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Many systems with propagation dynamics, such as spike propagation in neural networks and spreading of
infectious diseases, can be approximated by autoregressive models. The estimation of model parameters can be
complicated by the experimental limitation that one observes only a fraction of the system (subsampling) and
potentially time-dependent parameters, leading to incorrect estimates. We show analytically how to overcome
the subsampling bias when estimating the propagation rate for systems with certain nonstationary external input.
This approach is readily applicable to trial-based experimental setups and seasonal fluctuations as demonstrated
on spike recordings from monkey prefrontal cortex and spreading of norovirus and measles.
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Propagation dynamics in complex networks are often ap-
proximated by models with an autoregressive representation.
Examples include affinity maturation in immune systems [1],
reproductive dynamics of bacteria [2–5], or humans [6], epi-
demiological disease spreading in a network of humans [7,8],
neutron transport theory [9], and collective cortical dynamics
[10–15]. The inference of propagation dynamics is often com-
plicated. First, only a fraction of all system components can be
observed experimentally (subsampling) [12,16–18]. Second,
the model parameters can be time dependent (nonstationary),
and specific time-dependent input rates can lead to signatures
of criticality even for networks of uncorrelated units [19]. In
general, time-dependent input rates are ubiquitous for col-
lective dynamics in neural networks, and are one source for
seasonal fluctuations of infectious disease incidence [20].

The subsampling challenge is typically addressed for sta-
tionary model parameters. Recent progress has been made for
equilibrium and nonequilibrium systems by explicitly mod-
eling the hidden units [21–26]. However, explicit knowledge
about the hidden units cannot be guaranteed for real-world
applications. A subsampling-invariant approach that does not
require knowledge about the underlying model size was re-
cently proposed [12]. The authors showed that established
estimators based on linear regression or Kalman filtering
underestimate the propagation behavior. They introduced a
novel multistep regression (MR) estimator that is subsampling
invariant by characterizing propagation dynamics through the
systems autocorrelation time τ . However, it does not consider
time-dependent model parameters.
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To tackle nonstationarities, recent approaches considered
models with time-dependent parameters. Examples include
Bayesian models based on Cox processes [27], weighted least
squares [28], or expectation maximization based on Kalman
filtering [29,30]. However, none of these methods consider
the complication of subsampling, although real spreading pro-
cesses are usually subsampled [12,31].

In this Rapid Communication, we derive an estimator for a
subsampled process subject to a specific type of nonstationary
external input, namely, cyclostationary input. We first show
that the subsampling-invariant MR estimator [12] can be bi-
ased if the external input rate changes over time. We, then,
analytically derive a generalization of the MR estimator that
can overcome the bias in the case of cyclostationary input.
This approach is subsampling invariant and readily applicable
to two prevalent situations: First, to trial-based experiments,
which are commonly found in neuroscience; second, to peri-
odic input rates, e.g., the seasonal fluctuations of infectious
disease incidence [20]. We demonstrate the applicability of
our methodology on numerical data (testing robustness to
relaxation of our assumptions) and on real-world experimental
data.

We consider the class of stochastic processes with an au-
toregressive representation of first order. This includes widely
used processes, such as branching processes and Kesten pro-
cesses. Time evolves in discrete steps (�t = 1). Let Ai

t denote
the activity of a realization i at time t , then, the conditional ex-
pectation value over the ensemble of independent realizations
is defined as

〈Ai
t+1|Ai

t 〉 = mAi
t + 〈ht 〉, (1)

where m is the time-independent mean offspring parameter
and 〈ht 〉 is the average ensemble rate of a time-dependent
input distribution. In the framework of spike propagation in
neural networks, m describes the average number of neurons
that a single neuron subsequently activates and 〈ht 〉 describes
the expected input rate at time t from sensory modalities or
other brain areas.
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FIG. 1. Unbiased estimation of internal autocorrelation time τ for a subsampled system with time-dependent input rate can be achieved
after subtracting trial-ensemble average from activity. (a) Step function as an example for a time-dependent input rate. (b) Subsampled
activity ai

t of a branching process with constant internal autocorrelation time τ and nonstationary input rate shows nonstationary behavior
in regimes II and III. The colored lines are individual trials, and the black solid line is the trial-ensemble average at (over 200 trials). (c) Linear
regression slope estimates rk (blue dots) of time lag k for the process in (b) do not decay exponentially as expected from the process’ internal
autocorrelation (red line), which makes an unbiased estimation of τ impossible. (d) Time series (b) corrected by subtracting trial-ensemble
average: ãi

t = ai
t − at . (e) For corrected time series (d), the rk decay exponentially, such that τ can now be inferred without bias. Simulation

parameters: Trial length T = 10 000 steps, internal autocorrelation time τ = 20 steps, number of trials N = 200, mean (fully sampled) baseline
activity 〈A0〉 = 1000, subsampling fraction α = 0.05, relative step height 〈hup〉/〈hdown〉 = 2.6, and step duration c = 200 steps.

Note that the expectation values in Eq. (1) are defined
over the ensemble of independent realizations (trials) of the
stochastic process, e.g., 〈ht 〉 = ∑

i hi
t (for the trial average,

we drop the index that was summed over). For a general
nonstationary external input, 〈ht 〉 cannot be defined unless one
has multiple realizations from the same time-dependent dis-
tributions hi

t ∼ P(ht ). In nature, this is approximately realized
by cyclostationarity, e.g., trial-based experiments or seasonal
fluctuations. We make use of this to solve the problem even
without knowledge of the precise realization of external in-
puts. In the following, we assume that the generation of
offsprings is Poisson distributed with time-independent m,
whereas the generation of external input is Poisson distributed
with time-dependent rate 〈ht 〉.

Subsampling is incorporated as follows: We only require
that the subsampled activity at is, on average, linear in the
full activity Ai

t , i.e., 〈ai
t | Ai

t 〉 = αAi
t (for details, see Ref. [12]).

For example, every spike or disease incidence is sampled with
probability p = α.

To estimate the spreading behavior m under subsampling
and time-dependent external input rates, we follow the princi-
pal idea of the MR estimator [12]. We generalize Eq. (1) by
recursive iteration to k time steps,

〈Ai
t+k|Ai

t 〉 = mkAi
t +

k∑

l=1

mk−l〈ht+l−1〉. (2)

If the rate is time-independent (〈ht 〉 = 〈h〉), Eq. (2) implies
that the original process Ai

t has an exponential autocorrelation
function,

C(k) = mk = exp(−k�t/τ ), (3)

with the time lag k in steps of �t . The autocorrelation function
relates the propagation dynamics (m) to an internal autocorre-

lation time τ = −�t/ ln(m) and represents a measure of how
long information persists in the activity [12]. For stationary
processes, the variance across trials is equal to the variance
within trials [Vari(ai

t ) = Vart (ai
t ) = Vari,t (ai

t )] such that the
autocorrelation function C(k) of the subsampled activity ai

t
can be calculated directly via linear regression [12],

C(k) = r̂k = Covi,t (ai
t , ai

t+k )

Vari,t (ai
t )

= α2 Vari,t (Ai
t )

Vari,t (ai
t )

mk, (4)

with time-independent autocorrelation strength b =
α2Vari,t (Ai

t )/Vari,t (ai
t ) for all k �= 0. Although b is biased

under subsampling (b < 1 if α < 1), the autocorrelation time
τ is subsampling invariant and can be obtained by fitting
Eq. (4) to the data [12].

For a time-dependent external input rate 〈ht 〉, however, the
autocorrelation function is not time invariant, and if calculated
does not necessarily decay exponentially [Figs. 1(a)–1(c)].
Consider, for example, a step-function external input rate.
Linear regression applied to each regime independently would
yield similar slopes (identical slopes for full activity Ai

t ) but
different offsets of linear regression (Supplemental Material
[32], Fig. S2). Therefore, the naive application of the MR
estimator fails even for full activity. This represents an issue
for general time-dependent input.

In the following, we construct a reliable estimate of the
internal autocorrelation time τ in the presence of cyclo-
stationary external input rates. We focus our discussion on
subsampled activity at , which includes the fully sampled case
(α = 1, bt = 1).

To correct the bias from cyclostationary external input (〈ht 〉
is time dependent but identical for each trial i), we introduce
the following method: Given we have N trials with inde-
pendent realizations ai of a subsampled linear autoregressive
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process, we calculate the time-dependent trial-ensemble aver-
age:

at = 1

N

N∑

i=1

ai
t , (5)

over all trials (not to be confused with an average calculated
over all recorded times). Now, we correct for the nonstation-
arity of the original process by subtracting the trial-ensemble
average [Fig. 1(d)],

ãi
t = ai

t − at . (6)

Its linear regression slopes rk reveal the true internal auto-
correlation time in their exponential decay [Fig. 1(e)] for
sufficiently large N (see below and Supplemental Material
[32] Fig. S4).

From the corrected time series ãi
t , we can, thus, infer the

unbiased autocorrelation time by applying the MR estimator
[33] (see Supplemental Material [32] Sec. S.6 for the full
derivation). To prove this, we reformulate Eq. (4) as sim-
ple linear regression at each time across trials, i.e., r̂k,t =
Covi(ãi

t , ãi
t+k )/Vari(ãi

t ). For trial-ensemble corrected ãi
t , we

find that the correction compensates the convolution in Eq. (2)
such that r̂k,t = bt mk with time-independent decay but with
time-dependent autocorrelation strength (Supplemental Ma-
terial [32] Eq. (S23)),

bt = α2 Vari(Ai
t )

Vari(ai
t )

≈ 1

1 − (1 − α−1)F−1
t

, (7)

where the relation to the (across-trial) Fano factor of the full
activity Ft = Vari(Ai

t )/〈At 〉 is strictly true only for binomial
subsampling. However, we can show (Supplemental Material
[32] Eq. (S25)–(S29)) that for the corrected time series, direct
application of Eq. (4) with the standard regression approaches
yields an unbiased estimate of the internal autocorrelation
time τ despite cyclostationary input and subsampling (for a
proof of concept see Fig. S3 of the Supplemental Material
[32]).

In addition to the bias from subsampling or nonstationary
input, there can be a bias from short trial length T [34]
and from small trial number N . The short-trial bias can be
avoided by estimating both covariance and variance as fluctu-
ations around a global stationary mean (cf., “stationary mean”
method in Ref [33] with a detailed discussion). For all our
analyses (experimental and numerical), we, thus, use the MR
estimator toolbox [33] with the stationary mean method. In
principle, this allows for an unbiased estimation down to N =
10 short trials (Fig. S4 of the Supplemental Material [32]),
whereas, of course, the variance of the results increases with
decreasing N (Supplemental Material [32] Secs. S.4 and S.7).

We tested the applicability of MR estimation for cyclo-
stationary external input by increasing the level of realism
for a numerical problem. The test case is a baseline rate
〈h0〉 plus step function at onset time tstep with step height
�〈h〉 and step duration c. We consider three cases: (i) per-
fect cyclostationarity across trials (Fig. 1 and Fig. S5 of
the Supplemental Material [32] for an extreme example),
(ii) variation of onset time tstep ∼ N (T/2, σt ) with �〈h〉 =
〈h0〉 fixed [Fig. 2(a)], and (iii) variation of the step height
�〈h〉 ∼ N (〈h0〉, σh) with tstep = T/2 fixed [Fig. 2(b)]. We
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FIG. 2. Robustness of our estimate to variability in a nonstation-
ary input (step function with step-duration c = 10 τ ). (a) Variability
in the onset time tstep with standard deviation σt . (b) Variability in
the step height �〈h〉 with standard deviation σh. The color in the
matrix indicates the relative error between the estimated autocorrela-
tion time τ̂ and the internal autocorrelation time τ of the branching
process. The 5% error bound was fitted (black lines) and scales as
σ ∝ τ γ . Simulation parameters: T = 1000τ steps, N = 300, 〈A0〉 =
5000, α = 0.01.

generated N = 200 trials of branching processes with internal
autocorrelation time τ , trial duration T = 1000τ , and base-
line activity 〈A0〉 = 5000 such that 〈h0〉 = (1 − m)〈A0〉 (m =
exp(−�t/τ ), �t = 1 step). This setup allows us to indepen-
dently investigate variability in onset time and height of the
input.

Variations in the onset time and step height do not hinder
correct inference as long as the standard deviations are suffi-
ciently low (Fig. 2). In our test case, variations in the onset
time barely affect the correct inference as long as the standard
deviation σt is below the magnitude of the autocorrelation
time [Fig. 2(a)]. When σt ≈ O(τ ), the method still provides
consistent estimates of the processes autocorrelation time.
Moreover, the estimates improve for a given σ/τ with in-
creasing autocorrelation time τ . We observe, that the 5% error
bound scales as σt ∝ τ γ with γ̂ ≈ 0.22(3). Similarly, varia-
tions in the step height barely affect the correct inference as
long as the standard deviation σh is below 〈h0〉/5 [Fig. 2(b)].
Again, the estimates improve with increasing autocorrelation
time and the 5% error bound scales as σh/�〈h〉 ∝ τ γ with
γ̂ ≈ 0.4(1). We conclude that our method provides consistent
results even after relaxation of perfect cyclostationarity.

We applied our method to two sets of experimental data.
The first dataset consists of spiking activity in prefrontal
cortex from a trial based short-term visual memory task
on macaque mulatta [35] (about N = 300 trials each, see
Supplemental Material [32] Sec. S.11). In this dataset, the
external input can be interpreted as sensory input from other
brain areas to the investigated area. The second dataset are
epidemiological case reports from the Robert Koch Institute
[36] (N = 18 trials each, see Supplemental Material [32] Sec.
S.10). In the epidemiological dataset, the infections carried
into the country via travel can be interpreted as nonstationary
external input.

For the monkey data, we want to emphasize three findings:
First, although the trial-ensemble average at increases by a
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FIG. 3. Application of our new approach to experimental data. Top (a)–(c) The intrinsic timescales τ in the macaque prefrontal cortex have
been inferred with our new approach from spike recordings during a trial-based visual short-term memory task [35]. (a) Example trial-ensemble
average of stimulus-evoked nonstationary neural responses. (b) Autocorrelation functions rk of (a) before (orange) and after the correction
(blue) hardly differ. (c) Intrinsic timescales inferred from uncorrected data are systematically but not very strongly overestimated (less than
10%). (d) Numerical robustness validation for typical experimental recordings, resembling a typical evoked potential: Nonstationary external
input (blue) with twofold increase during stimulus presentation (total duration of c = 375 ms ) for N = 300 trials of length T = 5 s with
sampling frequency f = 1 kHz and subsampling fraction α = 0.01. An example trial realization ai

t is shown as a black line. The impact
on estimating τ under variance of the stimulus onset (σt ) is evaluated for various intrinsic autocorrelation times τ as in Fig. 2. Bottom
(e)–(g) The infectious spreading dynamics of norovirus and measles have been inferred with case report data from the Robert Koch Institute
[36]. (e) Reported infection numbers (blue lines) and the time-dependent trial-ensemble average (black line) for norovirus reveal seasonal
nonstationarities. (f) With our method, the seasonality was mostly removed from the autocorrelation function rk of (d). (g) In contrast to the
neural recordings, the infectious spreading dynamics inferred from the uncorrected disease data are systematically underestimated.

factor of 3 [Fig. 3(a)], the autocorrelation function hardly
differs in most cases [Fig. 3(b)]. Second, we find a systematic
decrease in intrinsic timescales after the correction, whereas,
for the majority of the recording sets, the decrease was less
than 10% [Fig. 3(c)]. Third, a robustness test of our method
with parameters adjusted to experimental scale [Fig. 3(d)
with experimentally realistic stimulus shape] indicates that
our method yields less than 5% deviation from τ � 200 ms
despite stimulus onset variability with σt < 50 ms, which is a
realistic constraint given the steep rise of typical ensemble re-
sponses within 30–50 ms [Fig. 3(a)]. To conclude, our method
reveals intrinsic timescales in the prefrontal cortex between
57(4) and 345(26) ms with median 214 ms (compared to
239 ms if not corrected) from recordings covering the full
task. Our results are consistent with previous results in the
prefrontal areas of the macaque (about 200 ms) confined to the
stimulus foreperiod to approximate the resting state [37,38].

In the example of disease spreading, our method accounts
well for seasonal fluctuations [Figs. 3(e)–3(g)]. The weekly
case number reports reveal a strong yearly periodicity, sug-
gesting a yearwise separation into trials. The improvement
due to the trial-ensemble average correction is readily visible
in the regression function rk [Fig. 3(f)]. With the correction,
the infectiousness estimate is higher than without [Fig. 3(g),
norovirus: τ = 14(3) weeks, measles: τ = 15(8) weeks]. The
disease results are, in principle, subject to additional uncer-
tainty from the small number of trials (cf., Fig. S4 of the
Supplemental Material [32]), which are probably on the order
of 10% and, thus, smaller than the error bars from the fits. Our
results highlight that the correction by trial-ensemble average

can reveal higher infectiousness of diseases, which might
otherwise be underestimated due to seasonal fluctuations and
other nonstationary effects, and that long-term recordings are
necessary to reveal the intrinsic infectiousness of a disease.

To summarize, we have presented a simple subsampling-
invariant estimate of the internal autocorrelation time for
stochastic processes with an autoregressive representation
subject to (approximate) cyclostationary external input. The
key success of the presented approach (MR estimation with
trial-ensemble average corrected time series) is the poten-
tial to disentangle the internal spreading from any hidden
but repetitive external input rate. Thereby, our approach
solves the problem of apparent criticality due to nonstation-
ary input rates [19] for repetitive stimulation protocols. We
demonstrated the robustness of our approach to violations of
perfect cyclostationarity for the external input rate; and we
showed its applicability to real-world problems from neuro-
science and epidemiology. In conclusion, we recommend the
trial-ensemble average correction as the best practice when
approximating trial-based experiments with autoregressive
models. A toolbox for the multistep-regression analysis is
readily available [33].
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