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In a recent paper by Fronczak et al. [Phys. Rev. E 101, 022111 (2020)], a simple spin model has been studied in
full detail via microcanonical approaches. The authors stress that the range of microcanonical temperature βm > 1
is unattainable in this model and the system undergoes a phase transition when the external parameter a = 1 in
the microcanonical ensemble. The purpose of this comment is to state that the treatment of the microcanonical
entropy in the commented paper is inappropriate since the fact that ergodicity is broken in the microcanonical
dynamics is ignored by the authors. The phase transition in the microcanonical ensemble, considered in the
commented paper, could occur only with a nonlocal dynamics which is often difficult to justify physically.
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In a recent paper [1], Fronczak et al. calculated the ther-
modynamic quantities, including the microcanonical entropy
and the microcanonical temperature, of a simple spin model
using the microcanonical approach. This model was built
up via a local-spin-flipping procedure [2]. The authors show
that the range of the microcanonical temperature βm > 1 is
unattainable in this model since all macrostates with βm > 1
are unavailable. The authors also conclude that the micro-
canonical transition arises as a result of singularity in entropy
that appears at the external parameter a = 1.

All the symbols here are the same as the commented paper.
Using the microcanonical ensemble, the energy per spin of the
system u is conserved. u is determined by the positive rate of
spins n+ and the external parameter a. For a given a, n+ is not
a single-valued function of u. Thus, two different macroscopic
realizations of the system, n(1)

+ and n(2)
+ , can be found under a

certain value of u. The authors simply add up the numbers
of the microstates of these two macroscopic realizations to
obtain the microcanonical entropy of the system [see Eq.
(5) in the commented paper]. One can even compare these
two numbers of the microstates to determine which macro-
scopic realization corresponds to the metastable state and
which macroscopic realization corresponds to the equilibrium
state.

However, the treatment of the microcanonical entropy
above is inappropriate. The dynamics of the system is strongly
affected by the feature of disconnected accessible magnetiza-
tion values. As pointed out by Mukamel et al. [3], starting
from an initial macroscopic realization, the system is not
able to move to the other macroscopic realization via lo-
cal dynamics. In other words, the ergodicity is broken in
the microcanonical dynamics. The system will be trapped

*jxhou@seu.edu.cn

permanently in the metastable state as far as the energy is
conserved. Therefore, it is better not to distinguish the
metastable state and the equilibrium state and one has to admit
that both macroscopic realizations are stable thermodynami-
cally. Thus, the entropy of the system no longer is a univalent
function of u,

s(1) = 1

N
ln

(
N

Nn(1)
+

)
, s(2) = 1

N
ln

(
N

Nn(2)
+

)
. (1)

Which value of entropy should the system take depends on
how the system is initially prepared. For example, the system
stays in state (1) if the initial condition lies within macro-
scopic realization (1), and the value of entropy takes s(1).

Due to the breakdown of ergodicity, the discontinuous
jump in n+ discussed in the commented paper is infeasible
dynamically, and states (1) and (2) cannot interconvert by
slowly adjusting the external parameter a. Therefore, no phase
transition can be observed at a = 1 in the microcanonical
ensemble.

By the usual thermodynamic relation βm = ∂s/∂u, both
β (1)

m and β (2)
m of these two macroscopic realizations can be

obtained. The microcanonical temperature is also not a univa-
lent function of u, and both the ranges of βm > 1 and βm < 1
become available.

In summary, by looking at the most probable state as deter-
mined by the maximum of the entropy, the phase transition
considered in the commented paper could occur only with
a nonlocal dynamics. However, nonlocal dynamics is often
difficult to justify physically, even more so if one considers
systems with continuous dynamical variables instead of spin
systems. On the other hand, if the phase transition is defined
by the jump shown by the system subject to its local dynamics,
the phase transition cannot be observed in the presence of
ergodicity breaking. These two definitions coincide in the
absence of ergodicity breaking.
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