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Numerical method for the projected Gross-Pitaevskii equation in
an infinite rotating two-dimensional Bose gas
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We present a method for evolving the projected Gross-Pitaevskii equation in an infinite rotating Bose-Einstein
condensate, the ground state of which is a vortex lattice. We use quasiperiodic boundary conditions to investigate
the behavior of the bulk superfluid in this system, in the absence of boundaries and edge effects. We also give
the Landau gauge expression for the phase of a BEC subjected to these boundary conditions. Our spectral
representation uses the eigenfunctions of the one-body Hamiltonian as basis functions. Since there is no known
exact quadrature rule for these basis functions we approximately implement the projection associated with the
energy cutoff, but we show that by choosing a suitably fine spatial grid the resulting error can be made negligible.
We show how the convergence of this model is affected by simulation parameters such as the size of the spatial
grid and the number of Landau levels. Adding dissipation, we use our method to find the lattice ground state for
N vortices. We can then perturb the ground-state, to investigate the melting of the lattice.
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I. INTRODUCTION

One of the most striking properties of Bose-Einstein con-
densates (BECs) is the effect of forcing them to rotate [1].
Unlike the solid body rotation of a normal fluid, when a
BEC rotates an array of quantized vortices is formed [2].
Since these quantized vortices were observed experimentally
in a BEC [3], they have been a widely studied quantum phe-
nomenon [4–11]. Systems with a large number of vortices
have been revealed to display a rich selection of dynam-
ics such as the dipole interactions of vortices with opposite
charges [12], the mechanisms of vortex lattice formations
[13–18], and vortex turbulence [19–21].

The most common theoretical description of these systems
is the zero-temperature, mean-field Gross-Pitaevskii equa-
tion (GPE). A wide range of numerical methods have been
applied to solving this equation, both with and without rota-
tion. Examples include Crank-Nicolson schemes [13,14,22–
25], backwards Euler finite difference schemes [26–29], and
Sobolov gradient methods for a rotating condensate [30–33].
A range of (pseudo-) spectral methods have also been used
with, for example, Fourier [34], Chebyshev [35], and Hermite
[36] basis functions.

The projected Gross-Pitaevskii equation (PGPE) [37] is a
classical field equation for simulating a weakly interacting
Bose gas at finite temperatures. The PGPE is a microcanonical
equation of motion, and the atom number and total energy are
conserved quantities. Its crucial feature, beyond the ordinary,
nonprojected Gross–Pitaevskii equation, is precise implemen-
tation of an energy cutoff in the basis of noninteracting
single-particle modes. When working at finite temperature,
this allows one to set the cutoff such that all included modes
have occupation �1; in this regime quantum fluctuations are
relatively small and the classical field description is accurate.

The importance of implementing the projection in the correct
noninteracting single-particle basis has been demonstrated
[38]. Ideally, the numerical projection operation used to
evolve the equation should be numerically exact, necessi-
tating a (pseudo-)spectral approach to the implementation.
Consequently, although it imparts the ability to describe finite
temperature gases, one can also view the PGPE as a sys-
tematically dealiased pseudospectral method for the ordinary
GPE [39]; the wave function is described as an expansion
over a finite number of basis functions and evolved precisely
according to the equation of motion. Taking this view, using a
well-defined energy cutoff in the single-particle basis remains
advantageous. The PGPE sits within a broader range of tech-
niques known as the c-field methodology [16,37,40–44].

The dynamics of Rotating 2D Bose gases have been pre-
viously studied with the PGPE [19,45] in finite, harmonically
trapped system using a Laguerre-Gaussian basis. However, in
simulations where the condensate has an edge, vortices nucle-
ate at the interface between the condensate and the thermal
cloud. These vortices do not penetrate the main bulk of the
condensate, rather they remain at the edge of the condensate
for considerable time [19]. Between these edge effects, and
the tendency of the trapping potential to distort any resulting
vortex lattice [46,47], it is difficult to conduct a PGPE sim-
ulation of sufficient size to isolate the bulk properties of the
system [19].

To concentrate on the bulk of the system and avoid bound-
ary effects—in a similar way as would be achieved using pe-
riodic boundary conditions in the nonrotating case—previous
works on rotating 2D systems have used quasiperiodic bound-
ary conditions to simulate a representative cell of an infinite
rotating system. Physically this corresponds to a harmoni-
cally trapped gas, rotating rapidly enough that the effective
harmonic trapping vanishes. Under such rapid rotation, if the
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number of vortices in the Bose gas approaches the number
of atoms, the gas enters a fractional quantum Hall regime
and the classical field approach of the PGPE breaks down.
Here, we consider the alternative regime where the number
of vortices remains small compared to the number of atoms
and the PGPE remains valid. This regime itself breaks down
in to two cases. In the first case, at low temperatures, and low
interaction energies such that the typical spacing between vor-
tices in a ground state lattice is comparable to the vortex core
size, the Lowest Landau Level approximation can be used to
determine the ground state of a system with good accuracy
[48–50]. Such an approximation has been used extensively
to study vortex lattices [47,50–56]; however, it is necessarily
limited to the lowest energy states of the system. In the second
case, at higher temperatures, with nonequilibrium dynamics,
or simply with higher interaction energies such that the typical
spacing between vortices in a ground state lattice is much
greater than the vortex core size, higher-energy states than
the lowest Landau levels must be included. Calculations for
an infinite ground-state vortex lattice in this case are de-
scribed in Ref. [57], and for dipolar gases in Ref. [58]. The
time-dependent GPE has been implemented in this case with
quasiperiodic boundary conditions in Refs. [59,60], by using
magnetic Fourier transforms and finite difference methods in
the symmetric gauge respectively. However, these methods do
not operate directly in a basis of single-particle eigenstates,
making it difficult to implement the projection operation
needed for the PGPE.

In this work we present a numerical method for simulating
the PGPE in an infinite rotating 2D Bose gas. Our method
operates in the Landau gauge, using the correct single-particle
basis under quasiperiodic boundary conditions for a represen-
tative cell of the system (Fig. 1). By establishing a method to
integrate the PGPE for such a rotating system, we open the
door to study finite-temperature, nonequilibrium dynamics of
rotating systems in the bulk, free of edge effects.

0
0

0

1

(a)

(b)

FIG. 1. A sketch of the system: (a) A large, oblate, harmonically
trapped (ωx = ωy = ω⊥ � ωz = ω‖) condensate rotating with angu-
lar frequency �. (b) In the centrifugal limit (� → ω⊥) a small cell
in the bulk of the now-infinite condensate can be approximated using
the Landau gauge with quasiperiodic (twisted) boundary conditions.
The height of the surface represents the density of the wave function,
while the color represents the phase of the superfluid.

The remainder of this paper is structured as follows: In
Sec. II we introduce the equation of motion which governs
a harmonically trapped Bose gas rotating at the centrifugal
limit, as well as introducing the quasiperiodic boundary con-
ditions which we use throughout the paper. In Sec. III we
introduce the PGPE for a rotating system; we also quantify
the error which is due to the projection. In Sec. IV we detail
how our method allows one to choose an arbitrary array of
vortices as an initial condition for the PGPE. This requires
us to find the Landau gauge expression for the phase of N
vortices. Section V contains the main results of the paper:
We consider how the PGPE evolution performs for varying
simulation parameters, as well as looking at how our method
can be used to find the ground state of a given system. We
then investigate how stable this ground state is. In Sec. VI we
perturb the ground state of the system, to investigate how the
lattice responds to melting.

II. ROTATING PROJECTED GROSS-PITAEVSKII
EQUATION

A. Single-particle Hamiltonian

In the rotating frame, the Hamiltonian for a particle of mass
m rotating with angular momentum � is [61]

H� = |p|2
2m

+ 1

2
mω2

⊥(x2 + y2) + 1

2
mω2

‖z2 − � · r × p, (1)

where ω‖ and ω⊥ are the trapping frequencies in the z and
the radial directions, respectively. Throughout this paper, we
will not worry about nonuniform rotation, disturbance to the
density of the fluid, or any other affects which would be
a direct result of the mechanism used to spin the gas. On
choosing the z axis to be the axis of rotation, � = �ẑ, the
Hamiltonian may be written as [62–64]

H� = (p − m� × r)2

2m
+ 1

2
m(ω2

⊥ − �2)(x2 + y2) + 1

2
mω2

‖z2.

(2)
In the middle term of Eq. (2) we see that the frequency of
rotation � reduces the radial trapping frequency. We set � =
ω⊥, which is defined in Ref. [63] as the centrifugal limit [65].
This yields the Hamiltonian

H� = (p − A)2

2m
+ 1

2
mω2

‖z2, (3)

where the quantity H�� is invariant under the transformation

A → A + ∇λ, � → exp

(
i

h̄
λ

)
�, (4)

for a given λ, a function of x and y. Hence, we have the
gauge freedom to choose any A such that ∇ × A = 2m�ẑ.
Equation (2) is implicitly in the symmetric gauge, which is
logical outside the centrifugal limit, as the single particle basis
functions are the associated Laguerre polynomials [66].

The trapping of a BEC gives rise to several boundary phe-
nomena, including the short lived nucleation and annihilation
of vortices which do not penetrate the bulk of the fluid [19].
At the centrifugal limit, it is advantageous to use the Landau

033309-2



NUMERICAL METHOD FOR THE PROJECTED … PHYSICAL REVIEW E 102, 033309 (2020)

gauge,

A =
(

0
2m�x

)
, (5)

as the single particle basis functions with quasiperiodic
boundary conditions can be found. This will enable us to study
the bulk of the Bose gas using the PGPE, without worrying
about edge effects.

B. The GPE in dimensionless variables

The most common description of an ultracold Bose gas is
that of a wave function � which obeys the mean-field Gross-
Pitaevskii equation (GPE). In a rotating system such as the
one described in Sec. II A, this equation takes the form

ih̄
∂�

∂t
= H�� + g|�|2� − μ�, (6)

where g = 4π h̄2as/m parameterizes the interaction between
multiple particles in the system, as is the s-wave scattering
length of the particles [67], and μ is the 3D chemical po-
tential. We are interested in the behavior of vortices in the

rotating plane and so we adopt a highly oblate condensate with
trapping frequencies ω⊥ � ω‖. With this tight confinement in
the z direction, and the condition h̄ω‖ � μ, the excitation of
modes in the z direction is prevented. This leads to a 3D wave
function,

�3D(x, y, z, t ) = �(x, y, t )A exp

[
− z2

2l2
z

]
, (7)

where the z dependence is a Gaussian ground state, and lz is
the oscillator length in the z direction. It is possible to recover
a quasi-2D regime by substituting Eq. (7) into Eq. (6) and
integrating over z. In such a quasi-2D system, the interparticle
attraction parameter is given by

g2D =
√

8π h̄2as

mlz
, (8)

and the 2D chemical potential is

μ2D = μ − 1

2
h̄ω‖. (9)

The GPE for our rotating quasi-2D system is therefore

ih̄
∂�

∂t
=

(
− h̄2

2m
∇2 + ih̄

m
A· ∇ + 2m�2x2 + g2D|�|2 − μ2D

)
�. (10)

This equation is fundamentally different to those of
Refs. [13,14] as we are in the Landau gauge, given by Eq. (5).
One can convert from the Landau gauge to the symmetric
gauge [59,60] by substituting λ = −m�xy into Eq. (4).

We adopt natural units for the system, based on the healing
length ξ = h̄/

√
mμ2D. This leads to dimensionless distances

x′ = x/ξ and y′ = y/ξ, a dimensionless time t ′ = μ2Dt/h̄,

and a dimensionless wave function � ′ = �
√

g2D/μ2D. Using
these units we write Eq. (10) in dimensionless form (dropping
the prime notation)

i
∂�

∂t
= H�� + |�|2� − �, (11)

where the one-body Hamiltonian can be written as

H� = −1

2
∇2 + i	2x

∂

∂y
+ 1

2
	4x2, (12)

with 	 = ξ/
 the ratio of the healing length ξ to the “magnetic
length” 
 defined by [63,68]


2 = h̄

2m�
. (13)

In the case of the rotating Bose gas, 
 is a characteristic
distance between vortices.

C. Quasiperiodic boundary conditions

We now consider a representative cell of an infinite rotating
system, by introducing quasiperiodic boundary conditions,
and to establish the corresponding single-particle basis
functions.

For a cell of physical dimensions 0 � x � aξ , 0 � y < bξ ,
with aspect ratio κ = a/b, we define our boundary conditions
to be (working in dimensionless variables)

Arg[�(x + a, y)] = Arg[�(x, y)] + 2πy

b
, (14)

Arg[�(x, y + b)] = Arg[�(x, y)]. (15)

Unlike standard periodic boundary conditions, these boundary
conditions provide the wave function with a winding in the
phase which was discovered to be necessary in the work of
Ref. [69]. Throughout this paper, we will refer to these bound-
ary conditions as quasiperiodic, or “twisted” [59] boundary
conditions.

From the superfluid velocity in the cell of area ab it is
possible to derive a quantization condition,

ab	2 = 2πN, (16)

which relates the area of the cell to the net number of vortices
N [62,70]. With our boundary conditions, the net number of
vortices N and the size of the box a, b are fixed, and together
determine the rotation frequency �. Taken together, Eqs. (13)
and (16) imply the “Feynman rule” of uniform areal vortex
density, nv, mimicking solid-body rotation [70],

nv = N

abξ 2
= m�

π h̄
. (17)

We now consider the appropriate basis functions needed
to implement a projected Gross-Pitaevskii equation. Previous
work [11,47,50,52–56,68] has investigated rapidly rotating
2D systems which depend only on the lowest Landau level
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(LLL). This is accurate for a system of dense vortices; how-
ever, where the typical vortex spacing is much larger than the
healing length, interactions in the Bose gas lead to contribu-
tions from higher Landau levels [63]. Reference [68] gives the
LLL eigenfunction of the Hamiltonian in Eq. (12), which can
be extended to describe higher Landau levels. These eigen-
functions take the form

φn,k =
√

a	

∞∑
p=−∞

χn

[
	a

(
k

N
+ p

)
− 	x

]

× exp

[
i	2a

(
k

N
+ p

)
y

]
, (18)

where

χn(x) = 1√
2nn!

√
π

Hn(x) exp

(
−1

2
x2

)
. (19)

Here, Hn(·) is the nth physicists’ Hermite polynomial [71], and
the Landau levels are indexed by n = 0, 1, . . . . Without loss
of generality, we choose to normalize the basis functions to ab
(see the Appendix for details). The eigenenergies correspond-
ing to the eigenfunctions of Eq. (18) are

En,k = 	2

(
n + 1

2

)
. (20)

Expanding the wave function � in terms of all eigenstates
below an energy cutoff Ecut = 	2(M + 1/2) and solving
Eq. (11) for the expansion coefficients constitutes the PGPE
for this system. The choice of cutoff M will be discussed
further in Secs. III and V.

III. NUMERICAL METHOD FOR BASIS
TRANSFORMATION

A. PGPE implementation

To implement the PGPE for the quasiperiodic system in-
troduced in Sec. II, we follow the same approach as used for
the uniform system in Ref. [72], but using the quasiperiodic
one-body eigenstates. As described by Ref. [16], defining an
orthonormal projector with respect to the one-body Hamilto-
nian is convenient due to the fact the many-body spectrum is
well approximated by the single-body spectrum when in the
high energy limit. However, in our case there is no known
exact numerical quadrature rule for the basis functions with
which to implement the projection to numerical precision.
Instead we introduce an approximate projection operation that
can be made sufficiently accurate for our purposes.

Our basis functions are given by Eq. (18), and we define
the wave function � to be

�(x, y, t ) =
M−1∑
n=0

N−1∑
k=0

cn,k (t ) φn,k (x, y), (21)

where our energy cutoff is prescribed by the value of M, and
the summation over p is truncated so that −pmax � p � pmax.

It is critical that we choose a large enough pmax that the
quasiperiodic basis functions are approximately orthogonal,
and we discuss the validity of this truncation in Sec. III C. We
use the orthonormality conditions of the basis functions (see

the Appendix for details), to derive an evolution equation for
the coefficients cn,k

i
dcn,k

dt
= (En,k − 1)cn,k +

M−1∑
n′,m,,m′=0

N−1∑
k′, j, j′=0

cn′,k′cm, jcm′, j′

×In,n′,m,m′;k,k′, j, j′ , (22)

where

In,n′,m,m′;k,k′, j, j′ =
∫ a

0

∫ b

0
φ∗

n,kφ
∗
n′,k′φm, jφm′, j′ dydx. (23)

There is no known quadrature rule for the integral in Eq. (23),
and so we instead will use an approximate pseudospectral
method [39]. We write Eq. (21) as

� = T c, (24)

where � is a real space representation of the wave function
with Q2 elements indexed by ri = (x, y)i, and c is a represen-
tation of the wave function in the “coefficient space” of the
basis functions, with MN elements indexed by σ j = (n, k) j .

The matrix T is written in terms of the basis functions as

Ti j = φσ j (ri ). (25)

We must also define the matrix U , which is the inverse trans-
formation of Eq. (24), i.e., U = T †/Q2, and the diagonal
“energy matrix” E , which contains the eigenvalues of the basis
functions, Ej j = Eσ j . The resultant equation for the evolution
of the coefficients is

i
dc
dt

= (E − IMN )c + U |T c|2(T c), (26)

the evolution of which will be discussed in Sec. V.
We now consider two sources of error which are unavoid-

able when performing numerical simulations: The projection
error, which arises on choosing the number of grid-points Q
for a given M, and the error associated with truncating the
summation over p, which comes from our choice in pmax.

B. Projection error

As discussed in Sec. III A, the energy cutoff in our simu-
lations is defined as M, which is the number of Landau levels
which are included in our basis functions. We are also working
with a system which does not have a quadrature rule, hence
there is no clear-cut way of selecting a value of Q for a given
M. The cubic term in the GPE may lead to aliasing in any
grid representation of the wave function [44]. In our system,
this corresponds to the nonlinear term of the GPE producing
polynomials of order 3M, which are outside the c–field region
and hence not energy conserving. It is therefore necessary to
check the validity of any given values of Q and M, which we
do with the following algorithm.

Assume that our system has N states (vortices), Q grid
points in each of the x and y directions, and M Landau levels;
for these parameters there is a transformation matrix T , and its
inverse U , the construction of which is described in Eq. (24).
We generate the matrix T̃ which also has N states and Q
grid-points, but has 3M Landau levels (on account of the
nonlinear term in Eq. (11) being cubic). For the remainder of
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this section, we use a tilde to denote a coefficient space which
has 3M Landau levels.

We create a test vector c̃, which is

c̃ = 1√
2MN

(

M×N︷ ︸︸ ︷
0, . . . , 0,

2M×N︷ ︸︸ ︷
1, . . . , . . . , 1). (27)

That is, the first M × N elements (which are the coefficients
for the basis functions with the lowest M Landau levels) are
zero, while the other elements are identical, and normalized
so that |c̃|2 = 1. From here, we compute

c = U [T̃ c̃]. (28)

This transforms the test vector c̃ from the enlarged basis in
coefficient space, into the Q × Q basis in real space, and then
back to the smaller, M × N , coefficient space.

Using c, the M × N array of coefficients, we can now quan-
tify the error in the projection. If the projection was perfect,
then the array c would be precisely zero. That is to say: We
would have recovered the coefficients of the lowest M Landau
levels from the test array c̃ without alias.

If, however, there are nonzero elements in c, then there has
been some “leakage” of higher order modes into the M lowest
modes which we have defined as our c-field. Numerically we
define this error to be

δ = max{c∗
n,kcn,k}, (29)

where this “leakage” corresponds directly to momentum
aliasing.

The results of this analysis are presented in Fig. 2. We see
that, for any given M, there is a threshold value of Q for which
the projection error δ becomes negligible. Below these thresh-
old values, the error decreases at a rate which depends on M:
For small M, the error decreases very quickly, while larger
M requires more grid-points. Above the threshold value, the
projection error converges to a characteristic error for the

4 6 8 10

-15

-10

-5

0

lo
g 10

 

M=22

M=24

M=26

M=28

M=210

FIG. 2. The projection error, δ as a function of Q for varying
values of M. We have set a = b = 26 to be the cell size, fixed
pmax = 10, and set N = 4. The dotted lines are added as a guide to
the eye.

given set of simulation parameters. This means that increasing
the number of points serves only to slow the simulation, and
offers no numerical advantage.

We note that the analysis above was conducted with a
cell where a = b = 64, the truncation pmax = 10, and N = 4
vortices. A similar analysis can be conducted for a different
size cell, and for a different number of states in the system,
however we note that the results are qualitatively the same:
For higher M one must increase the number of grid-points to
reduce the projection error.

C. Truncation error

Clearly, when calculating the matrix T from the basis
functions defined in Eq. (18) it is necessary to truncate the
summation over p. We must, however, ensure that we have
chosen a large enough value of pmax that significant con-
tributions to the wave function from neighboring cells are
not erroneously ignored. It is also critical to choose a large
enough value of pmax, as the infinite sum over p is respon-
sible for transforming an integration over a finite domain,
into an integration over an infinite domain, which is how the
orthonormality of the Hermite polynomials is defined (see the
Appendix for further details).

There are several well known bounds for the zeros of
Hermite polynomials, however the eigenfunctions in Eq. (18)
are a sum over a product of a Hermite function χn(x), and the
complex exponential in y. Although Hermite functions decay
exponentially quickly after their most extreme zeros, there is
still an imaginary part of these eigenfunctions which must be
taken into account. The presence of p in both the x and y
components of the basis functions mean that truncating the

0 2 4 6 8
-16

-14

-12

-10

-8

-6

-4

-2

0

FIG. 3. The truncation error δ, for varying pmax with fixed M and
Q. For M ∈ {26, 28, 210} we used Q = 27 grid-points, while for M >

210, it is necessary to use Q = 28 grid-points to achieve a meaningful
result. Note that a = b = 26 and N = 4 in this analysis. The dotted
lines are added as a guide to the eye.

033309-5



R. DORAN AND T. P. BILLAM PHYSICAL REVIEW E 102, 033309 (2020)

summation over p is not as simple as using a bound for the
Hermite polynomials, and we must be cautious that the value
of pmax is chosen correctly.

We perform the same analysis as in Sec. III B to quantify
the error δ; however, in each case we fix Q and M and instead
vary pmax. The results can be found in Fig. 3. For each Q and
M, we note there is a threshold value of pmax above which
the truncation error becomes negligible (this is indicated by a
sudden drop in the value of δ in Fig. 3). Initially there is an
increase in the error (for pmax = 1); however, this is because
the basis functions do not converge to the correct value for
this choice in truncation. Above the threshold value, there is a
convergence in the error for a given M and Q.

Informed by the analysis of Sec. III B, we note that for
values of M which were greater than 210, it was necessary to
use Q = 28, grid points in each direction to get a meaningful
result.

IV. VORTEX ANSATZ FOR INITIAL CONDITION

In this section we describe the process by which we prepare
an initial configuration of Nv vortices placed within the cell.
This allows us to investigate a number of scenarios involving
free vortices, clustered vortices and dipole pairs.

It is known that it is possible to express the phase of a
vortex using the zeros of a Weirstrass function [73]. Further,
in the Landau gauge it is appropriate to use Jacobi Theta func-
tions to describe the phase. The third Jacobi Theta Function is
defined as [71]

ϑ3(z, τ ) = 1 + 2
∞∑

n=1

qn2
cos (2nz), (30)

where z is a complex coordinate, and τ ∈ C is the lattice
parameter with nome q = exp (iπτ ). We restrict ourselves
to the case of a rectangular domain, requiring (τ ) = 0 and
�(τ ) > 0, so that ϑ3 has quasiperiodicity relation

Arg[ϑ3(z + f π + gτπ ; τ )] = Arg[ϑ3(z; τ )] − 2g(z), (31)

for integers f and g. To describe a domain which is arbi-
trary sized, we introduce L then by rescaling z → πz/L, and
defining the lattice parameter τ to be purely imaginary, the
Jacobi theta function ϑ3 is quasiperiodic on 0 � (z) < L and
0 � �(z) < L�(τ ). In this case, the quasiperiodicity relation

of Eq. (31) becomes

Arg
[
ϑ3

(π

L
(z + Lτ ); τ

)]
= Arg

[
ϑ3

(πz

L
; τ

)]
− 2π

L
(z).

(32)
By comparison with the quasiboundary conditions of Eq. (14),
it follows that L = b, τ = iκ and z = ix − y. Consequently,
it is possible to determine that the fundamental solu-
tion for the phase θ of a vortex centered in the box at
(a/2, b/2) is

θ (z) = cArg
[
ϑ3

(π

b
z ; iκ

)]
, (33)

where c is the integer charge of the vortex. This fundamental
solution is shown in the phase plot of Fig. 4(a). By the use
of a suitable gauge transformation, it can be shown that this is
equivalent to expressions obtained for quasiperiodic boundary
conditions in the symmetric gauge in Ref. [60].

Suppose that we wish to obtain the phase of the kth vortex,
of charge ck , which is shifted from the center of the cell,
to the position (xk, yk ). Then we define the effective vortex
coordinate

zk = i
(

xk − a

2

)
−

(
yk − b

2

)
, (34)

so that the phase of the kth vortex is given by

θk (z ; zk ) = ckArg
[
ϑ3

(π

b
[z − zk]; iκ

)]
. (35)

The density profile of a vortex was found numerically in
Ref. [74]. nondimensionalizing this function, and setting the
background density to be one, we have

ρk (z ; zk ) =
[ ∣∣z − zk + 1

2 (ia − b)
∣∣2∣∣z − zk + 1

2 (ia − b)
∣∣2 + �−2

]1/2

, (36)

where � ≈ 0.8249 is a universal constant.
Combining phase and density profiles of the individual

vortices, our ansatz wave function Nv vortices is

�(z | {zk}) =
Nv−1∏
k=0

ρk (z; zk ) exp [iθk (z; zk )], (37)

where {zk} = {z0, . . . , zNv−1}. To determine the symmetry
conditions of this ansatz, let us consider the transformation

FIG. 4. Example configuration of vortices using the method described in Sec. IV. The color bar indicates the phase of the superfluid. (a) A
single, positively charged, vortex is placed at the center of the cell. (b) Two positively charged vortices are placed at (a/2, 3b/4) and (a/2, b/4).
(c) Three positively charged and one negatively charged vortices create a dipole pair in the cell.
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x → x + a. In this case, we have

Arg[�(z + ia | {zk})]

=
Nv−1∑
k=0

ckArg
[
ϑ3

(π

b
{z − zk} + i

πa

b
; iκ

)]
, (38)

which, using the quasiperiodicity relation of Eq. (31), is

Arg[�(z + ia | {zk})]

= Arg[�(z | {zk})] + 2πNy

b
+ π

b

Nv−1∑
k=0

(
yk − b

2

)
, (39)

where N is the net number of vortices (the sum of ck). The
first two terms on the right-hand side of Eq. (39) are in di-
rect agreement with the quasiperiodic boundary conditions of
Eqs. (14) and (15). However, to match the boundary condi-
tions the third term must vanish. This means that the vortex
positions yk must satisfy

ȳv = 1

N

Nv−1∑
k=0

ckyk = b

2
, (40)

placing the center of vorticity at b/2 in the y direction. This
condition is related to the fact that the ground state vortex lat-
tice breaks the translational symmetry of the system. Adding a
constant to our boundary conditions [Eq. (15)] would trivially
shift the center of vorticity within the cell. An equivalent
connection between boundary conditions and the center of
vorticity is found for quasiperiodic boundary conditions in
the symmetric gauge [60]. Figure 4 shows a small selection
of initial vortex configurations which can be created using the
ansatz wave function of Eq. (37).

V. CONVERGENCE AND TESTING OF THE METHOD

A. Overview of numerical procedure

Here we briefly outline how the pseudospectral method
described above can be implemented numerically. To perform
the transformations between real and coefficient space re-
quired by Eq. (24), we begin by creating the matrix described
in Eq. (25). Note that this fixes the dimensions of the funda-
mental cell, a, b and κ , the number of Landau levels, M, the
number of grid-points, Q, and the net number of vortices, N .
Once this is complete, we evolve Eq. (26) from an initial con-
dition. Numerically, we compute the time evolution using an
adaptive 8th order Dormand Prince (DP8) method [75] with
adaptive time stepping subject to an error tolerance ε. Since
the majority of the memory requirements lie in the storing
of the T and U matrices, the extra memory required to use
such a high order time-stepping scheme is inconsequential.
The high order of the method reduces the total number of
time derivative evaluations required while maintaining suffi-
ciently stringent tolerance to preserve the conserved quantities
to good accuracy over long time. The most computationally
demanding step in the procedure is performing the basis
transformations needed to evaluate the time derivative; this
amounts to performing multiplication by the matrices T and
U , which have a large size of MNQ2 elements (about 227

for typical parameters). Owing to the large size and high

condition number of the T and U matrices, numerical round-
ing errors in these matrix-vector multiplications can become
nonnegligible with standard double-precision arithmetic. We
find that performing a stabilized matrix-vector multiplication,
using the techniques to extend precision described in Ref. [76]
and parallelized using OpenMP, effectively eliminates these
problems without significantly increasing computation times.

There are two kinds of initial conditions that we may use.
In the first instance, we can control the occupation of the
modes in coefficient space, in a manner similar to the simu-
lations of Ref. [77]. More conveniently, we can produce an
ansatz wave function whereby we prescribe the position and
charge of N vortices, using the method described in Sec. IV.
The only difference is that we must transform this ansatz into
coefficient space before evolving.

B. Conserved quantities

There are three quantities which should be conserved by
any numerical treatment of Eq. (11). They are the real-space
norm NR of the wave function,

NR(t ) =
∫ a

0

∫ b

0
�∗(x, y, t )�(x, y, t ) dydx, (41)

the norm of the coefficients, NC, defined as

NC (t ) =
MN−1∑

j=0

c∗
σ j

(t ) cσ j (t ), (42)

and the energy of the system,

E(t ) = 1

NC (0)

MN−1∑
j=0

Eσ j c
∗
σ j

(t ) cσ j (t )

+ 1

NR(0)

∫ a

0

∫ b

0

1

2
|�(x, y, t )|4 dydx. (43)

In both Eqs. (41) and (43) we have discretized real space, and
so the integrals will be replaced with summations, with dx →
a/Q (likewise dy → b/Q). Due to numerical error, these
quantities will not be conserved by our evolution scheme.
Tracking their changes, however, provide a key insight as to
how accurate our scheme is.

C. Evolution of vortex ansatz states

We begin with a state which is a random configuration of
N = 4 vortices, in a square cell with side lengths a = b = 64.

This initial state is then evolved to tfinal = 50 (in dimensionless
time units), and the difference between the initial and final val-
ues are computed, i.e., �NR = NR(0) −NR(50). The results
of this can be seen in Fig. 5.

In Fig. 5, columns (a)(i)–(c)(i), we calculate the evolution
error for varying values of M, while the tolerance in the
numerical timestepping is fixed, ε = 10−10. We do this for a
number of different grid points: Q = 26, blue crosses; Q = 27,
red circles; Q = 28, yellow squares; Q = 29, purple asterisks.
We note that the curves have a characteristic bow shape;
initially increasing the number of Landau levels decreases the
error in the evolution. For each value of Q, however, there
comes a point where projection error dominates the increase
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FIG. 5. Evolution error for the quantities NR, row (a); NC , row (b); and E, row (c). Column (i): Varying M for Q = 26, blue crosses;
Q = 27, red circles; Q = 28, yellow squares; Q = 29, purple asterisks. Column (ii): Varying Q for M = 26, blue crosses; M = 27, red circles;
M = 28, yellow squares. For columns (i) and (ii), ε = 10−10. Column (iii): Varying ε for M = 26 and Q = 28. In all cases, a = b = 26.

in M, and the evolution error increases. This is particularly
noticeable in the regime of low Q and high M in the plot of
�NR, Fig. 5(a)(i).

In Fig. 5, columns (a)(ii)–(c)(ii), we calculate the evolu-
tion error for varying values of Q for a fixed tolerance of
ε = 10−10, with M = 26, blue crosses; M = 27, red circles;
M = 28, yellow squares. We observe that increasing the num-
ber of grid points Q leads to a monotonic decrease in the
evolution error. Initially projection error dominates, however
this is in a regime where we have one or fewer grid points
per healing length. As Q increases beyond approximately four
grid points per healing length, we note that the error converges
for each value of M; it it also apparent that once the error has
converged, a higher value of M leads to a better conservation
in the quantities of interest.

In Fig. 5, columns (a)(iii)–(c)(iii), we calculate the evolu-
tion error for varying values of ε, where M = 26 and Q = 28.
We see that there is a very good agreement between the
tolerance size, and the expected error of the DP8 method.

It should be noted that although this demonstrates the evo-
lution error of one initial state, it is qualitatively representative
of all initial states. That is to say, the results of the evolution
error testing presented here are a realization of a single initial
condition, but we note that this is indicative of all initial
conditions.

D. Stability of the ground state

As well as performing the dynamical evolutions described
in the previous sections, we want to be able to find the ground
state of a system with N vortices. To do this, we add a di-
mensionless damping parameter γ to the governing equation
[13,61]. This parameter describes the diffusion of thermal
atoms from the system, a key physical process in relaxing
the system to a ground state [78]. This means that Eq. (11)
becomes

i
∂�

∂t
= (1 − iγ )[H�� + |�|2� − �], (44)

and hence we will numerically simulate

dc
dt

= (γ − i)[(E − IMN )c + U |T c|2(T c)]. (45)

For a domain with aspect ratio κ = √
3, the ground state has

been shown to be a hexagonal lattice [64,73,79]. We will show
in the rest of this section that this damped PGPE will cause the
system to relax into a vortex lattice ground state.

The procedure is as follows: We initially seed all of the
coefficients so that

cn,k (0) = (1 + i)√
2NM

, (46)
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(a)

0 a
0

b

(b)

0 a
0

b

(c)

0 a
0

b

FIG. 6. The hexagonal lattice ground states. (a) a system with
N = 6 vortices, (b) a system with N = 8 vortices, and (c) a system
with N = 18 vortices. The primitive vectors of a hexagonal lattice,
L1 and L2, are added as a guide to the eye. In each case, a = 32

√
3

and b = 32.

and evolve this state using the damped GPE in Eq. (45), with
the parameter γ = 1. This leads to the ground state c(g). In
Fig. 6 we plot the ground state for N = 6, N = 8, and N = 18.

A lattice is characterized by a pair of primitive lattice
vectors L1 and L2, from which we can infer the shape of a
lattice (i.e., square, hexagonal, etc.). In Fig. 6 we add the prim-
itive vectors of a hexagonal lattice, such that |L1| = |L2| and
L̂1·L̂2 = 1/2, confirming that the ground state is a hexagonal
lattice. Further, we observe that in the long term the energy
of the system is monotonically decreasing when evolving
Eq. (44) with γ = 1, and that the energy converges. For the
parameters in Fig. 6, E(t + δt ) − E(t ) has converged to within
at least 2 × 10−7.

VI. APPLICATION: LATTICE MELTING

Here we present an application of the method to simulate
a melting vortex lattice. Evolving an initial configuration of 6
vortices using the damped GPE leads to a lattice ground state
c(g), as reported in Sec. V D.

We then add noise to the ground state, by taking

cn,k = ηc(g)
n,k + (1 − η) exp [i� ] (47)

for n = 1, . . . , (M − 1), where the parameter η controls the
amount of noise which is injected into the lattice ground
state, and � is sampled from a uniform distribution U (0, 2π ).
Adding noise to the coefficients of the ground state will in-
crease the presence of higher Landau levels in the system, and
hence effect the thermal properties of the system.

Here we take five values of η, so that the initial configura-
tion is 98.2%, 98.6%, 99%, 99.4%, and 99.8% of the lattice
ground state. For each of these configurations, we simulate
10 different realizations of noise added to the coefficients of
the ground state, evolved to dimensionless time t f = 104. In
addition to the individual trajectories, we compute the time
and ensemble averaged density,

ρ̄ = 1

t f − ti

∫ t f

ti

〈|�(x, y, t )|2〉 dt, (48)

and the time and ensemble averaged phase. Computed numer-
ically over R trajectories, this is

θ̄ = Arg

[ t f∏
t=ti

R∏
r=1

exp

(
i
Arg[�r (x, y, t )] − Arg[�r (0, 0, t )]

R
(
t f − ti

)
)]

. (49)

We compute these averages over an ensemble of 10 tra-
jectories, averaging in time from ti = 5 × 103 to t f = 104,
numerically integrated over 500 equally spaced outputs.
Although we do not compute the temperatures that these
energies correspond to in the microcanonical ensemble, in
principle these can be determined as described by Ref. [43].

Figure 7 shows the instantaneous and averaged density and
phase profiles for the different values of η. For reference, the
energy of the lattice ground state is Eg = −0.7135. Due to the

degeneracy of eigenenergies, the parameter η is not a versatile
measure of the injected energy for systems with different
numbers of vortices. Further, the initial energy of each realiza-
tion is different, and so we compare different values of noise in
the system by computing the added energy, EA = 〈E0〉 − Eg,
where 〈E0〉 is the energy of the system after one time step,
so that the wave function and vector of coefficients is cor-
rectly normalized. In Fig. 7, column (i) corresponds to EA =
0.8107 |Eg|, column (ii) corresponds to EA = 0.6688 |Eg|,
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0

FIG. 7. Rows (a)(i)–(a)(v): Instantaneous density profile at t = 5000. Rows (b)(i)–(b)(v): Instantaneous phase profile at t = 5000. Rows
(c)(i)–(c)(v): Time and ensemble averaged density profile, ρ̄. Rows (d)(i)–(d)(v): Time and ensemble averaged phase profile, θ̄ . The initial
configurations are given by: Columns (a)(i)–(d)(i): η = 0.982, columns (a)(ii)–(d)(ii): η = 0.986, columns (a)(iii)–(d)(iii): η = 0.990, columns
(a)(iv)–(d)(iv): η = 0.994, and columns (a)(v)–(d)(v): η = 0.998. See the Supplemental Material [80], which contains movies of the time
evolution.

column (iii) corresponds to EA = 0.5361 |Eg|, column (iv)
corresponds to EA = 0.4267 |Eg|, and column (v) corresponds
to EA = 0.3638 |Eg|.

It is clear to see that as the energy of the system increases,
stronger fluctuations destroy the regular vortex lattice. In
Figs. 7(a)(i)–7(b)(i) we see that fluctuations have led to the
creation of short–lived dipole pairs, which in turn means that
there is no recognisable structure to the time and ensemble
avearged profiles, Figs. 7(c)(i)–7(d)(i). Similarly, fluctuations
in Figs. 7(a)(ii)–7(b)(ii) prevent the formation of a lattice in
Figs. 7(c)(ii)–7(d)(ii)

In Figs. 7(a)(iv)–7(d)(iv), we see that while the in-
stantaneous density profile, Figs. 7(a)(iv), contains sharp
fluctuations, a hexagonal vortex lattice endures in the aver-
aged density profile, Figs. 7(c)(iv). Here the edges of the
vortex cores appear fainter than in the lattice of Figs. 7(c)(v),
due to oscillations in the position of the vortices in individual
trajectories. Indeed, the main difference between the averaged
density profiles of Figs. 7(c)(i)–7(c)(v) is that the lattice melts
as the system becomes dominated by fluctuations, which is the
component of the thermal cloud that exists within the classical
region [72].

In the ensemble with the smallest additional energy,
Figs. 7(a)(v)–7(d)(v), we see that even in instantaneous pro-
files, Figs. 7(a)(v) and 7(b)(v), the vortex lattice is preserved.
Indeed, the fluctuations due to this small amount of injected
energy are highly smoothed out by time and ensemble aver-
aging [Figs. 7(c)(v) and 7(d)(v)] so that we recover profiles
similar to the ground state of Fig. 6(a).

In Fig. 8 we plot the time and ensemble averaged occupa-
tion of the Landau levels. Here we define

n̄n = 1

t f − ti

∫ t f

ti

N−1∑
k=0

〈|cn,k (t )|2〉 dt, (50)

as the index of the state (vortex) does not enter into the
expression of eigenenergies. We notice that, by adding enough
noise to the ground state (corresponding to a low value of η),
the distribution of Landau level occupation is proportional to
1/E , which corresponds to classical equipartition of energy
over the modes. For a high value of η, although the majority
of the Landau level occupation is centered around the lowest
Landau levels, the effects of rotation on the system cause the

-0.5 0 0.5 1 1.5 2
-6

-5

-4

-3

-2

-1

0

1

FIG. 8. The time and ensemble averaged occupation of cn,k as a
function of Landau levels for η = 0.982, solid red line, η = 0.990,
dashed blue line, and η = 0.998, dot-dashed black line. The equipar-
tition of energy, 1/E , green dashed line, is added as a guide to
the eye.
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formation of some structure in the filling of higher modes
corresponding to the vortex lattice. The value of η = 0.990
represents a crossover between these limits. A large propor-
tion of the filling is in the Lowest Landau levels, indicating
the presence of a condensate. However, higher modes are still
significantly occupied, destroying the lattice structure, and
indicating the presence of thermal effects.

VII. CONCLUSION AND OUTLOOK

In this paper we have presented an efficient method for
simulating a harmonically trapped Bose gas, which is rotating
at the centrifugal limit. We have shown that it is possible to
do so without the issue of edge effects by choosing suitable
quasiperiodic boundary conditions. We have used the single
particle basis functions with these quasiperiodic boundary
conditions to expand the wave function below an energy cut-
off, thus implementing the PGPE for this rotating system.
There are two primary sources of error which arise from such
a pseudospectral method in this case; these are the error in pro-
jection caused by choosing an energy cutoff, M, and the error
associated with truncating an infinite summation appearing
in the basis functions themselves. We have quantified these
errors, and have shown that for suitable choices of simulation
parameters it is possible to reduce these errors to an accept-
ably small value.

On adding damping, our PGPE relaxes nonequilibrium
initial conditions to the expected regular vortex lattice ground
state. It is also extremely useful to be able to set up an
initial condition composed of Nv vortices with arbitrary in-
teger charge placed at any points in the domain (subject to
symmetry conditions); we have given an ansatz wave function
for such an initial condition, working in the Landau gauge.
Finally, as an application of the PGPE, we investigated the
melting of a vortex lattice by perturbing the ground state of
the system. Future work will focus on using the method to
investigate dynamical phase transitions and vortex dynamics
in rotating BECs.
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APPENDIX: THE ONE-BODY HAMILTONIAN

1. Normalization and Orthonormality of the Eigenfunction

In this section we calculate the normalization factor An of
the the wave function given in Eq. (18),

φn,k = An

∞∑
p=−∞

χn

[
	a

(
k

N
+ p

)
− 	x

]

× exp

[
i	2a

(
k

N
+ p

)
y

]
,

with

χn(x) = 1√
2nn!

√
π

Hn(x) exp

(
−1

2
x2

)
,

such that

ab =
∫ a

0

∫ b

0
φ∗

m, jφn,k dy dx. (A1)

We need to assume that the summation converges in such a
way that we may interchange the order of summation and
integration. Then, the y integral is

Iy =
∫ b

0
exp

[
−i	2a

(
j

N
+ q

)
y

]
exp

[
i	2a

(
k

N
+ p

)
y

]
dy

=
∫ b

0
exp

[
i	2ay

(
k − j

N
+ p − q

)]
dy. (A2)

We make the substitution 2πy = bỹ so that for ỹ ∈ [0, 2π ) we
have

Iy = b

2π

∫ 2π

0
dỹ exp

[
i	2 ab

2π
ỹ

(
k − j

N
+ p − q

)]

= b

2π

∫ 2π

0
dỹ exp[iỹ(k − j + N p − Nq)]. (A3)

We are now in a position where, since j, k, p, q, N ∈ Z, we
can apply the identity∫ 2π

0
einx =

{
2π, n = 0
0, otherwise. (A4)

In order that Iy does not vanish, we have the requirement
[k − j + N (p − q)] = 0. This condition is separable, how-
ever, as k, j ∈ {0, 1, . . . , N − 1}, thus

Iy = b δ j,k δp,q. (A5)

The result for Iy now reduces Eq. (A1) to∫ a

0

∫ b

0
φ∗

m, jφn,k dx dy

= A∗
mAnb

∞∑
p=−∞

∫ a

0
χ∗

m

[
	a

(
k

N
+ p

)
− 	x

]

×χn

[
	a

(
k

N
+ p

)
− 	x

]
dx. (A6)

We note that the Hermite functions χm are real and that the
summation over p, imposed to provide the periodic boundary
conditions of the solution, essentially transforms the integral
into an infinite domain, such that∫ a

0

∫ b

0
φ∗

m, jφn,k dxdy = A∗
mAn

b

	

∫ ∞

−∞
χm(x̃)χn(x̃) dx̃.

The Hermite polynomials Hn(x) are orthogonal over
(−∞,∞), with respect to the weight function e−x2

, so the
Hermite functions χn(x), defined in Eq. (19), are orthonormal
over this interval. This leaves

ab = A∗
mAn

b

	
δm,n, (A7)
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so

φn,k =
√

a	

∞∑
p=−∞

χn

[
	a

(
k

N
+ p

)
− 	x

]

× exp

[
i	2a

(
k

N
+ p

)
y

]
. (A8)

2. Quasiperiodicity of the eigenfunction

We can also show that φn,k obeys the quasiperiodic bound-
ary conditions given in Eqs. (14)–(15). The y direction is
trivial, as taking y → y + b gives

φn,k (x, y + b)

= An

∞∑
p=−∞

χn

[
	a

(
k

N
+ p

)
− 	x

]
ei	2a( k

N +p)yei	2 ab
N (k+N p)

= An

∞∑
p=−∞

χn

[
	a

(
k

N
+ p

)
− 	x

]
ei	2a( k

N +p)ye2π i(k+N p),

(A9)

which is in agreement with Eq. (15). On setting x → x + a we
get

φn,k (x, y + b)

= An

∞∑
p=−∞

χn

[
	a

(
k

N
+ p

)
− 	x − 	a

]

× exp

[
i	2a

(
k

N
+ p

)
y

]

= An

∞∑
p′=−∞

χn

[
	a

(
k

N
+ p′

)
− 	x

]

× exp

[
i	2a

(
k

N
+ p′

)
y

]
ei	2ay

= φn,k (x, y) exp

(
i
2πNy

b

)
, (A10)

where p′ = p − 1. Taking the principal value of the argument
of this, we recover

Arg[φn,k (x + a, y)] = Arg[φn,k (x, y)] + 2πy

b
,

which is Eq. (14).

[1] R. J. Donnelly, Quantized Vortices in Helium II, 1st ed.
(Cambridge University Press, Cambridge, UK, 1991).

[2] J. R. Abo-Shaeer, C. Raman, and W. Ketterle, Phys. Rev. Lett.
88, 070409 (2002).

[3] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E.
Wieman, and E. A. Cornell, Phys. Rev. Lett. 83, 2498 (1999).

[4] G. P. Bewley, M. S. Paoletti, K. R. Sreenivasan, and D. P.
Lathrop, Proc. Nat. Acad. Sci. USA 105, 13707 (2008).

[5] P. Engels, I. Coddington, V. Schweikhard, and E. A. Cornell,
JLTP 134, 683 (2004).

[6] D. V. Freilich, D. M. Bianchi, A. M. Kaufman, T. K. Langin,
and D. S. Hall, Science 329, 1182 (2010).

[7] P. C. Haljan, I. Coddington, P. Engels, and E. A. Cornell, Phys.
Rev. Lett. 87, 210403 (2001).

[8] E. A. L. Henn, J. A. Seman, G. Roati, K. M. F. Magalhaes, and
V. S. Bagnato, Phys. Rev. Lett. 103, 045301 (2009).

[9] J. R. Anglin and W. Ketterle, Nature (London) 416, 211 (2002).
[10] P. Engels, I. Coddington, P. Haljan, and E. Cornell, Physica B

329-333, 7 (2003).
[11] V. Schweikhard, I. Coddington, P. Engels, V. P. Mogendorff,

and E. A. Cornell, Phys. Rev. Lett. 92, 040404 (2004).
[12] T. Aioi, T. Kadokura, T. Kishimoto, and H. Saito, Phys. Rev. X

1, 021003 (2011).
[13] M. Tsubota, K. Kasamatsu, and M. Ueda, Phys. Rev. A 65,

023603 (2002).
[14] K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. A 67,

033610 (2003).
[15] C. Lobo, A. Sinatra, and Y. Castin, Phys. Rev. Lett. 92, 020403

(2004).
[16] A. S. Bradley, C. W. Gardiner, and M. J. Davis, Phys. Rev. A

77, 033616 (2008).
[17] N. G. Parker, R. M. W. van Bijnen, and A. M. Martin, Phys.

Rev. A 73, 061603(R) (2006).

[18] S. Sinha and Y. Castin, Phys. Rev. Lett. 87, 190402 (2001).
[19] T. M. Wright, R. J. Ballagh, A. S. Bradley, P. B. Blakie, and

C. W. Gardiner, Phys. Rev. A 78, 063601 (2008).
[20] T. Mizushima, Y. Kawaguchi, K. Machida, T. Ohmi, T.

Isoshima, and M. M. Salomaa, Phys. Rev. Lett. 92, 060407
(2004).

[21] N. G. Parker and C. S. Adams, Phys. Rev. Lett. 95, 145301
(2005).

[22] A. Aftalion and I. Danaila, Phys. Rev. A 68, 023603 (2003).
[23] A. Aftalion and I. Danaila, Phys. Rev. A 69, 033608 (2004).
[24] P. Muruganandam and S. Adhikari, Comput. Phys. Commun.

180, 1888 (2009).
[25] R. K. Kumar, V. Lončar, P. Muruganandam, S. K. Adhikari, and

A. Balaž, Comput. Phys. Commun. 240, 74 (2019).
[26] W. Bao, H. Wang, and P. A. Markowich, Commun. Math. Sci.

3, 57 (2005).
[27] W. Bao and Q. Du, SIAM J. Sci. Comput. 25, 1674 (2004).
[28] W. Bao, I.-L. Chern, and F. Y. Lim, J. Comput. Phys. 219, 836

(2006).
[29] X. Antoine and R. Duboscq, Comput. Phys. Commun. 185,

2969 (2014).
[30] J. J. García-Ripoll and V. M. Pérez-García, Phys. Rev. A 64,

053611 (2001).
[31] J. J. García-Ripoll and V. M. Pérez-García, SIAM J. Sci.

Comput. 23, 1316 (2001).
[32] I. Danaila and P. Kazemi, SIAM J. Sci. Comput. 32, 2447

(2010).
[33] G. Vergez, I. Danaila, S. Auliac, and F. Hecht, Comput. Phys.

Commun. 209, 144 (2016).
[34] J. Javanainen and J. Ruostekoski, J. Phys. A 39, L179 (2006).
[35] B.-W. Jeng, Y.-S. Wang, and C.-S. Chien, Comput. Phys.

Commun. 184, 493 (2013).
[36] C. M. Dion and E. Cancès, Phys. Rev. E 67, 046706 (2003).

033309-12

https://doi.org/10.1103/PhysRevLett.88.070409
https://doi.org/10.1103/PhysRevLett.83.2498
https://doi.org/10.1073/pnas.0806002105
https://doi.org/10.1023/B:JOLT.0000012628.78400.ef
https://doi.org/10.1126/science.1191224
https://doi.org/10.1103/PhysRevLett.87.210403
https://doi.org/10.1103/PhysRevLett.103.045301
https://doi.org/10.1038/416211a
https://doi.org/10.1016/S0921-4526(02)01870-7
https://doi.org/10.1103/PhysRevLett.92.040404
https://doi.org/10.1103/PhysRevX.1.021003
https://doi.org/10.1103/PhysRevA.65.023603
https://doi.org/10.1103/PhysRevA.67.033610
https://doi.org/10.1103/PhysRevLett.92.020403
https://doi.org/10.1103/PhysRevA.77.033616
https://doi.org/10.1103/PhysRevA.73.061603
https://doi.org/10.1103/PhysRevLett.87.190402
https://doi.org/10.1103/PhysRevA.78.063601
https://doi.org/10.1103/PhysRevLett.92.060407
https://doi.org/10.1103/PhysRevLett.95.145301
https://doi.org/10.1103/PhysRevA.68.023603
https://doi.org/10.1103/PhysRevA.69.033608
https://doi.org/10.1016/j.cpc.2009.04.015
https://doi.org/10.1016/j.cpc.2019.03.004
https://doi.org/10.4310/CMS.2005.v3.n1.a5
https://doi.org/10.1137/S1064827503422956
https://doi.org/10.1016/j.jcp.2006.04.019
https://doi.org/10.1016/j.cpc.2014.06.026
https://doi.org/10.1103/PhysRevA.64.053611
https://doi.org/10.1137/S1064827500377721
https://doi.org/10.1137/100782115
https://doi.org/10.1016/j.cpc.2016.07.034
https://doi.org/10.1088/0305-4470/39/12/L02
https://doi.org/10.1016/j.cpc.2012.10.001
https://doi.org/10.1103/PhysRevE.67.046706


NUMERICAL METHOD FOR THE PROJECTED … PHYSICAL REVIEW E 102, 033309 (2020)

[37] M. J. Davis, S. A. Morgan, and K. Burnett, Phys. Rev. Lett. 87,
160402 (2001).

[38] A. S. Bradley, P. B. Blakie, and C. W. Gardiner, J. Phys. B: At.
Mol. Opt. Phys. 38, 4259 (2005).

[39] J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed.
(Dover, New York, 2000).

[40] M. J. Davis, R. J. Ballagh, and K. Burnett, J. Phys. B 34, 4487
(2001).

[41] M. J. Davis, S. A. Morgan, and K. Burnett, Phys. Rev. A 66,
053618 (2002).

[42] C. W. Gardiner and M. J. Davis, J. Phys. B 36, 4731
(2003).

[43] P. B. Blakie and M. J. Davis, Phys. Rev. A 72, 063608
(2005).

[44] P. Blakie, A. Bradley, M. Davis, R. Ballagh, and C. Gardiner,
Adv. Phys. 57, 363 (2008).

[45] T. M. Wright, A. S. Bradley, and R. J. Ballagh, Phys. Rev. A 81,
013610 (2010).

[46] D. E. Sheehy and L. Radzihovsky, Phys. Rev. A 70, 063620
(2004).

[47] A. L. Fetter, Phys. Rev. A 75, 013620 (2007).
[48] D. Butts and D. Rokhsar, Nature (London) 397, 327 (1999).
[49] T.-L. Ho, Phys. Rev. Lett. 87, 060403 (2001).
[50] A. Aftalion, X. Blanc, and J. Dalibard, Phys. Rev. A 71, 023611

(2005).
[51] E. J. Mueller and T.-L. Ho, Phys. Rev. Lett. 88, 180403

(2002).
[52] N. R. Cooper, S. Komineas, and N. Read, Phys. Rev. A 70,

033604 (2004).
[53] G. Watanabe, G. Baym, and C. J. Pethick, Phys. Rev. Lett. 93,

190401 (2004).
[54] E. B. Sonin, Phys. Rev. A 72, 021606(R) (2005).
[55] A. Aftalion, X. Blanc, and F. Nier, Phys. Rev. A 73, 011601(R)

(2006).
[56] S. I. Matveenko, D. Kovrizhin, S. Ouvry, and G. V.

Shlyapnikov, Phys. Rev. A 80, 063621 (2009).
[57] M. Cozzini, S. Stringari, and C. Tozzo, Phys. Rev. A 73, 023615

(2006).
[58] S. Komineas and N. R. Cooper, Phys. Rev. A 75, 023623

(2007).

[59] L. Mingarelli, E. E. Keaveny, and R. Barnett, J. Phys. Condens.
Mat. 28, 285201 (2016).

[60] T. S. Wood, M. Mesgarnezhad, G. W. Stagg, and C. F. Barenghi,
Phys. Rev. B 100, 024505 (2019).

[61] D. Landau and E. Lifshitz, Statistical Physics Part 1 (Butter-
worth Heinmann, Oxford, 1981), Vol. 5.

[62] N. R. Cooper, N. K. Wilkin, and J. M. F. Gunn, Phys. Rev. Lett.
87, 120405 (2001).

[63] N. Cooper, Adv. Phys. 57, 539 (2008).
[64] S. Komineas and N. R. Cooper, Phys. Rev. A 85, 053623

(2012).
[65] Experimentally it is possible to achieve � = 0.99ω⊥; see, for

example, Refs. [5, 11].
[66] V. Fock, Z. Phys. 47, 446 (1928).
[67] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev.

Mod. Phys. 71, 463 (1999).
[68] D. Yoshioka, B. I. Halperin, and P. A. Lee, Phys. Rev. Lett. 50,

1219 (1983).
[69] N. Byers and C. N. Yang, Phys. Rev. Lett. 7, 46 (1961).
[70] A. L. Fetter, Rev. Mod. Phys. 81, 647 (2009).
[71] M. Abramowitz and I. A. Stegun, Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables
(U.S. Government Printing Office, Washington, D.C., 1948),
Vol. 55.

[72] P. B. Blakie, Phys. Rev. E 78, 026704 (2008).
[73] V. K. Tkachenko, Zh. Eksp. Teor. Fiz. 49, 1875 (1966) [Sov.

Phys. JETP 22, 1282 (1966)].
[74] A. S. Bradley and B. P. Anderson, Phys. Rev. X 2, 041001

(2012).
[75] P. J. Prince and J. R. J.R. Dormand, J. Comput. Appl. Math. 7,

67 (1981).
[76] T. J. Dekker, Numer. Math. 18, 224 (1971).
[77] J. Schole, B. Nowak, and T. Gasenzer, Phys. Rev. A 86, 013624

(2012).
[78] T. P. Billam, M. T. Reeves, B. P. Anderson, and A. S. Bradley,

Phys. Rev. Lett. 112, 145301 (2014).
[79] A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442 (1957) [Sov.

Phys. JETP 5, 1174 (1957)].
[80] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.102.033309 for movies of the time evolu-
tion.

033309-13

https://doi.org/10.1103/PhysRevLett.87.160402
https://doi.org/10.1088/0953-4075/38/23/008
https://doi.org/10.1088/0953-4075/34/22/316
https://doi.org/10.1103/PhysRevA.66.053618
https://doi.org/10.1088/0953-4075/36/23/010
https://doi.org/10.1103/PhysRevA.72.063608
https://doi.org/10.1080/00018730802564254
https://doi.org/10.1103/PhysRevA.81.013610
https://doi.org/10.1103/PhysRevA.70.063620
https://doi.org/10.1103/PhysRevA.75.013620
https://doi.org/10.1038/16865
https://doi.org/10.1103/PhysRevLett.87.060403
https://doi.org/10.1103/PhysRevA.71.023611
https://doi.org/10.1103/PhysRevLett.88.180403
https://doi.org/10.1103/PhysRevA.70.033604
https://doi.org/10.1103/PhysRevLett.93.190401
https://doi.org/10.1103/PhysRevA.72.021606
https://doi.org/10.1103/PhysRevA.73.011601
https://doi.org/10.1103/PhysRevA.80.063621
https://doi.org/10.1103/PhysRevA.73.023615
https://doi.org/10.1103/PhysRevA.75.023623
https://doi.org/10.1088/0953-8984/28/28/285201
https://doi.org/10.1103/PhysRevB.100.024505
https://doi.org/10.1103/PhysRevLett.87.120405
https://doi.org/10.1080/00018730802564122
https://doi.org/10.1103/PhysRevA.85.053623
https://doi.org/10.1007/BF01390750
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1103/PhysRevLett.50.1219
https://doi.org/10.1103/PhysRevLett.7.46
https://doi.org/10.1103/RevModPhys.81.647
https://doi.org/10.1103/PhysRevE.78.026704
https://doi.org/10.1103/PhysRevX.2.041001
https://doi.org/10.1016/0771-050X(81)90010-3
https://doi.org/10.1007/BF01397083
https://doi.org/10.1103/PhysRevA.86.013624
https://doi.org/10.1103/PhysRevLett.112.145301
http://link.aps.org/supplemental/10.1103/PhysRevE.102.033309

