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Two-dimensional three-vector (d = 2, n = 3) lattice model of a liquid crystal (LC) system with order
parameter space (R) described by the fundamental group �1(R) = Z2 was recently investigated based on
non-Boltzmann Monte Carlo simulations. Its results indicated that the system did not undergo a topological
transition condensing to a low temperature critical state as was reported earlier. Instead, a crossover to a nematic
phase was observed, induced by the onset of a competing relevant length scale. This mechanism is further
probed here by assigning a more restrictive R symmetry with �1(R) = Q (the discrete and non-Abelian
group of quaternions), thus engaging the three spin degrees in the formation of point topological defects
(disclinations). The results reported here indicate that such a choice of symmetry of the Hamiltonian with
suitable model parameters leads to a defect-mediated transition to a low-temperature phase with topological
order. It is characterized by a line of critical points with quasi-long-range order of its three spin degrees.
The associated temperature-dependent power-law exponent decreases progressively and vanishes linearly as
temperature tends to zero. The high-temperature disordered phase shows exponential spin correlations and their
temperature-dependent lengths exhibit an essential singular divergence as the system approaches the topological
transition point. Biaxial LC models have the required R symmetry owing to their tensor orientational orders and
are suggested to serve as prototype examples to exhibit topological transition in (d = 2, n = 3) lattice models.
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In two-dimensional (2D) lattice systems with three-
dimensional spin degrees, (d = 2, n = 3) models, symmetry
of the Hamiltonian H impacts its order parameter space (R)
topology [1], determining its first fundamental group �1(R).
In the case of systems with global inversion symmetry of
H, R is isomorphic to RP2 (three-dimensional real projec-
tive space) with fundamental group �1(R) = Z2. It hosts an
apolar and axially symmetric (uniaxial) order, leading to sta-
ble point defects (disclinations). However, this n = 3 model
could not successfully trigger a defect-mediated Berezenskii-
Kosterlitz-Thouless-type (BKT) topological transition [2,3]
despite stable topological defects, both in magnetic systems
with this order parameter symmetry [4–7] and in liquid crys-
tals [8–14]. A recent Monte Carlo (MC) study based on the
density of states (rather than the Metropolis algorithm) [15],
indicated the presence of a crossover to a nematic phase.
It pointed at the role of the extra spin degree, relative to
(d = 2, n = 2) case, in inducing an additional relevant length
scale interfering in the progression from the disordered phase
towards the expected topological transition. We probe this
system by attempting to suppress the intervening perturbation
through a suitable choice of the Hamiltonian symmetry. We
facilitate simultaneous participation of all spin degrees in the
defect-mediated transition mechanism through an appropriate
assignment of the model parameters.

We assign D2 symmetry to the lattice sites and augment the
Lebwohl-Lasher (LL) Hamiltonian [16] (representing an at-
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tractive nearest-neighbor biquadratic interaction among, say,
molecular z axes) with similar terms among the molecular
x axes and y axes. Its R is represented by the space of
cosets SU (2)/Q, where SU (2) is the special unitary group
of 2 × 2 matrices and Q is the discrete non-Abelian group
of quaternions. In this case, �1(R) = Q, represented by
(±1,±iσx,±iσy,±iσz); {σ i} is the set of Pauli matrices.
The higher order groups are not relevant to 2D models. The
medium hosts four types of stable topological defect struc-
tures: three distinct disclinations corresponding to the order
directors associated with the three molecular axes (charge
1/2), and equivalent topological defects of unit charge formed
by each of the axes. In 2D models, the role of the non-Abelian
character of the fundamental group is to make the charge
1/2 defects homotopically inequivalent. The schematics of
the defect structures of the three directors are identical to
the known counterparts of the single director in the uniaxial
nematic medium [1].

We define two orthogonal (uniaxial and biaxial) molec-
ular tensors q and b, respectively, as q := m ⊗ m − I

3 and
b := e ⊗ e − e⊥ ⊗ e⊥ where (e, e⊥, m) is an orthonormal set
of vectors representing the molecular axes (in the notation
of Ref. [17]). The general biquadratic attractive interaction
between two lattice sites is given by H = −U [ξ q · q ′ + γ (q ·
b ′ + q ′ · b) + λ b · b ′]. This Hamiltonian, setting ξ = 1, was
extensively examined in three-dimensional systems in the pa-
rameter space of (γ , λ) to elucidate its phase diagram [17–20].
The interaction associated with ξ is conventionally considered
dominant determining the degree of ordering of the primary
director and is associated with the molecular z axis. In this
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Rapid Communication, we set γ = 0 to avoid cross-coupling
interactions without loss of generality. H can be expressed
in terms of inner products of the molecular axes (e, e⊥, m),
indexing them as (1–3) for convenience. The pairwise in-
teraction between two lattice sites (α, β), then simplifies to
Hαβ = −U {ξ G33 + λ [2(G11 + G22) − G33]} (with γ = 0).
Here, Gi j = P2( fi j ), P2(·) denotes the second Legendre poly-
nomial, and fi j = (ui, v j ) is the inner product. The sets of
vectors (ui, i = 1–3) and (v j, j = 1–3) are the two triads of
molecular axes on the sites (α, β), respectively [21]. Reduced
temperature (T ) is defined in units of U . With the specific
choice of model parameters ξ = 1, λ = 1

3 , and γ = 0, H ex-
hibits cyclic permutation symmetry with respect to the indices
of the local directors, imparting equally attractive interaction
among the three axes. Also, the topological nonequivalence of
the three distinct charge 1/2 defects makes the nature and ex-
tent of their participation in the respective defect interactions
identical and independent. Thus, the description of the well
studied transition mechanism based on the energy-entropy
arguments in the case of a single type of defects (for example,
uniaxial LC system [8,9]) apply equally and separately to the
three classes of defects in this model.

The MC simulations are carried out updating single spin
flips using the Barker-Watts algorithm (random choice of
molecular axis followed by random reorientation) [22]. We
sample the microstates based on the Wang-Landau algorithm
[19,20,23,24], leading to the computation of the density of
states (DoS) of the system. An entropic ensemble is then
generated (which is distributed uniformly with energy) by
effecting the system to perform a random walk in the con-
figuration space guided by the inverse of the DoS. We extract
equilibrium ensembles at the desired temperature by assigning
two competing probability weight factors to each member
of the entropic ensemble. The density of states favors high
energy states, whereas the temperature-dependent Boltzmann
factor prefers lower energy. The microstates of the entropic
ensemble are accepted, or otherwise, as per the resulting prob-
ability, leading to an equilibrium distribution of microstates
appropriate to the chosen temperature, known as the reweight-
ing procedure. Equilibrium values of different physical
properties of interest are averaged over these generated equi-
librium ensembles (typically comprising �106 microstates) at
103 temperatures covering the range [0.05–1.5]. We consider
interactions of the nearest-neighbor sites on 2D square lattices
with different sizes L × L (L = 60, 80, 100, 120, 150) and
apply periodic boundary conditions. The equilibrium proper-
ties computed include ensemble averages of the system energy
per site E = 〈Ec〉/L2 (Ec is the configuration energy of the mi-
crostate), the specific heat per site Cv = (〈E2

c 〉 − 〈Ec〉2)/L2T 2,
the uniaxial orientational order R2

00 and biaxial order R2
22 along

with their susceptibilities, χ2
00 [=(L2〈(R2

00)2〉 − 〈R2
00〉2)/T ]

and χ2
22 [= (L2〈(R2

22)2〉 − 〈R2
22〉2)/T ]. The macroscopic ori-

entational order parameters (R2
00 and R2

22) are identified with
the two dominant weight factors in the expansion of the mean-
field tensors in terms of the mutually orthogonal basis tensors
(of uniaxial and biaxial symmetry) in the laboratory frame
[25,26].

In addition, we also computed the topological parameters
of the dominant charge 1/2 defects of the three order directors.

The fourth permissible charge 1 defect was not observable
due to its extremely low probability of occurrence arising
from energetic reasons [11,27]. The topological order param-
eter μz, of say, the z-axis director forming the charge 1/2
defect, is calculated as proposed earlier [8] and elaborated
in Ref. [11]. We assign a unit vector s(r) at each site r on
the square lattice representing the local z-director orientation.
We consider a three-dimensional unit sphere with the antipo-
dal points identified to define the RP2 space of the director
associated with the molecular z axis. The position of each
of the lattice vectors is a point on this surface. Considering
z-vector values at two neighboring lattice sites, (r, r′), we
assign a path on the surface of this sphere in R by choosing
the shortest geodesic connecting them. Any closed loop on
the lattice L is thus mapped to a loop in the order parameter
space of the associated axis (z axis in this case). The homotopy
class of this map is given by W (L) = ∏

(r,r′ )∈L sgn[s(r), s(r′)]
where the product is sequentially ordered over L and sgn
operates on the inner product of the two vectors. Topological
order μz is computed as the ensemble average of W (L) on a
closed loop generated by the toroid over the lattice (making
use of periodic boundary conditions). It is useful to calculate
a related parameter δz defined by δz = (1 − μz )/2 [8]. We
computed the density of unbounded charge 1/2 defects dz

of the director associated with the z axis by dividing the
lattice into a composition of elementary triangular plaquettes.
The above product applied to each plaquette yields a defect
finding algorithm: If the ordered product is −1, the plaquette
encloses a charge 1/2 defect. The average defect density dz is
calculated from the total count of such isolated defects over
the lattice and averaged over the ensemble [11]. The topolog-
ical parameters of the other two directors (δx, δy; dx, dy) are
similarly computed. Pair correlation functions of the spatial
variation of reorientational fluctuations G(ri j ) = 〈P2 (ri, r j )〉
are computed for the three directors (at L = 150) at about
80 temperatures. Statistical errors, estimated with the jack-
knife algorithm [28], in E , R2

00, R2
22, δ(x,y,z), and dx,y,z are

typically of the order of 1 in 103, whereas higher mo-
ments (Cv, χ

2
00, χ

2
22) are relatively less accurate (about 5

in 102).
Figure 1 depicts the temperature variation of Cv which

is independent of the system size, unlike in a normal order-
disorder transition, and is consistent with earlier observations
[29]. At these system sizes, the energy E is found to be size
independent [see inset (a)]. Due to the permutation symmetry
of the system, the topological defect densities associated with
different directors as well as the corresponding topological
orders are insensitive to their index, and so we present the data
on the z-axis director, representative of the other two axes as
well. Inset (b) shows the temperature variation of dz which is
found to be size independent, but for very marginal size de-
pendence at the onset of the transition on the low-temperature
side (T ∼ 0.7). The profile of the temperature derivative of
the defect density is qualitatively similar to that of the specific
heat, hinting at the mechanism for the onset of the observed
size-independent cusp of the specific heat [8,30].

Figure 2 shows the size dependence of R2
00 and R2

22, plotted
as a function of temperature. At the onset temperature, their
size dependence is curiously different from the regular transi-
tions; the degree of order decreases with increasing L notably
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FIG. 1. Temperature variation of specific heat (per site) at lattice
sizes L = 60, 80, 100, 120, and 150. Insets show the temperature
variation of (a) size independent energy per site, and (b) topological
density at L = 150.

at the onset of the transition (characteristic of a topological
transition [10,14]) and converge at very low temperatures
(Fig. 2). Inset (a) depicts the temperature variation of the
uniaxial susceptibility χ2

00 showing peaks at the respective
transition temperatures. Their peak positions shift slightly to
lower temperature with L, and their low-temperature profiles
indicate progressively enhanced values with size. General fea-
tures of the orientational order and its susceptibility observed
are typical of topological transitions [10,14,29]. The peak
values of χ2

00 at different L’s, say χ0(L), are noted for further
analysis.

FIG. 2. Temperature variation of orientational order parameters
at lattice sizes L = 60, 80, 100, 120, and 150. Insets show the tem-
perature variation of (a) uniaxial susceptibility, (b) finite-size scaling
plot of the peak value of susceptibility χ0(L). The dashed arrows are
indicative of the variation of the parameter with an increase in system
size.

FIG. 3. Temperature variation of topological parameter δz at lat-
tice sizes L = 60, 80, 100, 120, and 150. Inset (a) shows inflexion
point of δz at L = 80 (dashed vertical line) indicating the unbinding
transition temperature TUδ; (b) finite-size scaling plot of TUδ (L).

Figure 3 depicts the size dependence of the temperature
profiles of δz showing a gradual shift to lower temperatures
with increase in size–much like the orientational order profiles
and their susceptibility peak positions (see Fig. 2). The inflex-
ion point of the topological order parameter δz with respect
to T corresponds to the unbinding transition temperature at
that system size TUδ (L). The inset (a) of Fig. 3 depicts its
temperature derivative at L = 80 with a peak at TUδ (L) =
0.754 (±0.002). Inset (b) of Fig. 3 is a finite-size scaling
(FSS) plot of such transition temperatures derived from topo-
logical parameter profiles at different sizes. The results lead to
a reasonable fit, yielding an estimate of the unbinding temper-
ature derived from this parameter as TUδ = 0.727 (±0.002) in
the thermodynamic limit.

Spatial variations of G(r) at L = 150, (depicting only
a subset of the data collected at about 80 temperatures),
are shown in Fig. 4, each profile representing identical
variation of the three directors at that temperature. For
T � 0.73, the correlation functions obey power-law decays
very well G(r, T ) ≈ r−η(T ), yielding a temperature-dependent
exponent η(T ) (within 1% error). Figure 5 shows the vari-
ation of η(T ) in the low-temperature region leading up to
to the transition temperature (graph corresponding to the
left abscissa).η(T ) is found to decrease with lowering the
temperature, and it vanishes linearly as T → 0. We note
that its temperature variation near the transition, T ≈ TUδ

appears to fit to a power law. Accordingly, we fit the
data to the expression η(T ) = B(TUη − T )κ + ηTU to deter-
mine the asymptotic value of the unbinding temperature
TUη and the corresponding limiting exponent ηTU . We ob-
tain a very satisfactory fit, yielding TUη(L = 150) = 0.729 ±
0.001, κ = 0.485 ± 0.005, ηTU = 0.342 ± 0.003, and B =
0.399 ± 0.002. This value of the index η compares well from
the earlier studies on the LL model investigating this transi-
tion: 0.325 [10] and 0.338 [14]. This estimate of the unbinding
transition temperature derived from the low-temperature cor-
relation function data compares well within errors with the
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FIG. 4. Spatial variation of correlation functions G(r) at rep-
resentative temperatures bracketing the transition (L = 150). G(r)
fits well to exponential decays above T = 0.75, whereas it exhibits
a power-law variation below T = 0.73. These bounding decays
are indicated in the figure as dashed lines. The fit curves both
above and below the transition temperature are superimposed on
the corresponding data points as solid lines at a few representative
temperatures (T = 0.17, 0.35, 0.53, 0.7, 0.78, and 1.05).

corresponding TUδ (=0.734, both computed at L = 150). The
linear temperature variation of η(T ) (short dashed line from
the origin in Fig. 5) and its vanishing as T → 0 are signatures
of spin-wave contribution at low temperatures. The increase
in the peak values of the susceptibility with size, χ0(L) [from
inset (a) in Fig. 2], is analyzed based on FSS arguments as [31]

FIG. 5. Temperature variation of the exponent η(T ) and corre-
lation length ξ (T ) at L = 150. The curved dashed line (left) is the
power-law fit of η(T ), and the dashed-dotted line (right) is a diver-
gence fit of ξ (T ) as indicated in the text. The short dashed straight
line from the origin is a linear fit of η(T ) data at low temperatures.
The inset shows the critical contribution to the Cv (short dashes)
superposed on the Cv profile (long dashes) depicted over the entire
temperature range. The critical contribution vanishes at the transition
temperature T ≈ 0.727.

χ0(L) ∼ ζ (L) = KL(2−ηTU )(lnL)−2r with fit parameters ηTU =
0.342 (as computed above and held fixed), r = 0.0625 (at
fixed BKT value), and the nonuniversal fit parameter K =
0.0368. The satisfactory fit [inset (b) of Fig. 2] shows the
divergence of the susceptibility at the transition point with
increasing system size and is in accord with a similar observa-
tion on the topological transition assigned to the 2D LL model
[10].

The G(r) profiles for T � 0.75 fit very well to decays given
by G(r, T ) = Ar−ηTU exp[−r/ξ (T )] + A0, facilitating estima-
tion of temperature-dependent system length scale ξ (T )
(within 2% error) originating from correlations limited by
the unbounded defect density in the disordered state. Here,
A is a nonuniversal constant, A0 is related to long-range
orientational order, and ηTU is known from the fit of the
low-temperature G(r) data. In the narrow temperature range
[0.73–0.75], functional dependence of G(r) could not be as-
signed satisfactorily to either of the above decay functions,
showing relatively much higher least-squares errors, and this
region is indicated by two decays in dashed lines in Fig. 4.

The temperature variation of ξ (T ) is also shown in Fig. 5
(the graph corresponding to the right abscissa). Its observed
sharp increase is fit to the general mean-field expression ac-
counting for its divergence due to the sudden disappearance of
unbound defects (Z2 vortices) near the transition temperature,
given by ξ (T ) ≈ exp [ D

(T −TUη )ν ] [3,5,31]. The estimated value
of the transition temperature TUη(L = 150) = 0.729 from the
low-temperature G(r) data is used as a fixed parameter in
the above expression. This analysis yields the critical index
associated with length scale ξ (T ) as ν = 0.304 ± 0.004. With
the computed values of TUη and ν thus obtained from G(r),
the critical contribution to the specific heat above the tran-
sition temperature is generated and compared with the data
obtained from MC simulation. We note that the system free
energy � ∼ ξ−2, and the critical contribution to the the spe-
cific heat Cv (as its temperature derivative [5]), is given by
Cv ≈ ( C

(T −TUη ) )
2(ν+1)

exp [−2( C
(T −TUη ) )

ν
]. The Cv profile of the

disordered phase above the transition temperature (Fig. 1) is
fit to this expression along with an additive background term
to account for noncritical contributions. The fit parameters are
nonuniversal constants. The inset of Fig. 5 shows the MC
simulated data over the entire temperature region, superim-
posed by the fit curve to the above expression, accounting
for the critical contribution plus the background. It may be
noted that the critical contribution vanishes at the unbinding
temperature as a weak essential singularity. The cusp of the
specific heat peak above this singular point originates from
the rapid proliferation of the unbound defects at the onset of
the unbinding transition as reflected by the rapid growth of
defect density [shown in the inset (b) of Fig. 1]. The critical in-
dices derived from the temperature variation of G(r) account
very satisfactorily for the critical contributions to the specific
heat of the system, generated with the model of a defect-
mediated topological transition. The power-law variation of
G(r, T ) below the unbinding temperature TUη(≈TUδ ) = 0.729
characterizes the quasi-long-range order of the medium in the
low-temperature phase representing a line of critical points,
considered to be the unique signature of a topologically or-
dered state.
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These results convincingly demonstrate the onset of a
BKT-type defect-unbinding transition in the (d = 2, n = 3)
LC model in the presence of topologically distinct classes
of disclination (charge 1/2) points of the three spin degrees,
aided by their simultaneous participation in the defect kinet-
ics. Biaxial LC models in this context are seen as plausible
examples and serve as models to probe this transition. The
generalized biquadratic Hamiltonian model with a suitable
choice of the parameters so as to lead to a direct transition
from the disordered state to a low-temperature phase with
biaxial symmetry serves as a prototype 2D model with three

spin degrees to condense to a critical low-temperature phase
through a topological transition.
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