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Particle-in-cell simulation method for macroscopic degenerate plasmas
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Nowadays hydrodynamic equations coupled with external equation of states provided by quantum mechanical
calculations is a widely used approach for simulations of macroscopic degenerate plasmas. Although such
an approach is proven to be efficient and shows many good features, especially for large scale simulations,
it encounters intrinsic challenges when involving kinetic effects. As a complement, here we have invented a
fully kinetic numerical approach for macroscopic degenerate plasmas. This approach is based on first principle
Boltzmann-Uhling-Uhlenbeck equations coupled with Maxwell’s equation, and is eventually achieved via an
existing particle-in-cell simulation code named LAPINS. In this approach, degenerate particles obey Fermi-Dirac
statistics and nondegenerate particles follow the typical Maxwell-Boltzmann statistics. The equation of motion
of both degenerate and nondegenerate particles are governed by long range collective electromagnetic fields
and close particle-particle collisions. Especially, Boltzmann-Uhling-Uhlenbeck collisions ensure that evolution
of degenerate particles is enforced by the Pauli exclusion principle. The code is applied to several benchmark
simulations, including electronic conductivity for aluminium with varying temperatures from 2 eV to 50 eV,
thermalization of alpha particles in a cold fuel shell in inertial confinement fusion, and rapid heating of solid
sample by short and intense laser pulses.
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I. INTRODUCTION

Modeling macroscopic degenerate plasmas is among the
key investigation efforts for high energy density physics stud-
ies, which is of significant importance to inertial confinement
fusion (ICF), astrophysics, laboratory astrophysics, and indus-
try applications, for example, compression of the cold fuel
and capsule shell [1–3], formation and evolution of white
dwarf stars [4], and high power laser solid interaction experi-
ments [5–8].

Nowadays, the density functional theory–molecular dy-
namics (DFT-MD) method [9–14] has been intensively
investigated for degenerate plasmas. This method is thought
to be accurate. However, due to significant computational
expense, it is limited to certain problems it can be applied to.
For macroscopic plasmas, hydrodynamic simulation [15,16]
coupled with external equation of states provided by DFT-MD
calculations is usually taken. Although such an approach is
proven to be efficient and shows many good features, es-
pecially for large scale simulations, it encounters intrinsic
challenges when plasmas depart significantly from an equi-
librium state, for example, intense laser matter interaction and
the stopping of energetic alpha particles in ICF research.

*dwu.phys@zju.edu.cn

The particle-in-cell (PIC) method [17] has established it-
self as a state-of-the-art method for solving problems in
kinetic plasma physics. It is a compromise between funda-
mental quantum mechanical simulations, i.e., DFT-MD, and
macrofield only methods, i.e., hydrodynamic simulations. The
main advantages of the PIC method are that their memory
consumption increases linearly with the simulated volume
and that the runtime is only of order N . They are also very
suitable for the use of large multiprocessor systems. Although
the present PIC method is very successful in a great variety
of research branches, when referring to degenerate plasmas,
tremendous challenges still remain. For degenerate plasmas,
usually, the electron density is more than solid density. The
main disadvantages of the PIC method are high noise lev-
els and high computational requirements for plasmas at or
above solid densities. Within simulations, plasma frequency
needs to be resolved, and the grid size must be comparable to
the Debye length in order to minimize artificial grid heating
and suppress numerical instabilities. In addition to tremen-
dous simulation burdens, degenerate particles are no longer
regarded as classically distinguishable, and they obey Fermi-
Dirac statistics. However, whether the PIC method based on
classically distinguishable macroparticles is able to manipu-
late Fermi-Dirac degenerate plasmas is still open.

On the positive side, higher order interpolation algorithms
have long been utilized in the explicit PIC method, which
is, to some extent, successful in suppressing artificial grid

2470-0045/2020/102(3)/033312(11) 033312-1 ©2020 American Physical Society

https://orcid.org/0000-0001-5738-5739
https://orcid.org/0000-0003-3101-2824
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.033312&domain=pdf&date_stamp=2020-09-18
https://doi.org/10.1103/PhysRevE.102.033312


D. WU, W. YU, S. FRITZSCHE, AND X. T. HE PHYSICAL REVIEW E 102, 033312 (2020)

heating and suppressing numerical instabilities. However, for
degenerate plasmas, usually the electron density can be as
high as 1024 cm−3, but challenges still remain for high order
explicit PIC methods. Recently, we proposed a high order
interpolation implicit PIC method for plasma simulations at
solid densities [18,19]. This is achieved by combining a high-
order scheme of special difference with an implicit scheme of
temporal stepping. This new scheme can completely remove
the numerical self-heating and significantly reduce the simu-
lation burden when simulating solid density plasmas.

At or above solid densities, when the temperature is lower
than the Fermi temperature, degeneracy effect appears. Actu-
ally this effect has long been noticed in PIC simulations for
solid density plasmas. For example, to avoid a divergence of
the Spitzer collision frequency in cold plasma, Sentoku [20]
set a threshold of plasma temperature Ttr for a degenerate
plasma. Collision frequency with temperature less than Ttr

is cut off with a constant value. However, in ICF and some
astrophysics studies, the Fermi temperature can be as high
as several hundred eV provided the plasma density is over
1025 cm−3; a more rigorous and self-consistent approach is
therefore needed.

Here in this paper, we have invented a self-consistent
kinetic approach for macroscopic degenerate plasmas. This
approach is based on first principle Boltzmann-Uhling-
Uhlenbeck equations coupled with Maxwell’s equations. This
approach is eventually achieved via an existing particle-in-cell
simulation code named LAPINS. With this approach, degen-
erate particles obey Fermi-Dirac (FD) statistics, and non-
degenerate particles follow the typical Maxwell-Boltzmann
(MB) statistics. The equation of motion of both degener-
ate and nondegenerate particles are governed by long range
collective electromagnetic fields and close particle-particle
collisions. Especially, the BUU collisions ensure that evolu-
tion of degenerate particles is enforced by the Pauli exclusion
principle. Finally, the code is applied to several benchmark
simulations, including electronic conductivity for aluminium
with varying temperatures, thermalization of alpha particles
in a cold fuel shell in inertial confinement fusion, and rapid
heating of solid sample by short and intense laser pulses.

The paper is organized as follows. In Sec. II, we give a
brief introduction of the classical framework, i.e., Boltzmann
equations coupled with Maxwell’s equations. In Sec. III, the
semiclassical counterpart, i.e., BUU equations coupled with
Maxwell’s equations, is outlined. Section IV is the numerical
implementation part. In Sec. V, we display several numerical
experiments to benchmark this new approach. Finally, sum-
mary and discussion are given in Sec. VI.

II. CLASSICAL FRAMEWORK

In the classical framework, plasmas consisting of electrons
and ions are modeled by distribution functions fk of seven
variables, i.e., the position r, velocity u, and time t . The
distribution function fk gives the probability fk (r, u, t )dr du
of finding particles of k species in a given volume of six-
dimensional phase space dr du. The electrons and ions in
plasma under consideration interact via long range elec-
tromagnetic fields and close binary collisions. Hence an
appropriate description of plasmas is the following Boltzmann

equation:

∂ fk

∂t
+ uk · ∂ fk

∂r
− qk

mk
(E + uk × B) · ∂ fk

∂uk
= ∂ fk

∂t
|coll, (1)

where E and B are the electric and magnetic fields from
Maxwell’s equations, qk is the value of particle charge, and
mk is the particle mass. The Maxwell’s equations read

∇ × E = −∂t B, (2)

∇ × B = ∂t E + 2πJ, (3)

∇ · E = 2πρ. (4)

Boltzmann equation, Eq. (1), is coupled with Maxwell’s equa-
tions via charge density ρ and current density J, defined as

ρ(r) =
∑

k

qk

∫
d3uk fk, (5)

J(r) =
∑

k

qk

∫
d3ukuk fk . (6)

In Eq. (1), ∂ fk/∂t |coll represents the close collision, which is
usually of the form

∂ f

∂t

∣∣∣∣
coll

=
∫

d3 p2

∫
d3 p3

∫
d3 p4W (p1, p2; p3, p4)

×{ f (r3, p3) f (r4, p4) − f (r1, p1) f (r2, p2)}, (7)

where W (p1, p2; p3, p4) is the collision rate and the explicit
form of W strongly depends on plasma conditions, e.g.,
temperatures and densities. The collision integral takes into
account all possible two-particle scattering events: the two
particles that have originally the momenta (pin

1 , pin
2 ) scatter

into the momenta (pout
3 , pout

4 ) and by symmetry processes
starting with (pin

3 , pin
4 ) and ending in (pout

1 , pout
2 ).

As an alternative solution of coupled Eqs. (1)–(6), plasma
physicists have developed the PIC method, and this method is
a Euler-Lagrange approach based on mean-field approxima-
tions. Here, particles continuously propagate over the whole
phase space, while field quantities, like charge density, cur-
rent density, and electromagnetic fields, are defined on fixed
spacial grids. The interaction of continuously changing parti-
cles and spacial fixed fields is achieved via the interpolation
technique. Such an approach significantly decreases the cal-
culation burden by orders of magnitudes when compared with
the direct numerical solution of the above coupled equations.
Therefore, PIC methods make it possible to simulate large-
scale plasmas even in three dimensional geometries.

As the PIC method is based on mean-field approxima-
tion, typically this method is usually applied to collisionless
plasmas, where only the collective electromagnetic fields are
taken into account. In order to include the close particle-
particle interactions, Takizuka and Abe [21] used to proposed
a Monte Carlo (MC) approach for collisions, and this PIC/MC
approach is proven to be equivalent to the collision integral
as shown in Eq. (7). In this approach, particles are randomly
paired with each other in close proximity and scattered with
Coulomb collisions, each one of which conserves energy and
momentum. Apart from conservation, the greatest strength of
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this approach is the ability to work with any velocity distri-
butions, especially those which depart appreciably from MB
distributions.

III. SEMICLASSICAL COUNTERPART

Equations (1)–(7) are a very general framework for clas-
sical plasma systems and hae been used very successfully
during the recent half a century. However, for high energy
density plasmas, especially for those that quantum effects are
of significant importance, these equations are no longer appli-
cable. In many situations however, the full quantum treatment
is very involved and further approximations are desirable for
the sake of simplicity. In particular, a semiclassical description
of the system can provide a dramatic simplification.

In reality, with certain modifications, Eqs. (1)–(7) have
been extensively applied to dense fermion systems, such
as atomic nuclei [22,23], semiconductors [24], helium
droplets [25], or metal clusters [26–28]. It is shown the Pauli
exclusion principle plays an important role in such systems.
For plasmas of high density and low temperature, FD statis-
tics has to be built in. This leads to the BUU equations,
which have found widespread applications, e.g., in nuclear
physics [22,23]. The main difference between Boltzmann and
BUU equations lies in the collision term,

∂ f

∂t

∣∣∣∣
BUU

coll

=
∫

d3 p2

∫
d3 p3

∫
d3 p4W (p1, p2; p3, p4)

× (
f out
1,2 f in

3,4 − f in
1,2 f out

3,4

)
, (8)

where f in
i j = fi f j and f out

kl = (1 − fk )(1 − fl ), with the short
notation fi = f (ri, pi, t ). The Pauli exclusion principle shows
up explicitly here in these blocking terms, imposing that f
should be less than 1 (or 2 if spin is taken into account).
Namely, no more than one fermion can occupy a phase space
cell of volume (2π h̄)3. Although the BUU collision term
looks conceptually straightforward, it is technically very de-
manding as can be seen from the implied ninefold integration.
Manageable schemes have been designed by using test par-
ticle representation of the BUU equations; for details refer
to Refs. [29,30]. Therefore, in principle, the modern PIC
method, when following the spirit of Refs. [29,30], can be well
extended to degenerate plasmas.

Here, people may argue that it is unreasonable to define an
f = f (r, p, t ) quantum mechanically because the uncertainty
principle makes it impossible to simultaneously specify the
position and momentum of a particle. However, we are not
interested in specifying the position of any particle with ac-
curacy much greater than the wavelength of the disturbance.
Therefore, when the disturbance varies only over macroscopic
distances we can specify the momentum of the particles with
microscopic accuracy.

IV. NUMERICAL IMPLEMENTATION

Actually, by using the PIC method, the BUU equations are
only marginally more complicated when compared to clas-
sical Boltzmann equations. However, it includes significant
quantum features, like FD statistics and the Pauli exclusion
principle.

A. Fermi-Dirac statistics of electrons

For degenerate electrons, under thermal equilibrium, the
solution of the BUU equation is a FD function,

fe(E ) = (2me)3/2

2neh̄3π2

√
E

exp(E/Te − η) + 1
, (9)

where η is the degeneracy parameter and fe(E )dE is the
probability for finding electrons with energy between E and
E + dE . Degeneracy parameter η can be obtained by equation
normalization,

∫
(2me)3/2

2neh̄3π2

√
E dE

exp(E/Te − η) + 1
= 1. (10)

Here, Eq. (10) defines η as a function of ne and Te. The
occupancy function is the measure of the proportion of states
occupied at energy E and is given by

fo(E ) = fe(E )/ge(E ) = 1

exp(E/Te − η) + 1
, (11)

where ge(E ) = (2me)3/2
√

E/2neh̄3π2 is the density of states
between E and E + dE .

When increasing temperature and decreasing density, we
have η = −∞. This is the classical limit in which the distri-
bution functions become MB distributions.

In the low temperature and high density limit, we have
η = EF /Te and η = ∞, with EF = (3π2ne)2/3h̄2/2me of the
Fermi energy. This is the fully degenerate limit, in which all
particles are at energies below or equal to the Fermi energy.
The occupancy function becomes a step function: g(E ) = 1
with E � EF and g(E ) = 0 with E > EF . Note, in the case
of the FD distribution, particles retain an energy even in the
Te = 0 limit.

Just as the classical PIC method, a FD distribution can
be interpolated by using macroparticles. The only difference
here is that, before computing the energy values in order to
put particles, degeneracy parameter η in Eq. (9) needs to
be solved out in advance. Given initial temperature Te and
electron density ne in Eq. (10), the calculation of η can be done
only by using the numerical method. Here in the LAPINS
code, a golden section search method [31] is used for the
minimization of the root sum square and calculation of η.

When implemented, as shown in Fig. 2, we have plotted
the energy distribution of free electrons for solid aluminium at
Te = 1 eV, Te = 5 eV, and Te = 10 eV, respectively. Distribu-
tions generated via FD statistics are displayed by triangles and
via MB statistics are displayed by diamonds. For solid alu-
minium, with density 2.7 g/cc, the average ionization degree
is Z̄ = 3 at room temperature, and the free electron density
can be as high as 1.8 × 1023 cm−3. Following Eq. (10), the
Fermi energy is EF = 11.2 eV. As shown in Fig. 1, when
temperature is well below Fermi energy, FD distributions
significantly depart from MB distributions, and states with
energies lower than Fermi energy are fully occupied. When
temperature is well above Fermi energy, FD distributions
become close to the MB distributions. Actually, at high tem-
peratures with Te � EF , FD statistics will become identical to
MB statistics, and the proportion of states occupied with any
energy E is close to zero.
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FIG. 1. LAPINS PIC code generating a Fermi-Dirac distribution
of free electrons for solid density aluminium at Te = 1 eV, Te = 5 eV,
and Te = 10 eV, respectively. (a) MB and FD distributions are shown
with the same parameters. (b) The occupation function sampled from
the simulation distribution function.

B. BUU collisions

In fact, the finite resolution of any numerical realization
causes a gradual thermalization of FD distribution towards
a BM equilibrium. To prevent this, we adopt the BUU col-
lisions, which lead to changes in energies of degenerate
particles that must be constrained by the Pauli exclusion
principle. This principle prevents degenerate particles being
scattering into an energy state if that state is already occu-
pied. The occupancy function, Eq. (11), is the measure of the
proportion of states occupied at energy E . As fo(E ) takes
values between 0 and 1, from the point of view of PIC/MC
simulations, it indicates whether a particular energy changing
action should be blocked or not. The probability of accepting
a change to final energy should be 1 − fo(E ); therefore, fully
occupied states admit no more particles. The probability of

FIG. 2. Schematic presentation of the twofold interpretation
method. Here, n is the length of array containing distribution func-
tions and see text for further explanations. In this plot, the shape
function of particle is represented here by a blue 2D circular particle
shape and spatial 2D grids are presented by black lines. Note, for 3D
simulation, 3D particle shape and spatial grids are used instead.

accepting a new energy change depends on the degeneracy;
therefore, for the classical limit, as fo(E ) → 0 is reproduced
for any E , the blocking is no longer significant.

As reflected in Eq. (11), fo depends on the local dis-
tribution function. Within PIC/MC simulations, the local
distribution function can be generated by collecting all parti-
cles within a computational cell. In order to generate a smooth
fo as a function of particle energy, the number of particles
in each cell should be on the order of magnitudes 103 or
even larger. A typical PIC simulation having 103 particles
in each cell will quickly become computationally intractable.
To avoid such an incredible simulation burden and simultane-
ously generate a smooth distribution or occupation function,
we propose here a twofold interpretation method.

The schematic presentation of this twofold interpretation
method is displayed in Fig. 2. Attaching each computational
cell, we define an array with a length, for example, n = 50.
This array is used to contain the local distribution function
of degenerate particles. The cutoff energy here is defined as,
for example, Ec = 2EF , where EF = (3π2ne)2/3h̄2/2me is the
Fermi energy. Note, this cutoff energy Ec is a global constant.
Once initially defined, it is shared by each array during the
entire simulation duration. The array index is therefore de-
fined as Ek = kdE , with k ∈ [0, n] and dE = Ec/n. Within PIC
simulations, for a degenerate particle with an arbitrary weight
w, only if the particle’s energy is located within 0 < E < Ec,
the particle is used to fill an array: locating the nearest two
indexes, k and k + 1, with Ek < E < Ek+1, and then filling
them with Fk = w(1 − δ)S(r − R) and Fk+1 = wδS(r − R).
Here, δ = (E − kdE )/dE and S(r − R) is the particle shape
function, with which

∑
i, j,k S[r − (ix + jy + kz)] = 1 is sat-

isfied. Note the particle shape function used here shares the
same idea with the interpolation algorithm for current assign-
ment and force interpolation widely used in PIC codes. We
find a high order interpolation algorithm along with spatial
smoothing is useful in order to suppress numerical noises.
This twofold interpretation method could significantly avoid
an incredible simulation burden by using less particles per cell
and simultaneously generate a smooth distribution or occupa-
tion function.

In PIC simulations, there is a straightforward way to
achieve BUU collisions or include the Pauli exclusion princi-
ple on degenerate particles. Following the idea of Turrell [30],
a Pauli block scheme is built. With the final energy Ef, a
random number R is generated with R ∈ (0, 1). For two-
fermion processes, such as electron-electron scatterings, with
finial energies Ef1 and Ef2: block the change, if R < fo(Ef1) +
fo(Ef2) − fo(Ef1) · fo(Ef2). As a general extension, we always
set fo(Ef ) = 0 for nondegenerate particles. For single fermion
processes, such as electron-ion scattering, block the change if
R < fo(Ef ); accept the change if R > fo(Ef ). In the classical
limit, fo(E ) → 0 for any Ef, changes in particle energy are
rarely blocked.

In order to benchmark the implemented BUU collisions,
we take PIC calculations for the same sample as displayed in
Fig. 1. The simulation box is divided into 10 × 10 × 10 com-
putational cells bounded by periodic conditions, with each cell
containing 100 macroelectrons. Here, energy distribution of
free electrons for solid aluminium with Te = 1 eV is displayed
in Fig. 3. As shown in Fig. 3(a), an initial FD distribution
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FIG. 3. (a) With an initial FD distribution, it relaxes to a MB dis-
tribution after 1 fs. (b) With an initial FD distribution, when including
Pauli exclusion principle, it sustains within the entire simulation
duration. Simulation sample is the same as displayed in Fig. 1. The
temperature of aluminium plasma is Te = 1 eV.

relaxes to a MB distribution after only 1 fs. However, when
taking into account the Pauli exclusion principle, as shown in
Fig. 3(b), FD distribution is sustained within the entire sim-
ulation duration. Note, the simulation speed is only slightly
affected by including the Pauli exclusion principle. This is
because the same interpretation method is used throughout the
code for both current assignment and force interpretations.

C. Modification of collision rate

In practical implementation, the Monte Carlo binary col-
lision model requires knowledge of the collision rate W , as
shown in Eq. (7). Its explicit form strongly depends on the mo-
mentum transfer cross section, which is a function of plasma
temperature and densities. In degenerate plasmas, such a cross
section significantly differs from classical plasmas.

Seriously, in the partial wave calculation [32], this mo-
mentum transfer cross section can be obtained by numerical
solution of the Schrödinger equation for a well defined po-
tential. In the original work of Lee and More [33], the
Thomas-Fermi potential was taken as an approximate candi-
date. Recently, a more rigorous approach has been proposed
by Starrett [32] that includes correlations with electrons and
ions surrounding the central scatterer through the quantum
fluid equations. Although it is possible to use a tabulated cross
section via machine-learning methods or others, here in the
present LAPINS code, we still use the screened Coulomb
cross section with approximate cutoff parameters. This is be-
cause our goal is to invent a simulation method for degenerate
plasmas for practical applications, and we need a simple yet
approximately accurate method for calculating cross sections.

One of the practical approaches for classical Coulomb
cross section calculation, as used by Takizuka [21] and Sen-
toku [20], is to sum binary collisions over a distance of the
order of the Debye length. Under the Coulomb potential of

1/r, the differential cross section reads

σ (θ ) ∼ 1/ sin4(θ/2) (12)

and the Coulomb logarithm reads

L ∼
∫ π

0
sin θ sin2(θ/2)σ (θ )dθ ∼ ln[sin(θ/2)]|π0 . (13)

This integration is not a convergent value, when θ → 0. While
in plasmas, the potential of a charged particle should be
screened. When b, i.e., the minimum impact parameter, is
larger than λD, the potential is artificially set to be zero. There-
fore, the lower limit θmin of the scattering angle is obtained
when b = λD, i.e., θmin/2 = b/λD. The Coulomb logarithm
is written as L ∼ ln(λD/b). In this model, for degenerate
plasmas with b close to or even larger than λD, the Coulomb
logarithm is artificially cut off to a value equal to 2.0.

Instead of the above method, a better approach is to sum
binary collisions with all surrounding particles using the
screened potential exp(−r/λD)/r. Acting on this screened
potential, under Born approximation, the differential cross
section can be analytically obtained with

σ (θ ) ∼ 1/[sin2(θ/2) + ξ ]2, (14)

where ξ is noting but the ratio of minimum impact parameter
and the Debye length ξ = bmin/λD. The minimum impact pa-
rameter is set by the classical distance of the closest approach.
This gives

bmin = ZaZbe2/mabu2
ab. (15)

Here, Za and Zb are the charge number of particle a and
particle b; mab and uab are their reduced mass and relative ve-
locity. However, at high energy, bmin is set by the uncertainty
principle. We have

bmin = λ/2 = h̄/mabuab. (16)

Here λ is the de Broglie wavelength. The Coulomb logarithm
L ∼ ∫ π

0 sin θ sin2(θ/2)σ (θ )dθ by applying the new differen-
tial cross section is integrable with

L ∼ ln[1 + 2η − cos(θ )]|π0 ∼ ln[(1 + η)/η]. (17)

This expression of Coulomb logarithm will converge to L =
ln (λD/b) at the classical limit with b � λD. For degenerate
plasmas, this expression of Coulomb logarithm reduces to
zero.

In our model, the screening is only determined by the
Debye length. This length, following Debye-Huckel theory,
can be written as

1

λ2
D

= 4πnee2

kTe
+ 4πnie2Z̄2

kTi
, (18)

where Te and Ti are the electron and ion temperature, ne and ni

are the electron and ion density, and Z̄ is the average ionization
degree. Note, the ion contribution is dominant for plasmas
containing heavy atoms. The degeneracy correction [34] to
the screening is to multiply the first term on the right hand of
Eq. (18) by a factor F ′

1/2/F1/2, i.e., the logarithm of derivative
of the Fermi integral,

Fj (x) =
∫ ∞

0

x jdx

1 + exp(x − η)
, (19)
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where η is the degeneracy parameter defined by Eq. (10). The
second term remains unchanged. According to the original
work of Brysk, Campbell, and Hammerling [35], such a de-
generacy correction can be approximated to

1

λ2
D

= 4πnee2

(
T 2

e + E2
F

)1/2 + 4πnie2Z̄2

Ti
. (20)

This approximation matches the numerical calculation of the
factor F ′

1/2/F1/2 within 5%, giving negligible error in the log-
arithm.

For electrons of FD distributions, diagnosing the electron
temperature is nontrivial. Here, the average electron energy is

Ē = 3
√

π

8

Te

ne

(2meTe)3/2

h̄3π2
F3/2(η). (21)

At classical limit, Ē = (3/2)Te, and at quantum limit, Ē =
(3/5)EF . Within PIC simulations, Eq. (21) can be approxi-
mated by Ē ∼ ĒPIC = ∑

i wiεi/
∑

i wi, where εi is the energy
for each single macroparticle and wi is the corresponding
weight. The first term on the right hand of Eq. (20) can there-
fore be directly approximated as 4πnee2/ĒPIC, also giving
negligible error in the logarithm.

For projectile moving in the plasmas, the static Debye
length needs to be replaced by the corresponding dynamical
value. According to Zwicknagel [36], this dynamical Debye
length reads λ̃D = λD(1 + mabu2

ab/T 2
e ). In the LAPINS code,

this dynamical Debye length is used throughout the simu-
lations, although we might have a small difference in the
logarithmic scale. This is because having one general formula
for stopping and relaxation problems is useful for practical ap-
plications, such as the laser-solid interactions, which contain
both the stopping and thermalization of fast particles.

D. Modification of ionization dynamics

In the LAPINS code, the treatment of ionization is divided
into two parts: field ionization [37,38] and impact ionization.
As field ionization usually appears under low density plasmas,
therefore, there is no need to take into account degeneracy
corrections. For solid density plasmas, a dynamic ionization
model was proposed by Wu [39], taking into account im-
pact ionization, electron-ion recombination, and ionization
potential depression (IPD) by the shielding of surrounding
plasmas. Here, we would suggest including the degeneracy
effect by correcting ionization potential with P − �P + EF ,
with P the isolated ionization potential [40], �P the IPD
correction [41,42], and EF the Fermi energy. As there is no
space to contain the newly ionized electrons with energy lower
than EF , the minimum kinetic energy of a newly ionized elec-
tron must be higher than EF . Numerical experiments, Fig. 4,
have shown that such a degeneracy correction would slightly
decrease the ionization cross section and therefore the average
ionization degree when the plasma temperature is comparable
with or lower than EF .

V. BENCHMARKS AND APPLICATIONS

In this section, the quantum-LAPINS code is applied to
several benchmark simulations and applications, including

FIG. 4. Average ionization degree of solid aluminium as a func-
tion of temperature. Black square line is the one taking into account
FD statistics and the Pauli exclusion principle, and blue diamond line
is the one treated by classical method.

electronic conductivity for aluminium with varying temper-
atures, thermalization of alpha particles in a cold fuel shell in
ICF, and rapid heating of solid sample by short and intense
laser pulses.

A. Electronic conductivity of aluminium

The calculation of electronic conductivity for plasmas of
any degeneracy is a challenging problem. One approach is
to use DFT-MD simulations coupled with Kubo-Greenwood
formalism [9,10]. This approach is thought to be an ac-
curate method for high frequency alternating current (ac)
conductivity. However, the parameters widely used in both
hydrodynamic and PIC simulations are conductivities at low
frequency limit, i.e., the so-called direct current (dc) conduc-
tivity. For the calculation of dc conductivity, one usually refers
to the Boltzmann equation with relaxation-time approxima-
tions. The question then becomes calculating the electron-ion
cross sections. To calculate the electron-ion cross section
of degenerate plasmas, one needs to define an electron-ion
scattering potential. How this potential is made strongly af-
fects the resulting conductivities. Recently, a new quantum
potential is defined by Starrett [32]. This potential includes
correlations with electrons and ions surrounding the central
scatterer through quantum Ornstein-Zernike equations [43].
When coupled to the relaxation-time approximation, results
indicate that relaxation-time approximation plus well defined
potential could lead to quite accurate conductivity predictions
when compared to DFT-MD simulations.

The underlying frame of the LAPINS code is the BUU
equations coupled with the Maxwell’s equations. Therefore,
for electronic conductivity calculation, the relaxation-time ap-
proximation method can be naturally recovered. By placing a
small external electric field on a plasma sample, free electrons
are accelerated by this small electric field, and simultane-
ously experience collisions with surrounding ions and other
electrons. When reaching steady state, the conductivity is
evaluated as σ = J/E, with J and E of current density and
the external small electric field.

In Fig. 5, we have plotted the electron current density
as a function of time for a solid aluminium sample, when
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FIG. 5. Electron current density, in units of en0c, as a function
of time for a solid aluminium sample, when externally placing the
same small electric field. In the simulation, with normalization, the
thickness of aluminium sample is l = 0.1 and divided into 100 cells,
with each cell containing 1000 electrons and 1000 ions. Cells are
connected by periodic boundary conditions. The applied external
electric field is Eex = 0.001. Here, black, red, and blue curves are
the ones with Te = 2 eV, Te = 10 eV, and Te = 20 eV, respectively.
Solid and dashed lines correspond to simulations with degeneracy
and without degeneracy.

externally placing a small electric field. This current density
increases at initial time due to the acceleration of electrons
by the electric field and then reaches saturation due to the
antibalance forces from collisional scatterings. Here, black,
red, and blue curves represent current density evolution at
different temperatures, with Te = 2 eV, Te = 10 eV, and Te =
20 eV, respectively. Solid and dashed lines correspond to
simulations with degeneracy and without degeneracy. For
classical-LAPINS (without quantum effects), the final satu-
ration current density increases when increasing temperature.
However, with Te < TF , the new quantum-LAPINS code
shows increasing saturation current density when decreasing
plasma temperature. This is because, under low temperature
limit, the collision cross section is significantly reduced as the
electrons well below the Fermi surface are hardly scattered.
In Fig. 6, electronic conductivity calculated by the quantum-
LAPINS code is compared with full quantum mechanical
calculations, i.e., the Kubo-Greenwood DFT-MD method
from Witte [44]. It is shown that the quantum-LAPINS
code could generally produce accurate conductivities when
compared to full quantum mechanical simulations. At high
temperatures, the results of quantum and classical codes coin-
cide with each other as expected.

B. Thermalization of alpha particles in a cold fuel shell in
inertial confinement fusion

In ICF, the yield of neutrons is particularly sensitive to
electron-ion equilibration. Simulations of direct-drive implo-
sions have shown a 10% difference across several different
models of temperature relaxation [45]. The distribution of
fusion produced alpha particles is highly non-Maxwellian;
however, the quantum-LAPINS code with the implemented
collision method is capable of modeling such a complex in-
teraction. Figures 7 and 8 show simulations with parameters

FIG. 6. Electrical conductivity of solid aluminium. Our results of
quantum-PIC and classical-PIC are compared with full quantum me-
chanical calculations, i.e., the Kubo-Greenwood DFT-MD method
from Witte [44].

FIG. 7. With parameters approximately similar to ICF: starting
temperatures of electrons, deuterium, and tritium are 10 eV; the
density is nD = nT = 1.5 × 1024 cm−3, nα = 1. × 1021 cm−3, and
ne = 3 × 1024 cm−3; α particles have an initial energy of 3.54 MeV.
Evolution of alpha particle density, electron temperature, and DT
temperature are displayed in (a)-(b), (c)-(d), and (e)-(f). Here (a),
(c), and (e) are calculated by the quantum-LAPINS code and (b), (d),
and (f) are by the classical-LAPINS code.

033312-7



D. WU, W. YU, S. FRITZSCHE, AND X. T. HE PHYSICAL REVIEW E 102, 033312 (2020)

FIG. 8. Parameters are the same as displayed in Fig. 7; density
of alpha particles and temperature of electrons are displayed at t =
2.4 ps. Solid lines are calculated by the quantum-LAPINS code and
dashed lines are calculated by the classical-LAPINS code.

approximately similar to ICF: a flux of monoenergetic fusion
produced alpha particles interacting with a cold fuel shell of
deuterium (D), tritium (T), and electrons. In the simulation,
the initial density and temperature of cold D-T plasma are
3 × 1025 cm−3 and 10 eV. We set the density of alpha particles
to 1021 cm−3, and we set the initial energy of alpha particles to
3.54 MeV. In the one-dimensional PIC simulation, a source of
alpha particles, lasting for 1.6 ps, comes from the left simula-
tion boundary and the particles interact with cold D plasmas,
which lie within 1 μm and 3 μm. The simulation space
is divided into 1200 cells, with each cell containing 1000
macroparticles. For comparison, results of classical LAPINS
are also displayed.

In Fig. 7 and Fig. 8, evolution of alpha particle density,
electron temperature, and DT temperature are displayed. The
quantum-LAPINS simulation predicts a significantly large
penetration range of alpha particles, due to the reduction of
collisions by Pauli exclusion principle. Moreover, the heat-
ing zone is also significantly enlarged as predicted by the
quantum-LAPINS code. Such finding would be of importance
to the target design in the ICF research.

C. Rapid heating of solid sample by short
and intense laser pulses

The rapid heating of solid sample by short and intense laser
pulses is of significant importance to the investigation of warm
dense matter in laboratories, and is also of key importance to
many related applications, such as laser driven ion sources,
laser driven neutron sources, and laser driven x/γ ray sources.

Here we take solid aluminium as an example. The alu-
minium density is 2.7 g/cc, initial temperature is at room
temperature, and the thickness of the sample is 1.5 μm. The
intensity of incident laser is 1018 W/cm2, pulse duration is
30 fs, and laser wavelength is 1 μm.

In simulations, the simulation space is uniformly divided
into grids with δz = 0.01 μm and δy = 0.02 μm. In each grid,
100 Al3+ ions and 300 electrons are filled initially. Within
the simulations, field ionization, collision ionization, and ion-
electron recombination are all taken into account.

Here, Fig. 9 shows the temporal evolution of energy (trans-
fer) into the simulation box, including laser energy entering

FIG. 9. Energy (transfer) as a function of time. Data are shown
for laser energy entering into the simulation box (black), electro-
magnetic energy (red), electron kinetic energy (blue), and ionization
energy (dashed). Here solid lines are obtained by the quantum-
LAPINS code and dashed lines are from the classical code.
Especially, the laser energy entering into the simulation box is calcu-
lated as

∑
(E × B)δyδt , where δt is the time step of the simulation

box. Ionization energy is a record of energy losses of plasmas, as
ionization will reduce the energies of electromagnetic fields and
electrons.

(black), electromagnetic field energy (red), electron kinetic
energy (green), the ion kinetic energy (blue), and ionization
energy (dashed), repetitively. The laser energy, entering into
the simulation box, first increases, then decreases (some is
reflected), and finally reaches a constant value at t = 45 fs.
Within the interaction, there is a strong energy transfer from
the electromagnetic energy to the electron-kinetic energy, and
then from electron-kinetic energy to ionization energy (ioniza-
tion appears). Note, in this simulation case, which only lasts
for 66 fs, the ion kinetic energy is very small. This is because
the mass of ion is quite large, and the energy transfer rate from
electrons to ions is slow. In this plot, the solid lines represent
results obtained by the quantum-LAPINS code and the dashed
lines are from the classical-LAPINS code. As we can see from
the energy transfer history, the difference between them is
quite small. This is because, as will be shown below, under
such intense laser irradiations only a minor part of the alu-
minium sample is in degenerate states, and degenerate effects
only appear when temperature is below Fermi temperature
(for aluminium it is 11 eV).

When energetic electrons transport within the solid alu-
minium, a self-generated electromagnetic field appears, which
might significantly affect both the transport behavior of en-
ergetic electrons and the volume heating of background
plasmas. Such electromagnetic fields strongly depend on
resistivity and conductivity of the solid aluminium. As a
comparison of the quantum-LAPINS code and the classical-
LAPINS code, in Fig. 10, the self-generated electric fields are
displayed, which are recorded at t = 40 fs. Results from quan-
tum and classical codes are shown in Fig. 10(a) and Fig. 10(b),
respectively. In Fig. 10(c), a detailed comparison between
them, by slicing electric field distributions along z = 0.7, z =
1.0, z = 1.5, and z = 1.7 μm, are presented. It is shown, at
z = 0.7 and z = 1.0 μm, the amplitude of the self-generated
electric field calculated by the quantum-LAPINS code is quite
close to the one from the classical code. This is because, as we
will show below, the electron temperature at the front part of
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FIG. 10. Self-generated electric fields for the quantum-LAPINS
code (a) and the classical-LAPINS code (b) at t = 40 fs. In (c), we
display the electric field along the dashed line as marked in (a) or (b).
Values along z = 0.7, z = 1.0, z = 1.5, and z = 1.7 μm are plotted
in black, red, green, and blue, respectively. As a comparison, dashed
lines in (c) are the corresponding values from the classical-LAPINS
code.

the aluminium sample is significantly higher than the Fermi
temperature, and the degenerate effect is therefore negligible.
However, when close to the backside of the target, for exam-
ple, at z = 1.5 and z = 1.7 μm, the electric fields obtained
by the quantum-LAPINS code depart significantly from the
classical-LAPINS code. As the forward moving energetic
electrons are produced by direct laser acceleration in front
of the target, it is reasonable to assume the forward moving
current density, Je, carried by energetic electrons, are equal
to each other for both quantum and classical simulations. It
is also reasonable to assume the magnitude of return currents,
carried by low energy background electrons, are also equal
to Je. The resistivity, ν, in quantum code is much smaller
than that in classical code, especially when the temperature
is below EF . Considering the self-generated electric fields
are produced mainly by E = νJe, this is the reason why the
amplitude of electric field calculated by the quantum-LAPINS
code is small, for example, at z = 1.5 and z = 1.7 μm, when
compared with the one from the classical code.

Figure 11 shows the corresponding plots of corresponding
magnetic fields at t = 40 fs. Similarly, results from quantum
and classical codes are shown in Fig. 11(a) and Fig. 11(b), re-
spectively. In Fig. 11(c), a detailed comparison between them,
by slicing electric field distributions along z = 0.7, z = 1.0,
z = 1.5, and z = 1.7 μm, are also displayed. It is shown,
at z = 0.7 and z = 1.0 μm, the amplitude of self-generated
magnetic field calculated by the quantum-LAPINS code is
quite close to the one from the classical code. However, when

FIG. 11. Self-generated magnetic fields for the quantum-
LAPINS code (a) and the classical-LAPINS code (b) at t = 40 fs.
In (c), we display the magnetic field along the dashed line as marked
in (a) or (b). Values along z = 0.7, z = 1.0, z = 1.5, and z = 1.7 μm
are plotted in black, red, green, and blue, respectively. As a com-
parison, dashed lines in (c) are the corresponding values from the
classical-LAPINS code.

close to the backside of the target, for example, at z = 1.5 and
z = 1.7 μm, the magnetic fields obtained by the quantum-
LAPINS code are small when compared with the classical
code. This can be understood with the same reason when
referring to the self-generated electric fields. As the mag-
netic fields and electric fields are connected by Faraday’s law
∂B/∂t = −c∇ × E, this is the reason why the magnetic fields
obtained by the quantum-LAPINS code are small especially
when close to the backside of the sample.

In Fig. 12, we have plotted the electron density and tem-
perature at t = 66 fs. As the simulation containing both
thermal and superhot electrons, a boundary is set at “10 keV”

FIG. 12. Electron density (a) and electron kinetic energy density
(b) at t = 66 fs.
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FIG. 13. Electron temperature, along the axis of y = 0 μm, at
t = 16 fs (red), t = 22 fs (blue), t = 25 fs (green), and t = 66 fs
(black), respectively. Results calculated by quantum-LAPINS are
displayed in solid lines, while from classical-LAPINS are displayed
in dashed lines.

to exclude superhot electrons from directly contributing to
the electron temperature. In the classical-LAPINS code, the
calculation of electron temperature is quite straightforward,
which can be regarded as electron kinetic energy density di-
vided by electron density. In the quantum-LAPINS code, the
calculation of electron temperature is nontrivial. As suggested
by Turrell [30], the method employed is first to calculate the
probability density function from simulation in a number of
bins. Then Te and therefore η by Eq. (9) can be varied until
the root sum of square differences between the simulation
distribution and the Fermi-Dirac distribution is minimized.
In Fig. 13, the electron temperatures, along the axis of y =
0 μm, from quantum and classical codes are compared with
each other. Due to the reduced collision frequency of forward
moving electrons with the background, the heating zone as
predicted by the quantum-LAPINS code is apparently larger
than the corresponding classical case, for example, at t = 22
fs (blue), t = 25 fs (green), and t = 66 fs (black).

VI. DISCUSSIONS AND CONCLUSIONS

As a semiclassical approach, the invented method is very
general and can find great applications. Although FD statistics
and Pauli exclusion principle have been taken into account,
and this approach is able to deal with degenerate plasmas
with temperature well below Fermi temperature EF , it still

misses some key features. For quantum systems, indistin-
guishability of quantum particles gives rise to an additional
mean field–type term, i.e., the exchange contribution. Due
to the finite extension of quantum particles, the exchange
contribution has a complicated form (it is nonlocal). Usually,
the exchange-correlation energy Vex(ρ) can be calculated by
taking the standard ansatz with the local density approxi-
mation (LDA). In practice, using the Gunnarsson-Lundqvist
parametrization [46], we have

Vex(ρ) = e2

(
3ρ

π

) 1
3

− 2e2

30

{
1+ln

[
1+11.4

(
4πρ

3

) 1
3
]}

. (22)

For aluminium of density 2.7 g/cc, according to Eq. (22), we
have Vex = 1.4 eV at the low temperature limit. It is therefore
reasonable to give an application limit of the present semi-
classical approach. The quantum-LAPINS code is applicable
when electron temperature is well above Vex, as displayed in
Fig. 6 with a temperature floor of 2 eV. Note this is a signifi-
cant improvement when compared with the classical-LAPINS
code, as Vex is usually several times smaller than EF .

To summarize, in this paper, we have invented a self-
consistent kinetic approach for macroscopic degenerate plas-
mas. With this approach, degenerate particles are initialized
according to a Fermi-Dirac distribution function and nonde-
generate particles are initialized following a typical Maxwell
distribution function. The equation of motion of both degen-
erate and nondegenerate particles are governed by long range
collective electromagnetic fields and close particle-particle
scatterings with degeneracy corrections. Especially, evolution
of degenerate particles is also constrained by the Pauli exclu-
sion principle. The new code might find great applications in
ICF, astrophysical, and laboratory astrophysical studies. The
method invented in this paper is applicable for degenerate
plasmas, but with a limitation that the electron temperature
should be well above Vex.
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