2(b) shows that MI and
CM expressions both fit well the coexistence envelope of the
EXP (i.e., m = 1) simulation coexistence data of Bacher et al.
[18].

The LMR has a maximum in T (ρ) for all (nonzero) values
of m. The maximum in LMR coincides with the maximum
in D which occurs at the value of r given in Eq. (11). The
maximum in r2φ′′ which applies to MI occurs at

r = (
[3m − 1 ±

√
5m2 − 2m + 1]/2m

)1/m
, (18)

which has a positive real value when m � (1 + √
5)/5 =

0.6472 (this result applies therefore for the exponential where
m = 1). Therefore, to summarize, independent of m, the LMR
fluid-solid boundary envelope range is narrower and decays
more rapidly than the MI formula on the reentrant side of the
fluid-solid phase boundary.

E. Molecular dynamics simulation

The paucity of molecular-simulation-derived coexistence
data for the GEM-m potential (apart from m = 1 and 2)
motivated the MD simulations reported here. The procedure
adopted was to gradually increase the density of the system
over a density range where it was anticipated the solid phase
would exist, and to include the high-density reentrant melted
or multiple occupancy crystal part of the phase diagram. The
focus of the MD simulations was on the reentrant or multiple
occupancy phase change, as the LMR is satisfactory for the
low-density region freezing transition (i.e., to the left of the
fluid-solid boundary maximum).

It is not easy to detect the phase boundary directly by
simulation as, being weakly first order, typical order param-
eters such as the structure factor and potential energy changes
are not strong and can therefore be ambiguous. The radial
distribution function (RDF), g(r) [57], was found to be the

most informative indicator of the structural changes taking
place and possible phases.

The MD simulations were carried out at a fixed tem-
perature. The modeled system contained typically 686–6750
particles in the MD cell, and the time step was 0.005/

√
T .

The simulations were commenced from a bcc or fcc lattice.
For each temperature the density was increased by a small
amount each time step so that the density range was covered
in about 2 × 104 time steps. Then the density was reduced by
the same number of steps back to the starting density. This
process of increasing then decreasing the density back to the
starting value, called a “cycle,” was carried out at least one
time. Each cycle was started from a different set of particle
velocities. The calculated quantities were stored in histograms
as a function of density covering the whole density range,
typically 50 bins for both increasing and decreasing parts of
the cycle. Figure 2(a) shows that the reentrant melting point
values obtained by this route for the GCM are in very good
agreement with those in Ref. [17].

It is more problematic to simulate the phase diagram for
potentials with small m < 2 as the temperature of the maxi-
mum in the solid-fluid coexistence boundary decreases with
m. For example, for the exponential (m = 1) potential Tmax is
about 0.004 [see Fig. 2(b)] as opposed to 0.009 for m = 2. The
reentrant melting boundary is also rather flat with density for
m = 1 and therefore very sensitive to temperature. This makes
it difficult to choose state point parameters for the simulation
that will pinpoint precisely the reentrant boundary line.

F. Bounded inverse power potentials

Figure 1(b) shows the BIP potential with n = 6 and 18 for
a = 1. The BIP potentials for reasonable intermediate mag-
nitude parameters are typically more rapidly decaying than
their exponential counterparts shown in Fig. 1(a). The point
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of inflection and maximum force values are

rpi = a
( (q − 1)

(n + 1)

)1/q

, fmax =
naq−1

( (q−1)
(n+1)

)(q−1)/q

[
aq + aq

( (q−1)
(n+1)

)]n/q+1 .

(19)

The point of inflection tends to zero in the q → 1+ limit. The
LMR quantity D in Eq. (9) is

D(r, n) =
(

nqr2q( n
q + 1)

(aq + rq)n/q+2

)
−

( n(q + 1)rq

(aq + rq)n/q+1

)
,

r2φ′′ =
(

nqr2q( n
q + 1)

(aq + rq)n/q+2

)
−

( n(q − 1)rq

(aq + rq)n/q+1

)
. (20)

The value r = a[(q + 1)/(n − 1)]1/q satisfies the condition
D = 0, and r2φ′′ = 0 when r = a[(q − 1)/(n + 1)]1/q. As for
GEM-m, a measure of the rate of decay of the fluid-solid
boundary on the reentrant side for these two models can be
made from the density in the zero-temperature limit, i.e.,

ρLMR(T → 0) = c3a−3

(
n − 1

q + 1

)3/q

,

ρMI (T → 0) = c3a−3

(
n + 1

q − 1

)3/q

,

ρLMR(T → 0)

ρMI (T → 0)
=

(
(n − 1)(q − 1)

(n + 1)(q + 1)

)3/q

< 1. (21)

Equations (21) prove that the density in the T → 0 limit is
largest for the MI model for all positive values of n and q.
The GEM-m potential exhibits the same relative order. Two
examples of the LMR and MI coexistence envelopes are pre-
sented in Fig. 4(b). They show the same trends as the GEM-m
potentials given in Fig. 4(a), in that they diminish in height
and extend to higher density as the potential becomes longer
ranged.

G. Multiple occupancy crystal criteria

Bounded potentials are separated into the class Q+, when
the system exhibits an upper freezing temperature, Tmax, and
reentrant melting, and systems of the so-called Q± type, which
freeze at all temperatures. The criteria for the different phases
forming within a mean field approximation (MFA) are mainly
based on a reciprocal-space-based analysis, [15–17,58,59].
Within the MFA, which is valid at high densities and/or high
temperatures, it was shown that the MOC phase forms when
the structure factor is negative for some regions of reciprocal
space. The SOC-to-MOC transition density based on the MFA
increases linearly with density. The key equations are

S(k) = 1

1 + ρφ̃(k)/T
,

T = |φ̃(k∗)|ρ
1 − S−1

m

, Sm
∼= 3,

T (ρ) = 1.5|φ̃(k∗)|ρ, nc = 8
√

2π3ρ

k3∗
, (22)

where S(k) is the structure factor and φ̃(k∗) is the most neg-
ative value of the Fourier transform of the potential which
occurs at the wave vector k∗. If the Fourier transform of the
potential has negative regions the structure factor has many
divergences indicating that the fluid is unstable within a mean
field approximation. The Hansen-Verlet freezing criterion is
that the first maximum in the structure factor is Sm � 3. The
k∗ gives the lattice constant of the initial crystal which is
independent of density thereafter according to the mean spher-
ical approximation. For the GEM-m class of potential, φ̃(k)
only has a negative region of m > 2. Analysis of the factors
that determine repulsive bounded potential system clustering
because of total potential energy barriers between the particles
is given in Ref. [60].

The average number of particles on a lattice site, nc, in-
creases linearly with density according to the last formula in
Eq. (22) [59]. The average number of particles associated with
a lattice site, nc, is

nc = 1 + 4πρ

∫ rnc

0
r2g(r) dr, (23)

where rnc is the largest distance from the origin of the site
used in its definition, a typical value being rncρ

1/3 � 0.35, a
practical definition used in analyzing the MD results here.

Likos et al. [21] proved that

6π2φ′′(r → 0) = −
∫ ∞

0
k4φ̃(k) dk, (24)

and that in Eq. (24) if φ′′(0) = 0 then φ̃(k) must be negative
for some region of k-space. This is the same requirement
to form a MOC from a fluid within the MFA as given in
Eq. (22). This criterion was applied in Ref. [61] to the GEM-m
potential.

The condition φ′′(0) = 0 is satisfied for the BIP potential
when q > 2 and a > 0, for all n > 3. Therefore, reentrant
melting is predicted to occur using this criterion for the BIP
potential when q � 2 and a > 0. This condition can be ap-
plied to other bounded potentials, for example, the algebraic
hat (AH) potential, φ(r) = 1/(a + rn), discussed in Ref. [27].
The second derivative of this potential in the r → 0 limit is
zero when n > 2 and a > 0 (i.e., the potential is bounded).
The point of inflection occurs at r = [an(n − 1)/(n2 + 1)]1/n.
As a thermodynamic limit can only be defined for n > 3,
then, using the φ′′(0) = 0 criterion, the MOC phase should
appear rather than reentrant melting for all thermodynami-
cally defined examples of this potential type. When a = 0
the IP potential is recovered, which exhibits neither reentrant
melting nor a MOC phase.

While the phase behavior of cluster crystals at medium
to high temperatures has been well examined, less is known
about the phase diagram of the system at very low tempera-
tures where the MFA is not accurate. Neuhaus and Likos [62]
calculated the MOC behavior of the GEM-4 example in this
low-temperature range up to high densities. They predicted a
sequence of isostructural MOC transitions, a phenomenon that
is returned to in Sec. III.
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FIG. 5. The radial distribution functions of the exponential potential, exp(−rm ), where m = 2 (i.e., GCM) and T = 0.002. (a) The RDFs
for densities increasing from bottom to top between ρ = 0.12 and 1.2 in 50 equal density intervals. The reentrant melting density is about
0.67 ± 0.02. (b) The same as for (a) except the density is decreased in steps in reverse order. Again the lowest-density RDF is shown at the
bottom. The system had 3456 particles and was started at low density from a bcc lattice.

III. RESULTS

This section concentrates on the MD simulation results and
additional relevant theory.

A. MD for the GEM-m system

Figure 5(a) shows the RDF of the GCM at T = 0.002
which is very close to the baseline on a typical coexistence
plot. The density is gradually increased with time starting
from a bcc lattice structure. The lowest density is at the bottom
of the figure, and the RDF of each increment of density is
shown shifted upwards by a small constant amount to help
discern the trends. The dimensionless (isomorph) quantity,
rρ1/3, is used rather than the separation, r, because the peak
positions in both crystal and fluid phases coincide better when
density changes when plotted this way. This scaling accounts
well for some of the “affine” consequences of the compres-
sion, and helps to identify any inherent structural or phase
changes which will appear as departures from this scaling.
The figure shows that the lattice structure disappears over a
narrow density range for ρ � 0.67 ± 0.02 to an RDF typical
of a fluid. This reentrant melting phase boundary is identified
by the rapid disappearance of the solid peaks in the RDF
on increasing the density. The quoted coexistence density
was taken to be when the lattice structure started to decay
noticeably, rather than when it had totally disappeared, to take
into account any phase change delay owing to the finite (large)
compression rate.

Figure 5(b) shows the corresponding set of RDF profiles
to those in Fig. 5(a), but starting from the top of the fig-
ure, with the density gradually decreasing during the second
half of each cycle. The fluid-to-solid transition after reentrant
melting does not reappear, however, in Fig. 5(b); the liquid-
like RDF peaks just progressively increase in height as the
density decreases. Some indications of the impending crystal

are evident on the lowest few RDFs on the figure. The path
followed in Fig. 5(a) causes the conditions where the lattice
becomes unstable, whereas the path in Fig. 5(b) relies on the
crystal nucleating which is, as confirmed in the figure, a much
slower process which may not occur during the timescale of
the expansion of the assembly in the simulation. The previous
simulation was repeated starting from an fcc lattice structure
with essentially the same reentrant melting density range.
Further details are given in the Supplemental Material [56].
An alternative MD strategy was also explored, in which the
temperature of the system was gradually increased at con-
stant density. This type of simulation produced a melting
transition in the density and temperature range predicted by
the LMR model but typically overestimated the maximum
melting temperature by about 5–10% for m = 2 and about
20% for m = 3. Homogeneous melting superheating is a well-
known phenomenon in solids (e.g., it can be ∼20 K for ice
[63]). Again further details may be found in the Supplemental
Material [56].

Figure 6 presents the same type of plot as in Fig. 5 in
which the density is gradually increased and the tempera-
ture is kept constant, except that m = 3 and T = 0.004. This
system, as expected, shows a transition at high density from
a bcc starting lattice to a multiple occupancy phase (MOP),
revealed by the peak in the RDF centered at r = 0. We were
not able to definitively prove that the phase was a cluster
fluid phase or MOC with large-amplitude fluctuations in the
particle positions about their lattice sites. This transition ap-
pears at a density of 0.71 ± 0.02 in Fig. 6(a), and occurs
in the present simulations over a relatively narrow density
range when compared to the reentrant melting process seen
in Fig. 5. A larger temperature dependence of the SOC-MOC
coexistence boundary over a similar temperature range was
predicted for the penetrable sphere potential [33], using a
mixture of cell and density functional theory for the solid
phase, with simulations for the fluid phase. Figure 6(b) shows
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FIG. 6. As for Fig. 5 except that m = 3, and the starting lattice was a bcc crystal. The temperature is 0.004. The density range is between
0.05 and 1.2. The system transforms from a bcc crystal to a multiple occupancy state at a density of 0.71 ± 0.02 with N = 3456.

the RDFs at various densities during the decreasing density
part of the cycle, which again reveals hysteresis and lag in
reforming a SOC. The peak positions shift gradually with
temperature, without sharp transitions, just as in Fig. 5(b).

Figure 7 shows the MOP transition densities obtained at
different temperatures by MD superimposed on the phase dia-
gram of the GEM-2.5 and GEM-3.0 systems in Figs. 7(a) and
7(b), respectively, as predicted by the LMR and CM formulas
(see Fig. 2 also). Other simulations carried out for 2 < m < 3
but not presented here reveal that the MOP transition occurs
at a density typically in the range 0.65–0.75 which we found
was relatively insensitive to temperature and m. This density,
which is denoted by ρm, is much higher than the MFA MOC
transition line [15,16,58]. This is not surprising as the MFA is

not valid in the low-density and -temperature part of the phase
diagram. The temperature above which the fluid (or cluster
fluid) was only evident in the simulations is indicated by a hor-
izontal line in Figs. 7(a) and 7(b). They occur approximately
near or slightly above the predicted Tmax from the LMR model.

Figure 6 which is for m = 3 starts the system from bcc
crystal a density of 0.05 and temperature 0.004, which accord-
ing to Fig. 7(b) is in the fluid region of the phase diagram. This
is because, as may be observed when the density decreases
starting from a fluid state, the crystallization process for the
bounded potential systems is too slow to be observed in any
routine MD simulation. As the high-density transition is of
most interest here, it is appropriate to start the system off in
the crystal form at the low-density state point even if that is in

FIG. 7. The estimated phase diagrams for (a) m = 2.5 and (b) m = 3.0. The vertical red line and the solid blue circles indicate the MOP
transition obtained from the simulations of this work. The sloping linear magenta line on the left-hand side of the figure denotes the fluid-solid
MOC transition temperature from the MFA approximation from Eq. (22). For m = 2.5 and 3, φ̃(k∗) is −0.02908 and −0.06672, respectively,
employed in Eq. (22). The corresponding k∗ are 5.60 and 5.33, respectively. The black horizontal line indicates the maximum in the fluid-solid
envelope of this work obtained directly by MD.
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the equilibrium fluid region. An fcc-to-bcc transition in the
solid state is similarly unlikely to occur in any reasonable
simulation time span, and that is why the bcc lattice was
chosen to commence the simulation.

Simple models of the MOC transition were employed by
Mladek et al. [64] which included a temperature dependence.
In Ref. [61] models in the T → 0 limit were solved. A sim-
ilar combination of numerical and analytic treatments was
carried out in this study (further details are presented in the
Supplemental Material [56]). In the zero-temperature limit the
Helmholtz free energy, F , tends to the interaction energy, U ,
which in the HL approximation is given by [64]

F (T → 0)

N
= U

N
= u0 = u01 + u02,

u01 = nc − 1

2
φ(0), u02 = nc

2

′∑
i

φ(ri ), (25)

where N is the number of particles and all the particles are
deemed to be on their regular lattice sites. The u01 term is for
interactions between particles on the same lattice site, and u02

is for particles on different lattice sites. The summation is over
a sufficient number of lattice vectors to give an adequately
converged value of the potential energy. Note that it is the free
energy per particle (not site) that is required to determine the
stability of the system. Within the framework of the LMR
nearest-neighbor cell approximation an analytically explicit
expression for u02 is

u02 = nc

2
Nnn exp

(
−

[
c
(nc

ρ

)1/3]m)
. (26)

An estimate of an upper bound of the SOC-MOC transition
density can be made by solving Eqs. (25) and (26) analytically
within this LMR nearest-neighbor framework approximation.
This involves taking the first derivative of the potential energy
with respect to nc and setting it to zero to find the stationary
point for nc:

2u = (nc − 1)φ(0) + Nnnncφ(r), r = c
(nc

ρ

)1/3

d 2u

dnc
= 0 = φ(0) + Nnn

(
1 − m

3
rm

)
exp(−rm),

1

Nnn
=

(m

3
rm − 1

)
exp(−rm), (27)

taking φ(0) = 1. For the right-hand side of the last expres-
sion in Eq. (27) to be positive and finite, then, mrm/3 > 1
or ρ < (m/3)3/mc3 on taking nc = 1. Above this density the
SOC phase is predicted not to be stable. For the bcc unit cell
and m = 2, ρm ≡ ρ < 1/

√
2 = 0.707, which is in very good

agreement with the values obtained by MD shown in Fig. 7.
For the m → ∞ (penetrable sphere) limit ρm → √

2 [58],
which is the fcc close-packed limit of hard spheres (and for
the bcc lattice, ρm → 33/2/4 = 1.30) and is an upper bound.

For the BIP potential, the same treatment leads to

φ(0)

Nnn
= [(n/3) − 1]rq − aq

(aq + rq)(n/q)+1 . (28)

As the top line on the left-hand side of Eq. (28) must be
positive this requires that, for nc = 1 and taking φ(0) = 1

(i.e., a = 1),

ρm <
(n

3
− 1

)3/q
c3. (29)

For the bcc lattice, n = 12 and q = 2, the SOC-MOC transi-
tion density ρm < 27/4 = 6.75, which is significantly higher
than for any GEM-2 case. The softer the particle interaction
(i.e., smaller n) the lower the threshold density into the MOC
phase, while in the n → ∞ (hard-sphere) limit the upper
bound of the threshold tends to infinity.

To summarize, the T → 0 analytic predictions of the
multiple occupancy transition density agree well with those
determined directly by MD in Fig. 7. For the GEM-m po-
tential they predict a very slow increase in the value of ρm

to its value in the penetrable sphere limit, which is the fcc
close-packed limit of hard spheres. This is typically m > 100,
depending on the details of the model. For the BIP systems ρm

is predicted to be typically much higher.

B. MD for the BIP systems

It was shown in Sec. II that, using a MFA model, when
q � 2 the BIP system should undergo reentrant melting but
for q > 2 a MOC phase is predicted at high density. The BIP
parameter q therefore to an extent takes the same role as m in
the GEM-m potential.

Figure 8(a) shows the fluid-solid density-temperature melt-
ing curve for the inverse power potential (i.e., BIP with a = 0)
obtained by the numerical integration of the Gibbs-Duhem
integration with Monte Carlo simulation. The Lindemann for-
mula (LMR) from Eqs. (9) and (10), also given in the figure,
is seen to agree remarkably well with the literature melting
curves. This suggests that LMR could also be a reasonable
indicator of the corresponding BIP boundary lines, some ex-
amples of which are given in Fig. 8(b) for q = 2, n = 6, and
variable a up to unity. One notable feature of Fig. 8(b) is the
range in density of the BIP melting envelope compared to the
GEM-m cases, using not too large or small potential parame-
ters in both cases. For example, ρm � 2.3 in the T → 0 limit
for the a = 1 case, which extends to much higher values when
a is smaller (it will tend to ∞ when a → 0).

Figure 9(a) presents further examples of the BIP melting
curves, showing BIP coexistence curves calculated using the
LMR method for n = 6 and q = 4 with variable a. Figure 9(b)
explores the n dependence for q = 2 and a = 1. The high
density range compared to the GEM-m curves in both frames
again stands out. In both Figs. 9(a) and 9(b) the breadth and
maximum range of ρ increase with n. Figures 8 and 9 also
highlight the importance of the IP reference in determining
significant aspects of the BIP phase diagrams for reasonable
parameter ranges.

MD simulations were carried out using the BIP potential.
Figure 10(a) shows the density dependence of the q = 2 RDF,
starting from a bcc lattice with 3456 particles in the simulation
cell. Density increases in equal increments between 0.5 and
20 from top to bottom in the figure were implemented. The
system melted at ρ � 14.5, as evidenced by the broadening
and drop in height of the first peak, and the more gradual
disappearance of the peaks at larger separation. This transition
can be seen clearly in Fig. 10(b), which shows the height of
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FIG. 8. (a) The density dependence of the fluid-solid coexistence temperature, T , of the inverse power [i.e., the BIP potential from Eq. (2)
with a = 0]. The values of n are given in the figure. Continuous curves using IP scaling formulas benchmarked with Monte Carlo simulation
data from Refs. [30,31] are shown. These are T = ρ4/3/10.2070, T = ρ6/3/5.4636, T = ρ12/3/1.9659, and T = ρ18/3/1.2929 for n = 4, 6, 12,
and 18, respectively. Also given as symbols are the values from the Lindemann formulas (LMR) in Eqs. (9) and (10). The bcc lattice formula
gave the best agreement with the simulation-derived equation of state data (EoS) using LMR on taking rnn = (α33/2/4ρ )1/3 where the factor
α = 0.95 to improve agreement with the EoS. (b) The same as for (a) except the corresponding BIP potential curves are presented adopting
variable a (given in the figure) using n = 6 and q = 2 in each case.

the first peak in g(r) as a function of density. There is a sharp
decrease in this value at ρ � 14.5, which indicates the transi-
tion from SOC crystalline order to a fluid state (i.e., reentrant
melting). Figure 10(b) shows the density dependence of the
ratio of the value of the first minimum divided by the first
maximum in g(r). The ratio starts to increase from zero in
the transitional density range associated with melting, as is
to be expected. Figure 10(b) also shows the density depen-
dence of the potential energy per particle, u, which increases
linearly with density over the majority of the density range
without showing any discontinuity or noticeable change of
slope throughout the melting transition. This line is predicted

well using the random phase approximation (RPA) [36,65],

u = 1
2 (φ̃(0)ρ − 1). (30)

For the BIP potential with n = 12 and q = 2, then φ̃(0) =
π2105/[1920a9] [26], where a = 1 in the MD simulations.
This is shown as the blue line in Fig. 10, which is seen to
agree very well with the MD data. The very small difference
between the potential energy of the fluid and SOC at coexis-
tence for the GCM was discussed within the RPA framework
in Ref. [36].

Figure 11 is as Fig. 10, except q = 2.1. Figure 11(a) shows
that the initial bcc crystalline state first melts into a (single

FIG. 9. As for Fig. 8 except (a) the LMR coexistence curve for the BIP potential systems with n = 6 and q = 4 with variable a are shown.
(b) The same as for (a) except q = 2, a = 1, and the indicated BIP exponent, n, is varied.
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FIG. 10. (a) Radial distribution functions plotted as a function of rρ1/3 for the BIP potential in the density range 0.5–20.0. Density increases
from bottom to top in the figure. The simulations started from a bcc lattice and N = 3456. The parameters used were a = 1, n = 12, and q = 2.
(b) The variation in the values of certain properties as a function of density during the increasing density part of the MD cycle for the simulation
of (a). The height of the first peak in g(r), or “gr-max,” is shown. The ratio of the first RDF minimum to the first maximum, or “gr-min/max,”
is also given. The average potential energy per particle, u, is presented as open circles. The solid blue line coincident with the u data is from
the RPA formula in Eq. (30), where φ̃(0) = 0.539744.

occupancy) fluid state. At higher density the system develops
a peak at r = 0 in the RDF indicative of a MOP state, which
could be a cluster fluid. These transitions are reflected in
the density variation of certain system properties which are
presented in Fig. 11(b). The reentrant melting phase occurs
at ρ � 11 and the fluid-MOP phase transition at ρ � 21. The
MOP phase is distinguished by the appearance of a peak cen-
tered at r = 0 and nc > 1. The ratio, g(rmin)/g(rmax), is only
significantly above zero in the intermediate fluid region. The
potential energy per particle increases linearly with density,

even during the two phase transitions, and shows excellent
agreement with the RPA analytic formula.

Figure 12 is as for Fig. 11 but with q = 2.2. In this case
the SOC-to-MOP transition is sharp (without any intervening
fluid phase). The system undergoes a series of well-defined
MOP-to-MOP transitions in which the density-scaled nearest-
neighbor distance, rmax, is constant over a certain density
range and then suddenly increases to a new value in well-
defined density increments, which coincide with increases
in nc. The number density of lattice sites decreases as the

FIG. 11. As for Fig. 10, except q = 2.1 and φ̃(0) = 0.620338 which was obtained by numerical integration. The other parameters used
were T = 0.002, N = 3456, a = 1, and n = 12. (b) The average occupancy number, nc, is also presented as nc − 1. The particle number
density range covered was from 0.5 to 25.
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FIG. 12. As for Fig. 11, except q = 2.2 and the position of the first peak in g(r), or “rmax,” is shown in (b). The parameters used were
T = 0.002, N = 3456, a = 1, and n = 12. The density range is from 0.5 to 50. The RPA constant for Eq. (30) is φ̃(0) = 0.703419.

occupancy of each site increases subject to the constraint
that N = ncNc, where Nc is the number of sites in the sim-
ulation cell. This stepwise evolution of the MOP phase with
increasing density was observed by MD for all N up to 6750
(the highest number considered), an example of which with
q = 2.3 is given in Fig. 13.

The evidence from simulations with different N is that
the sequence of “steps” in nc observed in the present sim-
ulations is not a finite system size and periodic boundary
effect. As mentioned in Sec. II this behavior was predicted
by Neuhaus and Likos [62], whose modeling work on GEM-
4 revealed a series of MOC crystals with increasing lattice
site occupancies, appearing in steps separated by coexis-
tence states populated by lattices with different nc. In the
present simulations (e.g., Fig. 13) the steps are manifest in

density ranges where the first peak in the RDF occurs at
a constant rρ1/3 value. These steps are separated by small
transitional density ranges in which the peak position changes
significantly.

Figure 14 shows two examples of the particle assembly at
an instant in the simulation. Representative examples for the
GEM-4 and BIP systems are shown in Figs. 14(a) and 14(b),
respectively. For GEM-4, T = 0.4 and ρ = 7.0, and for the
BIP example, T = 0.002, n = 12, q = 2.20, and a = 1.0. In
both cases there is evidence of separation of the particles into
small clusters, which is also evident in the RDFs of Figs. 6
for GEM and in Figs. 11–13 for BIP. At any instant there
is a distribution of cluster sizes, including monomers. The
clusters are smaller in the BIP case, as this state is closer to
the reentrant transition than the GEM example.

FIG. 13. As for Fig. 12, except q = 2.3 and the position of the first peak in g(r), or “rmax,” is shown in (b). The density range is from 0.5
to 50, and the other parameters are N = 6750, T = 0.002, a = 1, and n = 12. The RPA constant for Eq. (30) is φ̃(0) = 0.788368.
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FIG. 14. Perspective snapshot particle assembly images showing clustering. (a) GEM with T = 0.4, ρ = 7.0, m = 4.0, and N = 3456.
(b) BIP with T = 0.002, n = 12, q = 2.20, a = 1.0, and N = 3456.

IV. CONCLUSIONS

Some aspects of the high-density transition from a single
occupancy crystal (SOC) to a (reentrant) fluid or multiple
occupancy state for bounded potentials are revealed using
molecular dynamics (MD) simulations. The MD simulations
generated these transitions directly by gradual isothermal
compression of the assembly of particles. This is an investi-
gation for the phase diagram of the bounded inverse power
(BIP) potential.

The Lindemann melting model (LMR), which provides a
criterion for melting in terms of the first two derivatives of
the pair potential at the nearest-neighbor distance in a lat-
tice is shown to reproduce well the high-density instability
of the single occupancy crystal. This approach proved most
accurate for the generalized exponential potential (GEM-m)
for about m � 2, whereas the so-called melting indicator for-
mula, which does not rely on an assumed lattice form, proved
progressively more realistic with decreasing m below 2. The
high-density solid phase becomes broader in density and flat
at the top (exemplified by the m = 1 or EXP potential).

The MD and LMR coexistence data (over a limited range)
were used to parametrize a simple formula for the Gaus-
sian core model (m = 2) phase boundary envelope, given in
Eq. (14), which reproduces well the exact low- and high-
density dependencies. The formula was generalized to apply
to a wider range of m for the GEM-m class of potential, and
also for the BIP potential systems.

It is shown analytically using the φ′′(0) = 0 single-to-
multiple-occupancy crystal transition criterion derived by
Likos et al. [21] and directly by MD simulation that the
bounded inverse power (BIP) potential system can also form a
multiple occupancy phase providing the q parameter is greater
than 2 (independent of n and a > 0), which is similar to the
m > 2 criterion for the GEM potential. For large m and q val-
ues greater than 2 the potential becomes flatter near the origin
and the system behavior starts to follow that of the penetrable
sphere (PS). As for the GEM-m potential, although an assem-
bly of clusters was evident for m and q above 2, evidence of

the MOC crystalline state itself based on a large number of
simulations at different state points was not conclusive.

The BIP systems with not too extreme parameter values
have fluid-solid boundary envelopes which extend to much
higher densities than those formed of the GEM-m potentials
(e.g., ∼10 or higher for relatively modest values of a, n, and
q). The BIP potentials decay more rapidly at intermediate
separation than otherwise-similar-in-appearance exponential-
type examples. They retain some characteristics of the inverse
power reference which does not exhibit reentrant melting or
MOC formation.

It is shown that the the random phase approximation is
remarkably good in reproducing the potential energy per parti-
cle from the BIP MD simulations, even in the solid phase, as is
revealed in Figs. 10–13. There is no noticeable discontinuity
or change of slope at the fluid-solid phase boundaries. This
behavior was noted in Ref. [36] for the GCM and it is demon-
strated that the BIP potential follows the same trend (at least
for a = 1, q = 2, and n = 12 states specifically examined).

The LMR model is shown to reproduce very well the fluid-
solid freezing line of the inverse power fluid (i.e., a = 0), and
it is used to predict the melting envelope of the BIP potential
system. It is proved analytically that the LMR expression for
the fluid-solid coexisting boundary envelope always decays
more rapidly on the reentrant side than that predicted by MI
for both generalized exponential (GEM-m) and BIP potential
systems. The MI is a more accurate model for long-ranged
potentials but can underestimate the rate of decay for more
rapidly decaying potentials (e.g., m > 2 in the GEM-m cases).

A rigorous numerical evaluation of the phase diagrams
of these systems by simulation is a formidable task because
of the large BIP parameter space and the weakness of the
transitions which cause hysteresis issues for melting and crys-
tallization. In this work selected simulations have been carried
out to illustrate in a more direct way the key features of the
phase diagram of these potentials. A more systematic char-
acterization of the phase diagram probably requires a better
targeted method such as that employed in Ref. [17] for the
GCM potential.
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