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Measurement-induced randomness and structure in controlled qubit processes
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When an experimentalist measures a time series of qubits, the outcomes constitute a classical stochastic
process. We show that projective measurement induces high complexity in these processes in two specific senses:
They are inherently random (finite Shannon entropy rate) and they require infinite memory for optimal prediction
(divergent statistical complexity). We identify nonorthogonality of the quantum states as the mechanism under-
lying the resulting complexities and examine the influence that measurement choice has on the randomness
and structure of measured qubit processes. We introduce quantitative measures of this complexity and provide
efficient algorithms for their estimation.
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Introduction. Temporal sequences of controlled quantum
states are key to fundamental physics and its engineering de-
ployment. Quantum entanglement [1] between emitted qubits,
such as photons [2], is central to Bell probes [3] of inconsis-
tencies between quantum mechanics and local hidden variable
theories [4]. Complementing their scientific role, entangled
qubits are now recognized as basic resources for quantum
technologies—quantum key distribution [5], teleportation [6],
metrology [7], and computing [8]. The quest there is for qubit
sources that allow on-demand generation: At a certain time
a source should emit one and only one pair of entangled
photons. Qubit sources should also be efficient: qubits emitted
and collected with a high success rate. Also, individual qubits
should have specified properties. In Einstein-Podolsky-Rosen
(EPR) experiments photons in emitted pairs should be identi-
cal from trial to trial. In addition, in communication systems
polarization states should be manipulable at the highest possi-
ble rates [9].

Much experimental effort has been invested to develop
qubit sources that, for example, extract entangled photons
from trapped atoms [10,11], spontaneous parametric down-
conversion [12], quantum dots [13], and related circuit-QED
(CQED) systems [14]. To date, though, there is still no single-
qubit source that exactly meets the performance requirements.
The on-demand criterion has been particularly vexing [15].
Addressing these challenges leads rather directly to a common
question, one that touches on both fundamental physics and
quantum engineering: how to characterize the statistical and
structural properties of a qubit time series. The underlying
challenge is that a systematic description of quantum pro-
cesses with memory in terms of experimental measurements
has yet to be given [16].

Complementing this, techniques developed within quan-
tum process tomography and process reconstruction [17–23]

*avenegasli@ucdavis.edu
†amjurgens@ucdavis.edu
‡chaos@ucdavis.edu

achieve partial or total reconstruction of channels and sys-
tem evolution. This task is of particular importance with
the advent of physically realizing processing in multiqubit
systems; notably, some are now available as open cloud ser-
vices [24,25]. This progress only heightens the need to fully
characterize quantum process information and statistics. In
the domain of classical stochastic processes, these properties
determine simulation capabilities, memory requirements, and
predictability, and they quantify a process’ randomness and
structure [26,27].

To address these challenges we concern ourselves with a
source that generates a single qubit at a time. We imagine
that the on-demand source is used repeatedly, producing an
arbitrarily long time series, which we call a qubit process. A
simple example arises when monitoring sequential emissions
from a blinking quantum dot [28,29]. We refer to their gener-
ators as controlled qubit sources (CQSs). We ask how random
and structured they appear to an experimentalist. [Supplemen-
tal Material (SM) [30] Sec. I highlights the features of the
quantum formalism we use.]

Here, we introduce a qubit source that is classically
controlled and quantally measured—for short, a classically
controlled qubit source (cCQS). While controllers take many
forms, the following models them as hidden Markov models
(HMMs)—a standard representation of stochastic discrete-
state controllers. Finite-state HMMs generate finite-memory
processes and come with tools for quantifying their essential
informational and statistical properties. They are also widely
used as models of noisy classical sources and communication
channels [31–33]. (See SM [30] Sec. II A for a refresher on
HMMs.) The qubit generator proper is sandwiched between
the controller and measurement apparatus. Figure 1 (top)
illustrates the setup: A black box, representing a quantum
system, emits a qubit in quantum state ρt at each time t .
More concretely, the lower panel shows an example, revealing
that the controller inside the black box is a finite-state hidden
Markov model that emits qubits in various quantum states.

We restrict the qubit states emitted by the cCQS to be
pure-state density matrices, that is, ρ2

t = ρt . This limits the
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FIG. 1. Top: A general controlled qubit source (CQS) as a
discrete-time quantum dynamical system that generates a time series
of qubits ρt−2ρt−1ρt . . .. Bottom: A cCQS generates a qubit process
|0〉〈0|, |+〉〈+| · · · . Measuring each qubit, an observer sees a classical
stochastic process: . . . x1x2x3x4x5 (top), . . . 011100 (bottom).

type of correlations that can be present across the qubit time
series to classical correlations and leaves time series with
temporal entanglement for future exploration. The quantum
state of the random variable chain that forms the time series
can be regarded as the tensor product of the individual qubits:
· · · ρt−2 ⊗ ρt−1 ⊗ ρt · · · .

This simple setup raises several natural questions about
characterizing qubit processes generated by CQSs. How ran-
dom is the qubit process? How much memory does the source
use to generate the qubit series? Can we identify the internal
control mechanism from the qubit time series alone?

By way of comparison to CQSs, in the classical setting
all of these questions can be answered constructively. Im-
portantly, this setting provides a scaffolding to answer the
questions for CQS-generated processes. So, let us review. In
a classical system that emits symbols X taking values in a
discrete alphabet (x ∈ A), the output is a stochastic process
Pr(X−∞:0, X0:∞) over pasts X−∞:0 and futures X0:∞. Here, Xt

denotes the random variable at time t and a block is denoted
Xt :t+l = Xt , Xt+1, . . . , Xt+l−1.

On the one hand, the process’ Shannon entropy rate hμ,

hμ = lim
�→∞

H[Pr(X0:�)]

�
,

measures its randomness as the rate of increase of informa-
tion in length-� sequences—in the Shannon block entropy
H[Pr(X0:�)] [34]. On the other hand, accurately determining
a process’ memory requires the generating HMM to have
specific properties. Fortunately, there is a canonical HMM that
gives a direct, closed-form expression for both properties.

This is the process’ ε-machine [27]—its minimal opti-
mally predictive HMM—and it satisfies the following. First,
the ε-machine is unifilar: For each state sk ∈ S and each
symbol x there is at most one transition from sk that emits
x. Second, its states are probabilistically distinct: For every
pair of states sk, s j ∈ S there exists some finite word w =
x0x1 · · · x�−1 such that Pr(w|sk ) �= Pr(w|s j ). These features
define a process’ causal states, meaning they capture the min-
imal amount of information from the past to optimally predict
the process’ future. Together with their transition dynamic
{T (x) : x ∈ A} the causal states form the process’ ε-machine.
[Figures 2(a)–2(c) give examples of unifilar and nonunifilar
HMMs.] Though a seemingly innocent structural property, we
show that unifilarity plays a decisive role in diagnosing the
complexity of measured quantum processes.

To calculate the resources required to predict future out-
puts, we find the statistical complexity Cμ—the Shannon

information or average memory in the causal states,

Cμ = −
∑
s∈S

Pr(s) log2 Pr(s). (1)

Additionally, in the classical setting unifilarity allows one to
calculate the entropy rate directly from the ε-machine as the
state-averaged symbol uncertainty,

hμ = −
∑
s∈S

Pr(s)
∑
x∈A

∑
s′∈S

T (x)
ss′ log T (x)

ss′ . (2)

(See SM [30] Sec. II B.)
We can now state our main result: Even with a finite-state

HMM control, generically a cCQS produces a measured qubit
process whose minimal optimal predictor requires an infinite
number of causal states.1 Prediction resources (Cμ) diverge,
though at a quantifiable rate. We establish the result construc-
tively, by determining hμ and exploring Cμ’s divergence for
qubit processes and by identifying the driving mechanism as
measurement-induced nonunifilarity.

Qubit processes. Generating the qubits in a time series is
governed by a cCQS that, without loss of generality, we take to
be an ε-machine for which the symbols emitted during state-
to-state transitions consist of qubit states. This HMM choice
ensures that the source’s internal complexity used in generat-
ing the qubit process can be quantified. Both the entropy rate
hg

μ and the statistical complexity Cg
μ of the controller can be

exactly computed from the cCQS, since it is an ε-machine.
The states of the qubits’ output by a cCQS form a stochas-

tic process; two examples of the latter are shown in Figs. 2(a)
and 2(b). (SM [30] Secs. I and II A explain how these qubit-
generating state machines operate.) The cCQS in Fig. 2(a)
generates a qubit time series of orthogonal pure states |0〉〈0|
and |1〉〈1|. The cCQS in Fig. 2(b) generates a qubit time
series of nonorthogonal pure states |0〉〈0| and |+〉〈+|, where
|+〉 = (|0〉 + |1〉)/

√
2.

Measured qubit processes. The observer interacts with such
processes by applying to each qubit a projective measurement,
consisting of the set of orthonormal measurement operators
{E0, E1} with measurement basis E0 = |ψ0〉〈ψ0| and E1 =
|ψ1〉〈ψ1| parametrized by the Bloch angles θ and φ via

|ψ0〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉 (3a)

and

|ψ1〉 = sin
θ

2
|0〉 − eiφ cos

θ

2
|1〉. (3b)

The outcome of each measurement can then be labeled 0
or 1, respectively, resulting in a binary classical stochastic
process.

Knowledge of the controller and the measurement basis
allows us to directly construct an HMM that generates the
measured qubit process itself. We call this the measured
cCQS: It has the same states and stationary distribution π as
the original cCQS. Its labeled transition matrices {T (x)} with

1Genericity here refers to any HMM that is ergodic, aperiodic, and
non-negative.
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FIG. 2. (a) Three-state classically controlled qubit source (cCQS) that generates a process consisting of qubits in orthogonal states.
(b) Nonorthogonal-qubit cCQS: Three-state HMM that outputs nonorthogonal pure states |0〉〈0| and |+〉〈+|, where |+〉 = (|0〉 + |1〉)/

√
2.

(c) HMM presentation for the classical stochastic process resulting from measurement (θ = π/2) of the quantum process generated by (b).
(d) Mixed states for the stochastic process generated by (c) in that HMM’s state distribution simplex. Each mixed state is a point of the form
(pA, pB, pC ) with probabilities of being in state A, B, or C of (c). The color scale shows the logarithm of the probability of the mixed states.

x ∈ A are

T (x) =
∑
ρ j

T ρ j Pr(x|ρ j ), (4)

where Pr(x|ρ j ) = tr(Exρ jE†
x ) and the cCQS labeled transition

matrices T ρ j are defined in SM [30] Sec. II A. See the HMM
in Fig. 2(c). It generates the classical process resulting from
measuring the qubit process generated by Fig. 2(b) with an-
gles φ = 0 and θ = π/2.

Uncountable predictive features. One would hope that,
since here we know the measured cCQS, as shown in Fig. 2(c)
for the example there, and it generates the measured qubit
process, we could apply Eqs. (1) and (2) to calculate our mea-
sures of randomness and memory directly from that model.
Unfortunately, a problem arises. The measured cCQS is not
an ε-machine since the generated measurement sequences
are not in one-to-one correspondence with the internal state
sequences. This is the problem of measured-cCQS nonunifi-
larity and it stymies any attempt to directly calculate the
randomness and memory of the measured quantum process.
In fact, and this is the first part of our result, nonunifilarity is
generic to measured cCQSs, since randomly sampled HMMs
are nonunifilar [35].

Though Fig. 2(c)’s HMM generates the observed qubit
process, we cannot use it to directly determine even the most
basic process properties. Fortunately, this measured cCQS can
be converted to an ε-machine by calculating the cCQS’s mixed
states; for details, see SM [30] Sec. II C. Here, we give a
synopsis.

As first formalized by Blackwell [36], an N-state
HMM’s mixed states are conditional probability distributions
η(x−�:0 ) = Pr(R0|X−�:0 = x−�:0 ) over the measured HMM’s
internal states R given all sequences x−�:0 ∈ A�. The col-
lection over all of a process’ allowed sequences induces a
(Blackwell) measure μ on the state distribution Pr(R) (N −
1)-dimensional simplex R. The mixed states together with the
mixed-state transition dynamic give an HMM’s mixed-state
presentation (MSP).

A mixed state answers the question, given that one knows
the HMM structure and has seen a particular sequence, what

is the best guess of the internal state probabilities? Recurrent
mixed states exactly correspond to causal states S [37]. When
they lay in an uncountable set S ⊆ R—see Fig. 2(d)—Cμ

diverges.
Measurement-induced nonunifilarity results in the num-

ber of causal states diverging. That is, despite the controller
having only a finite number of states and the controlling
cCQS being unifilar, measurement means that predicting the
observed process requires an uncountable number of causal
states. This also introduces another fundamental challenge:
how to define and quantify the resulting randomness and
complexity.

Measurement-induced randomness and statistical complex-
ity. The uncountable causal states also render the complexity
measure expressions in Eqs. (1) and (2) unusable. Fortunately,
Blackwell provided a formal expression for the entropy rate
[36] by showing that an HMM’s mixed-state presentation is
unifilar. The entropy rate is then an integral over the invariant
Blackwell measure μ(η) in the mixed-state simplex R,

hB
μ = −

∫
R

dμ(η)
∑
x∈A

Pr(x|η) log2 Pr(x|η). (5)

Recently, Ref. [38] introduced a constructive approach to eval-
uate this integral by establishing contractivity of the simplex
maps—the substochastic transition matrices of Eq. (4)—and
showing that the mixed-state process is ergodic. Given ergod-
icity of the mixed-state process, rather than integrate over the
Blackwell measure μ(η), such as in Fig. 2(d), we can average
over a time series of mixed states μt to get the measured
cCQSs entropy rate,

ĥB
μ = − lim

�→∞
1

�

�∑
i=0

∑
x∈A

Pr(x|ηi) log2 Pr(x|ηi), (6)

where Pr(x|ηi ) = η(x0:i ) · T (x) · 1, x0:i is the first i symbols of
an arbitrarily long sequence x0:∞ generated by the process,
and 1 is a column vector of all 1’s.

Calculating the memory of the measured cCQS—the statis-
tical complexity Cμ—is similarly delicate. In the typical case
the causal state set S of the measured cCQS is uncountable,
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FIG. 3. Measurement-induced randomness and structure. Top: Mixed-state sets when measuring the qubit process of Fig. 2(b) as a function
of measurement angle θ ∈ [0, π ]. Bottom: Entropy rate ĥB

μ (blue curve) as a function of angle. The horizontal line (red) is the entropy rate of
the (unmeasured) qubit sequences: hg

μ = 3/4 bit per output qubit. Insets: Mixed states at three measurement angles: (a) θa = 0.628 (purple),
(b) θb = 1.634 (orange), and (c) θc = 2.701 (green). The measured process entropy rates hμ and statistical complexity dimensions dμ given
there. Both mixed states and complexity measures are computed with � = 106 iterates.

and Cμ diverges. Instead, we track its rate of divergence—the
statistical complexity dimension dμ of the Blackwell measure
μ on R [35,39],

dμ = lim
ε→0

−Hε[R]

log2 ε
, (7)

where Hε[Q] is the Shannon entropy (in bits) of the
continuous-valued random variable Q, coarse-grained at size
ε, and R is the random variable associated with the mixed
states η ∈ R. SM [30] Secs. II C and II E develop an up-
per bound on dμ that can be accurately determined from the
measured process’ entropy rate ĥB

μ above and the mixed-state
process’ Lyapunov characteristic exponent spectrum 
. As
discussed in SM [30] Sec. II E and Ref. [39], this upper bound
can be a close approximation to dμ, but may also be a strict
inequality.

Measurement dependence. Equations (3) and (4) indicate
that the choice of measurement basis alters the observed
process. To explore this with an example, we calculate the
dependence of the above complexity measures as a func-
tion of measurement angle θ , with fixed φ for Fig. 2(b)’s
cCQS, determining the measured cCQS at each measurement
setting.

Figure 3 (top) shows the results. The cCQS is measured
in 500 different bases, holding φ = 0 fixed and varying θ ∈
[0, π ] uniformly. For each measured cCQS the MSP is com-
puted and the resulting series of mixed-state sets is plotted.
Figure 3 (bottom) plots ĥB

μ(θ ) and highlights three particular
measurement angles {θa, θb, θc}, showing the unique attractor
found in the latter’s mixed-state simplices. MSP entropy rate
and the statistical complexity dimension are estimated using
Eqs. (6) and (7), respectively.

Common characteristics are apparent, such as a smooth
behavior of hμ(θ ) with well-defined maxima and minima and
the systematic change in the MSP structure as a function of
θ which is consistent with the quoted dimensions dμ. Angles
θ = 0 and θ = π give particularly simple behaviors with finite
statistical complexity and dμ = 0, in accord with the count-
able MSPs there. The measured machines at these two values
of θ are identical, aside from a symbol swap—all 0’s become
1’s and vice versa. They both have Cμ = 0.6813 bits.

Figure 3 (top) exhibits a case of interest at θ = π/4. The
mixed states converge to a single point: a single-state machine
that represents a biased coin. This occurs since the underlying
cCQS has a binary quantum alphabet AQ = {ρ0, ρ+} and the
measurement basis corresponding to φ = 0 and θ = π

4 with
basis vectors |ψ0〉 and |ψ1〉 is such that Pr(0|ρ0) = Pr(0|ρ+)
and Pr(1|ρ0) = Pr(1|ρ+). This basis is equidistant from both
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quantum states in AQ. Therefore, applying the measurement
to one state or the other yields the same probability distri-
bution over outcomes. One loses all information about the
underlying structure and the measured cCQS generates an
independent identically distributed process.

To compare the randomness and organization of the un-
derlying generator process, the horizontal line in the ĥB

μ(θ )
plot gives the entropy rate of the (unmeasured) qubit process:
hg

μ = 3/4 bit per output qubit. Its statistical complexity is
Cg

μ = H[π ] = 1.5 bits. The differences between these con-
stant values and those of the measured cCQS values makes it
clear that quantum measurement can both add or remove ran-
domness and structure. A measurement close to θ = π

4 , on the
one hand, rarely distinguishes between the measured quantum
states (|0〉〈0| or |+〉〈+|) and has a greater number of measured
0’s, making the measured process less random than the gen-
erating process. On the other hand, a measurement close to
θ = 3π/4 results in a more even distribution of measurement
outcomes, introducing randomness to the measured process.

Conclusion. That randomness and complexity arise when
observing qubit processes can be too facilely appreciated. In-
deed, quantum measurement often comes steeped in mystery.
We dispelled some of that mystery by showing that (i) an
infinite number of predictive features are required to describe
measured qubit time series and (ii) measurement can both
introduce and subtract information and correlation. These
characters of measurement greatly complicate learning about
the informational and dynamical organization of quantum sys-
tems. However, at least now, we can appreciate more fully
what the task is, what mechanism drives it (nonunifilarity),
and why it is challenging.

Unexpectedly, analyzing the quantum physics necessi-
tated another theory and efficient algorithms for quantify-
ing the randomness and complexity of ergodic, stationary
processes generated by nonunifilar hidden Markov mod-
els. Mathematically, these gave a constructive answer to
the longstanding information-theoretic problem of char-
acterizing functions of Markov chains—a problem that
until now had only been formally, not constructively,
solved [36].

Solving the problem of measurement-induced complex-
ity is a step to fully describing quantum systems in terms
of measurements. The results shed light on the fundamental
ways in which the measurement act influences the observed
complexity of quantum systems. With these tools, on the
one hand, the next steps to reduce observed complexity
easily come to mind: using positive operator-valued mea-
sures (POVMs), implementing multiqubit measurements, and
developing adaptive measurement schemes. On the other
hand, introducing quantum controllers will bring results that
bear directly on contemporary experimental systems, such as
single-photon sources.

Acknowledgments. We thank C. Aghamohammadi, F.
Anza, S. Loomis, S. Marzen, and T. Pittman for helpful
discussions. A.E.V.L., A.M.J., and J.P.C. thank the Santa Fe
Institute and J.P.C. thanks the Telluride Science Research
Center, Institute for Advanced Study at the University of
Amsterdam, and California Institute of Technology for their
hospitality during visits. This material is based upon work
supported by, or in part by, the U.S. Army Research Labora-
tory and the U.S. Army Research Office under Contracts No.
W911NF-13-1-0390 and No. W911NF-18-1-0028.

[1] E. Schrödinger, The present situation in quantum mechanics,
Proc. Am. Philos. Soc. 124, 323 (1935).

[2] C. S. Wu and I. Shaknov, The angular correlation of scattered
annihilation radiation, Phys. Rev. 77, 136 (1950).

[3] J. S. Bell, On the Einstein Podolsky Rosen paradox, Physics 1,
195 (1964).

[4] A. Einstein, B. Podolsky, and N. Rosen, Can quantum-
mechanical description of physical reality be considered
complete? Phys. Rev. 47, 777 (1935).

[5] A. K. Ekert, Quantum Cryptography Based on Bell’s Theorem,
Phys. Rev. Lett. 67, 661 (1991).

[6] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and
W. K. Wootters, Teleporting an Unknown Quantum State via
Dual Classical and Einstein-Podolsky-Rosen Channels, Phys.
Rev. Lett. 70, 1895 (1993).

[7] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum Metrology,
Phys. Rev. Lett. 96, 010401 (2006).

[8] R. Raussendorf and H. J. Briegel, A One-Way Quantum Com-
puter, Phys. Rev. Lett. 86, 5188 (2001).

[9] M. Lindemann, G. Xu, T. Pusch, R. Michalzik, M. R. Hofmann,
I. Zutic, and N. C. Gerhardt, Ultrafast spin-lasers, Nature
(London) 568, 212 (2019).

[10] S. J. Freedman and J. F. Clauser, Experimental Test of Local
Hidden-Variable Theories, Phys. Rev. Lett. 28, 938 (1972).

[11] R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D.
Boozer, and H. J. Kimble, Trapped atoms in cavity QED: Cou-
pling quantized light and matter, J. Phys. B: At., Mol. Opt. Phys.
38, S551 (2005).

[12] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V.
Sergienko, and Y. Shih, New High-Intensity Source of
Polarization-Entangled Photon Pairs, Phys. Rev. Lett. 75, 4337
(1995).

[13] O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, Regulated
and Entangled Photons from a Single Quantum Dot, Phys. Rev.
Lett. 84, 2513 (2000).

[14] H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker,
Cavity quantum electrodynamics, Rep. Prog. Phys. 69, 1325
(2006).

[15] M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, Single-
photon sources and detectors, Rev. Sci. Instrum. 82, 071101
(2011).

[16] F. A. Pollock, C. Rodriguez-Rosario, T. Frauenheim, M.
Paternostro, and K. Modi, Non-Markovian quantum processes:
Complete framework and efficient characterization, Phys. Rev.
A 97, 012127 (2018).

[17] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information, 10th anniversary ed. (Cambridge
University Press, Cambridge, UK, 2011).

040102-5

https://doi.org/10.1103/PhysRev.77.136
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1038/s41586-019-1073-y
https://doi.org/10.1103/PhysRevLett.28.938
https://doi.org/10.1088/0953-4075/38/9/007
https://doi.org/10.1103/PhysRevLett.75.4337
https://doi.org/10.1103/PhysRevLett.84.2513
https://doi.org/10.1088/0034-4885/69/5/R02
https://doi.org/10.1063/1.3610677
https://doi.org/10.1103/PhysRevA.97.012127


VENEGAS-LI, JURGENS, AND CRUTCHFIELD PHYSICAL REVIEW E 102, 040102(R) (2020)

[18] R. Rey de Castro, R. Cabrera, D. I. Bondar, and H.
Rabitz, Time-resolved quantum process tomography using
Hamiltonian-encoding and observable-decoding, New J. Phys.
15, 025032 (2013).

[19] M. Holzäpfel, T. Baumgratz, M. Cramer, and M. B. Plenio,
Scalable reconstruction of unitary processes and Hamiltonians,
Phys. Rev. A 91, 042129 (2015).

[20] C. Granade, J. Combes, and D. G. Cory, Practical Bayesian
tomography, New J. Phys. 18, 033024 (2016).

[21] M. Kliesch, R. Kueng, J. Eisert, and D. Gross, Guaranteed
recovery of quantum process from few measurements, Quantum
3, 171 (2019).

[22] A. M. Palmieri, E. Kovlakov, and F. Bianchi, Experimental
neural network enhanced quantum tomography, npj Quantum
Inf. 6, 20 (2020).

[23] L. C. G. Govia, G. J. Ribeill, D. Riste, M. Ware, and H. Krovi,
Bootstrapping quantum process tomography via perturbative
ansatz, Nat. Commun. 11, 1084 (2020).

[24] IBM quantum experience, https://quantum-computing.ibm.
com.

[25] Rigetti cloud services, https://rigetti.com.
[26] J. P. Crutchfield and K. Young, Inferring Statistical Complexity,

Phys. Rev. Lett. 63, 105 (1989).
[27] J. P. Crutchfield, Between order and chaos, Nat. Phys. 8, 17

(2012).
[28] C. Galland, Y. Ghosh, A. Steinbru, M. Sykora, J. A.

Hollingsworth, V. I. Klimov, and H. Htoon, Two types of lumi-
nescence blinking revealed by spectroelectrochemistry of single
quantum dots, Nature (London) 479, 203 (2011).

[29] A. L. Efros and D. J. Nesbitt, Origin and control of blinking in
quantum dots, Nat. Nanotechnol. 11, 661 (2016).

[30] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.102.040102 for a review of our quantum
formalism, classical stochastic processes, information mea-
sures, mixed states, and details of the numerical calculations,
which includes Refs. [40–53].

[31] L. R. Rabiner and B. H. Juang, An introduction to hidden
Markov models, IEEE ASSP Mag. 3, 4 (1986).

[32] L. R. Rabiner, A tutorial on hidden Markov models and selected
applications, IEEE Proc. 77, 257 (1989).

[33] J. Bechhoefer, Hidden Markov models for stochastic thermody-
namics, New. J. Phys. 17, 075003 (2015).

[34] C. E. Shannon, A mathematical theory of communication, Bell
Sys. Tech. J. 27, 379 (1948); 27, 623 (1948).

[35] S. E. Marzen and J. P. Crutchfield, Nearly maximally predictive
features and their dimensions, Phys. Rev. E 95, 051301(R)
(2017).

[36] D. Blackwell, The entropy of functions of finite-state Markov
chains, in Transactions of the First Prague Conference on

Information Theory, Statistical Decision Functions, Random
Processes (Czechoslovak Academy of Sciences, Prague, 1957),
Vol. 28, pp. 13–20.

[37] C. J. Ellison, J. R. Mahoney, and J. P. Crutchfield, Predic-
tion, retrodiction, and the amount of information stored in the
present, J. Stat. Phys. 136, 1005 (2009).

[38] A. Jurgens and J. P. Crutchfield, Shannon entropy rate of hidden
Markov processes, arXiv:2008.12886.

[39] A. Jurgens and J. P. Crutchfield, Infinite complexity of finite
state hidden Markov processes, (unpublished).

[40] M. Gu, K. Wiesner, E. Rieper, and V. Vedral, Quantum me-
chanics can reduce the complexity of classical models, Nat.
Commun. 3, 762 (2012).

[41] J. R. Mahoney, C. Aghamohammadi, and J. P. Crutchfield, Oc-
cam’s quantum strop: Synchronizing and compressing classical
cryptic processes via a quantum channel, Sci. Rep. 6, 20495
(2016).

[42] P. M. Riechers, J. R. Mahoney, C. Aghamohammadi, and J. P.
Crutchfield, Minimized state-complexity of quantum-encoded
cryptic processes, Phys. Rev. A 93, 052317 (2016).

[43] C. Aghamohammadi, J. R. Mahoney, and J. P. Crutchfield,
The ambiguity of simplicity, Phys. Lett. A 381, 1223
(2017).

[44] S. Loomis and J. P. Crutchfield, Strong and weak optimizations
in classical and quantum models of stochastic processes, J. Stat.
Phys. 176, 1317 (2019).

[45] T. M. Cover and J. A. Thomas, Elements of Information Theory
(Wiley-Interscience, New York, 1991).

[46] J. P. Crutchfield and D. P. Feldman, Regularities unseen, ran-
domness observed: Levels of entropy convergence, Chaos 13,
25 (2003).

[47] R. G. James, C. J. Ellison, and J. P. Crutchfield, Anatomy of a
bit: Information in a time series observation, Chaos 21, 037109
(2011).

[48] P. Frederickson, J. Kaplan, E. Yorke, and J. Yorke, The Lya-
punov dimension of strange attractors, J. Differ. Equations 49,
185 (1983).

[49] J. Kaplan and J. Yorke, Chaotic behavior of multidimensional
difference equations, in Functional Differential Equations and
Approximation of Fixed Points, Lecture Notes in Mathematics
Vol. 730 (Springer, Berlin, 1979), pp. 204–227.

[50] D. Feng and H. Hu, Dimension theory of iterated function
systems, Commun. Pure Appl. Math. 62, 1435 (2009).

[51] A. Jurgens and J. P. Crutchfield, Backwards entropy rate of
hidden Markov processes, in preparation 2020 (unpublished).

[52] A. Jurgens and J. P. Crutchfield, Minimal embedding dimension
of minimally infinite hidden Markov processes, (unpublished).

[53] K. Falconer, Fractal Geometry: Mathematical Foundations and
Applications (Wiley, Chichester, 1990).

040102-6

https://doi.org/10.1088/1367-2630/15/2/025032
https://doi.org/10.1103/PhysRevA.91.042129
https://doi.org/10.1088/1367-2630/18/3/033024
https://doi.org/10.22331/q-2019-08-12-171
https://doi.org/10.1038/s41534-020-0248-6
https://doi.org/10.1038/s41467-020-14873-1
https://quantum-computing.ibm.com
https://rigetti.com
https://doi.org/10.1103/PhysRevLett.63.105
https://doi.org/10.1038/nphys2190
https://doi.org/10.1038/nature10569
https://doi.org/10.1038/nnano.2016.140
http://link.aps.org/supplemental/10.1103/PhysRevE.102.040102
https://doi.org/10.1109/MASSP.1986.1165342
https://doi.org/10.1109/5.18626
https://doi.org/10.1088/1367-2630/17/7/075003
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1103/PhysRevE.95.051301
https://doi.org/10.1007/s10955-009-9808-z
http://arxiv.org/abs/arXiv:2008.12886
https://doi.org/10.1038/ncomms1761
https://doi.org/10.1038/srep20495
https://doi.org/10.1103/PhysRevA.93.052317
https://doi.org/10.1016/j.physleta.2016.12.036
https://doi.org/10.1007/s10955-019-02344-x
https://doi.org/10.1063/1.1530990
https://doi.org/10.1063/1.3637494
https://doi.org/10.1016/0022-0396(83)90011-6
https://doi.org/10.1002/cpa.20276

