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Estimation of the probability density function of random displacements from images
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We introduce an image-based algorithm to find the probability density function (PDF) of particle displace-
ments from a sequence of images. Conventionally methods based on cross correlation (CC) of image ensembles
estimate the standard deviation of an assumed Gaussian PDF from the width of the CC peak. These methods
are subject to limiting assumptions that the particle intensity profile and distribution of particle displacements
are both Gaussian. Here, we introduce an approach to image-based probability estimation of displacement
(iPED) without making any assumptions about the shape of particles’ intensity profile or the PDF of the
displacements. In addition, we provide a statistical convergence criterion for iPED to achieve an accurate estimate
of the underlying PDF. We compare iPED’s performance with the previous CC method for both Gaussian and
non-Gaussian particle intensity profiles undergoing Gaussian or non-Gaussian processes. We validate iPED using
synthetic images and show that it accurately resolves the PDF of particle displacements with no underlying
assumptions. Finally, we demonstrate the application of iPED to real experimental data sets and evaluate its
performance. In conclusion, this work presents a method for the estimation of the probability density function of
random displacements from images. This method is generalized and independent of any assumptions about the
underlying process and is applicable to any moving objects of any arbitrary shape.
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I. INTRODUCTION

Evaluating the probability density function (PDF) of parti-
cle displacements has many applications, for example, mea-
suring diffusion coefficient of particles in a liquid medium
[1,2], microrheology [3], temperature measurements [4,5],
quantifying Reynolds stresses in turbulent flows [6], and
uncertainty quantification in velocity measurements [7].

There are mainly two approaches to find the PDF of dis-
placement from images of moving particles, namely, tracking
based and correlation based. The first technique is using
particle tracking velocimetry (PTV) methods which involve
individually tracking particles over time to find the PDF of
displacements [8]. Despite the wide use of PTV methods
for diffusion and rheology measurements, PTV methods
face two major limitations. First, they are subject to particle
detection and localization errors. Moreover, PTV methods
cannot be used for high concentration particle suspensions or
high feature-density images since they fail to find the correct
trajectories when two or more particles cross each other’s
paths.

Unlike PTV, which focuses on the individual particles
in the domain, particle image velocimetry (PIV) finds the
cross correlation (CC) of consecutive particle image patterns
without detecting individual particles. Therefore, PIV can
work with low- and high-density image patterns and it is
more computationally efficient compared to PTV given the
convergence achieved. Note that PIV methods applied to
systems with low particle concentrations need more images
to converge compared to PTV methods.

*pvlachos@purdue.edu

In PIV, the most probable displacement of tracer particles
is found from the location of the cross-correlation peak in
space. It has been shown that the cross-correlation peak is the
convolution of particle displacements and particle intensity
profile [6]. Previous researchers have used this information to
find the width of the cross-correlation peak and relate that to
Reynolds shear stresses or Brownian motion of the particles
within an image domain [1,2,4,5]. These studies model the
PDF by making two assumptions, first that the particle inten-
sity profile is Gaussian and second that the underlying PDF
of displacement follows a Gaussian distribution. Therefore,
the width of the PDF of displacement can be calculated using
Eq. (1),

Cw =
√

Pw + 2D2
p, (1)

where Cw is the width of the peak of ensemble CC, Dp is
the particle diameter found from the spread of autocorrelation
(AC), and Pw is the width of the PDF of displacements,
where CC and AC are defined as shown in Eqs. (2) and (3)
respectively,

Ccross(s) =
∫

I1(X )I2(X + s)dX, (2)

Cauto(s) =
∫

I1(X )I1(X + s)dX, (3)

where I1 and I2 represent the two images, X is the image
coordinate, and s is the spatial shift between the two images
[9]. It is important to note that only the width of the PDF
can be found using Eq. (1) while the PDF of displacements
and similarly CC and AC are two-dimensional (2D) matrices
which are sometimes referred to as planes. This method of
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estimation of the width of the PDF from CC will be referred
to as probability spread estimation from cross correlation
(PSEC) in this paper. PSEC is reported to have an estimated
accuracy of 8% when used for diffusion measurements under
ideal conditions [4], and it is more computationally efficient
compared to PTV. However, PSEC is strictly limited to sys-
tems with a Gaussian particle intensity profile (i.e., no out-
of-focus effects, no arbitrary particle shapes) and a Gaussian
PDF of displacements. In many practical applications, these
assumptions do not hold and using PSEC can lead to a wrong
estimation of the PDF, and as a result a wrong measurement of
the properties of interest that are derived from the PDF, such
as diffusion coefficient or temperature.

In this paper, we propose a generalized cross-correlation
based method which directly finds the two-dimensional PDF
of displacements by deconvolving the CC from the AC.
This cross-correlation deconvolution belongs to a subcategory
of the generalized cross-correlation (GCC) methods, called
smoothed coherence transform (GCC-SCOT) [10]. In the pro-
cess of finding the PDF of displacements using GCC-SCOT,
we make no assumption on the particle intensity profile nor
the nature of the process which dictates the underlying PDF
of displacements. So, this algorithm can be directly applied to
systems with arbitrarily shaped particles undergoing arbitrary
PDF of displacements. Deconvolution in the spatial domain
is mathematically complex and computationally expensive,
however in the spectral domain the deconvolution is simplified
to division. This deconvolution which is applied to the average
of cross-correlation planes preserves the phase information
of the spectral cross correlation which corresponds to the
most probable displacements [11,12] and removes only the
contribution of particle shape which is part of the magnitude
of the spectral correlation planes [13]. We term this method
Image-based probability estimation of displacements (iPED).
In this paper, we use “particles” as a representation for all
“moving features” in an image domain. However, the pro-
posed method can be applied to any moving object of any
arbitrary shape.

This paper is divided into four sections. Section II dis-
cusses the implementation of iPED, and we explore its con-
vergence. This is followed by assessments of iPED’s per-
formance using synthetic images in Sec. III, where the ac-
curacy of the algorithm is compared to PSEC. This section
is divided into two main parts: Gaussian and non-Gaussian
processes, where the PDF of the displacements follows Gaus-
sian or non-Gaussian distributions. Each is then studied for
particles with Gaussian and non-Gaussian intensity profiles.
Finally, in Sec. IV, experimental data sets are used to evaluate
iPED’s performance for measurement of diffusion coefficient
of known sized particles.

II. METHODOLOGY

A. Implementation of iPED

iPED is a cross-correlation based method to find the PDF
of particle displacements, undergoing random motions within
regions of interest (ROIs) of images. We summarize the
algorithm in Fig. 1 and the flowchart for implementation of
iPED is shown in Fig. 2. Images are the input of the iPED

FIG. 1. iPED algorithm.

and the output is the PDF of the displacements as shown in
Figs. 1 and 2. In order to get the PDF of displacements from
the crosscorrelation, the contribution of particle shape, image
noise, and background to the CC must be removed. This is to
gain the information about the possible displacements within
the two ROIs.

Image preprocessing is performed as the first step to re-
move the contribution of unwanted patterns to the PDF. We
subtract the average image of the time series from all the
individual images in order to remove the background intensity
and static patterns from the images. Preprocessing is crucial if
static patterns are present in the images, which can alter the
PDF by contributing zero displacements to the distribution.
The preprocessed images are then divided into ROIs with
defined sizes and ROIs are used to calculate the cross cor-
relations. The effects of the size of the ROIs on accuracy and
rate of convergence are discussed later in the paper.

Spatial cross-correlation operation is simplified to a mul-
tiplication in Fourier domain. Multiplications are mathemat-
ically simpler and computationally more efficient. Therefore,
conventionally in PIV processing, cross correlations and auto-
correlations are evaluated in Fourier space. In order to perform
the calculations in Fourier space, image ROIs are transformed
from Cartesian (spatial) domain into Fourier (wave number)
domain (shown as a grey box in Fig. 1). Equation (4) shows
the spectral cross correlation (GI1I2 ),

GI1I2 ( f ) = F (I1) × [F (I2)]∗, (4)
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FIG. 2. Flowchart for iPED implementation.

where f is the spectral coordinate and I1, I2 represent image
ROI 1 and ROI 2, respectively. F (I ) is the Fourier trans-
form of the ROI and * denotes the complex conjugate. The
inverse Fourier transform of GI1I2 is the two-dimensional
cross-correlation plane defined in Eq. (2) [10]. Spatiotempo-
ral ensembles of CC and AC are individually calculated by
adding the complex correlation planes of different ROIs in the
spectral domain.

Conventionally in PIV processing, in order to reduce alias-
ing and edge effects in the frequency domain due to the nature
of discrete Fourier transform, a Gaussian apodization window
is applied to the images prior to the Fourier transform [14].
Gaussian apodization weights the intensity of the particles in
a nonuniform manner depending on the spatial location of
the particles with respect to the ROIs boundary. This causes
the measurement to be biased towards the center of the ROI,
which is useful for PIV measurements. However, for mea-
suring the PDF of particle displacements, the contributions
of all particles in the ROI to the correlations must be kept
equal. Thus, in order to maintain an equal weight for all
particles while suppressing the edge effect, we use Gaussian
edge tapering (ET) windowing function. Such apodization
function leaves the majority of the ROI intact while tapering
the edges of the ROI. We set the standard deviation of the
Gaussian function in the tapering filter to be 3 pixels (px)
across the boundaries. The Gaussian ET window is convolved
with preprocessed ROIs. Subsequently, the ROIs are Fourier
transformed and the correlations are evaluated in the fre-
quency domain (see second column in Fig. 2).

To achieve the goal of recovering the PDF of the dis-
placements from the CC, we use the GCC-SCOT filter. GCC-
SCOT is a deconvolution of the autocorrelation from the cross

correlation, and is used in order to remove the contributions of
particle shape from CC and acquire the PDF of displacements.
GCC-SCOT (γI1I2 ) in the Fourier domain is defined as the
following [10]:

γI1I2 ( f ) = GI1I2 ( f )√
GI1I1 ( f )GI2I2 ( f )

. (5)

The autocorrelation used for the deconvolution is the geo-
metric average of autocorrelation of ROI 1 and ROI 2. If the
shape of the particles from ROI 1 to ROI 2 is the same, then
Eq. (5) can be simplified such that only autocorrelation of the
first image is used. The inverse Fourier transform of γI1I2 is
a plane that shows all the possible displacements of particles
between the two frames. Instead of using the pairwise γI1I2 , we
used the spatiotemporal ensemble of CC and AC in Eq. (5) as
shown in the second column of Fig. 2. The reason for using
the ensemble and details of the calculations of correlations are
discussed in the next section.

After performing the deconvolution in the spectral domain,
the result is transferred to the spatial domain (see the third
column in Fig. 2). The resulting PDF is tested against the con-
vergence criterion. If convergence is not achieved, more image
ROIs will be added to the ensemble until the convergence
criterion is met. The converged PDF of displacements is the
output of iPED as shown in Fig. 1. Details of the convergence
assessment is discussed later in this paper.

B. Theoretical foundations of image-based probability
estimation of displacements

An image ROI of particle patterns can be described by I(X),
where I is the intensity field as a function of position (X). The
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FIG. 3. Cross correlation of two ROIs, (a) with random particle displacement and (b) with equal particle displacement.

intensity field contains patterns from Np number of particles
with the same intensity profile, i.e., point spread functions (Ip).
The locations of particles in space are represented as Dirac
delta functions (δ) with peaks at the center of each particle
(Xi):

I (X ) = Ip ⊗
Np∑
i=1

δ(X − Xi ). (6)

Assuming there is no loss of correlation, i.e., all particles
remain inside the two regions of interest (ROI) that are being
correlated, the standard cross-correlation plane (in spatial
domain) of the two ROIs can be described as in Eq. (7).
We decompose cross correlation (Ccross) into the main signal
(Csignal ) and noise (Cnoise ). The relative displacement of
particle “i” from the first ROI to particle “ j” from the second
ROI is represented as di, j ,

Ccross(X ) = A ⊗
Np∑
i=1

δ(X − di,i )

+ A ⊗
Np∑
i=1

Np∑
j=1

(1 − δi, j )δ(X − di, j )

= Csignal(X ) + Cnoise(X ), (7)

where δi, j is 1 when i = j and 0 otherwise. As shown in
Eq. (7), each particle-particle convolution results in a “unit”
peak in the correlation plane with the shape of A = Ip ⊗ Ip

located at the relative distance of particles i and j within the
two frames. There is a total of N2

p particle-particle convolu-
tions in the CC plane. As an example, we show a pair of ROI

in which there are three particles and each move randomly
in the domain in Fig. 3(a) and the corresponding CC shows
32 = 9 unit peaks that show all the possible particle-particle
correlations within the two frames. Among all the N2

p unit
peaks, NP of them correspond to the “correct matches” of
particles between the two frames. The correct match is when
a particle in image 1 is convolved with itself in image 2.
Correct matches are represented in the first sum in Eq. (7)
and we refer to them as the signal portion of the cross
correlation (Csignal ). Finding the correct NP peaks requires
further information as in the case of random displacements;
it is almost impossible to distinguish the correct peaks among
the NP

2 number of total peaks. Finding the correct peaks in
the case of ideal PIV images, where all (most) of the particles
follow the same displacement, is rather straightforward as all
the correct particle-particle correlations are positioned in the
same location of the CC plane causing the most probable
displacement to stand out compared to all the other wrong
correlations [shown in Fig. 3(b)].

In the CC plane, there are NP
2 − NP number of wrong

matches between particles that contribute to Cnoise. Uncor-
related background noise and differences in average image
intensities contribute to the noise as well [9]. In order to find
the PDF of the displacement within the ROI, identifying the
contribution of correct particle matches from the contribution
of the wrong matches is crucial.

Meinhart et al. [2] showed that if the flow field is steady
or quasisteady, the contribution of Cnoise to CC compared to
Csignal can be significantly diminished by taking the average
of multiple CC planes found from correlation of each consec-
utive image pair [2]. If the number of correlations ensembled
is N, the contribution of noise is scaled by 1/

√
N .
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Ensemble correlations can be performed in space by taking
the average CC of different ROIs within a pair of images
or it can be implemented in a temporal sense, where the
CC planes of sequential pairs of ROIs are averaged in time.
Spatial or temporal ensembles both can suppress the effect of
Cnoise, however, if the spatial variation of the PDF is under
investigation then the temporal ensemble for ROIs is to be
used to achieve a spatially resolved PDF. In situations, where
there is not enough temporal information, the spatial ensemble
is more applicable to achieve a converged measurement of the
PDF of displacements. In this work, since the PDF is spatially
and temporally invariant, we performed the spatiotemporal
ensemble.

We performed the spatiotemporal ensemble in the spectral
domain by averaging the complex correlation planes (grey
box in Fig. 1) to improve the computational efficiency. By
implementing the ensemble approach, we suppress the con-
tribution of Cnoise to CC such that CC can be approximated by
Csignal. As mentioned earlier, Csignal is the convolution of PDF
of displacements with the average autocorrelation (AC) of the
particle intensity profile.

In the AC plane, a frame is correlated with itself so there
is no displacement involved and the PDF of displacements
is a Dirac function at zero. So, the shape of the AC solely
represents the average particle intensity distribution. We find
the average AC of ROIs by performing the ensemble autocor-
relation of images. Ensemble AC ensures that AC is converged
to include only the correct particle-particle matches.

We then relate the cross correlation (Ccross) to the PDF of
displacements (PD), and autocorrelation (Cauto) using Eq. (8).
This step is performed in the Fourier space using the GCC-
SCOT filter as shown in Eq. (9).

Ccross = Cauto ⊗ PD, (8)

PD = F−1

(F (Ccross)

F (Cauto)

)
, (9)

where F and F−1 show the Fourier transform and inverse
Fourier transform, respectively. The resulting PDF is a bivari-
ate probability density function of displacements such that its
integral is equal to unity. Since this PDF is found using an
ensemble approach, the greater the number of ROIs that are
used, the more accurate measurement of PDF is achieved. In
the next section, we introduce a convergence test for iPED
measurements to stop the algorithm from performing more
ensembles when the PDF convergence is ensured.

C. Convergence criterion

For a converged evaluation of the PDF using iPED there
are two important factors to consider. First is that the total
number of contributing displacements (N × Np) must be large
enough to represent the underlying PDF of displacements. If
the shape of the PDF of displacement is simple such as a Dirac
or a normal distribution, the required number of observations
(displacements) for a reliable estimation of the PDF is lower
compared to a more complex PDF such as a multimodal. The
second important factor is that a high signal-to-noise ratio
(SNR) in the correlation plane must be achieved.

We ensure a high SNR by monitoring the change in L∞
of the estimated PDF as a function of ensemble number. L∞
can be fitted to L∞ = a√

N
+ c, where a and c are the fitting

parameters, noting that c represents the value of the L∞ with
an infinite number of images. The convergence is defined to
be achieved when the average L∞ of the last 50 added image
ensembles is within 10% from the “c” found for the last image
ensemble and the standard deviation of L∞ of the last 50
image ensembles is within 10% of the mean value.

There are two factors that affect the rate of convergence of
iPED. The first one is the size of the ROI and the second is
the amount of background noise present in images. In the next
sections, we study the effects of dividing images into smaller
ROIs on the rate of convergence using synthetic images. In the
noise analysis section, we show that a higher noise level will
delay the convergence of iPED.

D. Synthetic image generation

We synthetically generated 8-bit images of particles under-
going random displacements. The simulation domain was five
times bigger than the chosen image size and particles with a
concentration of 0.005 particles per squared pixels (px) were
placed in random locations in space. We generated 10 000
8-bit images whose dimensions were 256 × 256 px2. In the
section that the size of the interrogation regions is studied
the window size is chosen to be 2048 × 2048 px2. To account
for the imaging noise, 10% uncorrelated zero-mean Gaussian
noise was added to each pixel in each image. In the noise
analysis section, the noise level within the images was varied
from 0% to 75%. Particle displacements within frames were
randomly drawn from an input probability density function.

We consider particles with Gaussian-shaped intensity pro-
file in one case and non-Gaussian shaped in another case.
Gaussian particle intensity profiles are generated using a
Gaussian function such that the diameter of particles are
varied from 3 to 10 pixels for the particle size study section
and is chosen to be 5 pixels for all the rest of the cases [see
Fig. 4(b)] [15]. For the case of non-Gaussian particle intensity
profiles, the absolute value of a Bessel type I intensity profile
was simulated such that the central region of particles has
the same size as the Gaussian particle intensity profiles (5
px) and the fringe pattern (rings) extend to 10 px for each
particle [see Fig. 4(c)]. This choice of particle intensity profile
is such that the generated particle images are qualitatively
similar to what is observed in images of perfectly focused
spherical particles (Airy function) or particle images with
spherical aberrations commonly observed in lenses with high
numerical aperture [16]. Similar patterns are also present in
holography images [17] and Bessel beam microscopy systems
[18].

E. Methodology for error analysis and validation

PSEC is developed to work with systems for which the
displacement PDF follows a Gaussian distribution. Such a
PDF describes Brownian diffusion of spherical particles in
Newtonian fluids. In a 2D image plane, the Gaussian PDF of
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displacements is represented as in Eq. (10)

PDF(�x,�y, t ) = A × exp

(
− (�x − �x)2

2σ 2
x

− (�y − �y)2

2σ 2
y

)
,

(10)

where A is the peak height, �x,�y are the peak location,
and σ is the standard deviation of the Gaussian profile.
The standard deviation σ = √

2Dt , where D is the diffusion
coefficient and t is the time lag. In the case where the PDF
of the displacement follows a Gaussian distribution, we fit
Eq. (10) using a least square fit [19] to all the points of the
PDF function and find D.

To compare iPEDs performance to PSEC, PSEC is
implemented based on Chamarthy et al. (2009) while no
apodization window is used and ensembles are performed in
the real space [5]. The width of CC and AC are measured as
4σ , where σ is found from a least square fit of a 2D Gaussian
function to correlation planes. PSEC and iPED are both per-
formed with an interrogation region (IR) size of 64 × 64 px2.
The iPED method is performed as mentioned in Secs. II A
and II B. Since there are no convergence criteria for the
model-based PSEC method when it comes to resolving
the PDF of the displacements, we report all the results at the
ensemble count corresponding to when iPED is converged.
We compare the measured PDF from both methods with
the expected PDF. For those cases where the input PDF is a
Gaussian function, the resulting diffusion coefficient values
are used for comparison and error analysis.

F. Size of interrogation regions

Next, we study the effect of interrogation region (IR) size
on the rate of convergence. Dividing images into smaller
IRs provides a greater number of spatial ensembles in the
correlations resulting in a better SNR (since the contribution
of noise with N ensemble is scaled by 1/

√
N) which results

in convergence with a smaller number of full images, i.e.,
more ROIs are achieved from less images using the spatial
ensemble.

Another effect of smaller IRs is that the noise in the
correlations is suppressed due to a lower number of particles
present in the smaller ROIs. Let us assume that the total
number of particles in an image series is Np. Dividing the
image into M2 number of IRs results in NIR = Np

M2 number of
particles in each IR. Therefore, the number of wrong particle
correlations for each IR is N2

IR − NIR and the total number of
the correct correlation peaks is NIR. If we add all the M2 indi-
vidual IR correlations, then the total number of correct particle

correlations is M2 × NIR which is equal to Np¸ the number of
correct peaks if full sized image correlations were used. This
means that the number of correct particle correlations remains
the same independent of the size of the IR. However, if we add
all the numbers of wrong particle correlations in all IRs, the

total number is M2 × (N2
IR − NIR ) = N2

p

M2 − Np. Note that full
image correlations as discussed previously leads to N2

p − Np

wrong correlations. This means that the number of wrong
correlations contributing to the noise in the correlation plane
is suppressed by a factor of M2 if the image is divided into M2

smaller IRs and therefore a faster convergence is achieved due
to the SNR improvement.

We test the effect of IR size on the convergence using
synthetically generated images of particles with Gaussian
intensity profiles undergoing a Gaussian PDF of displace-
ment (with diffusion coefficient of 5 px2

Frame ), where the size
of images is 2048 × 2048 px2 with 10% noise level. We
processed ten independent cases of such images with dif-
ferent IR sizes. We show that the total number of images
required for convergence of iPED is much lower if smaller
IR sizes (and as a result, a greater number of IR windows)
are used. For example, with a 64 × 64 IR size, iPED con-
verges with a total of seven full sized images with 3.96%
error in the measurement of diffusion coefficient while for
a 256 × 256 IR size 53 full images are required to achieve
an error of 0.46%. In Table I, we summarize the required
average number of images and IRs for different IR sizes.
We also report the error in the diffusion measurement and
standard deviation of the error for ten replicates using both
iPED and PSEC for each IR size. The reason that larger IR
sizes show a lower error value is that larger and less noisy
2D fields of PDF are acquired for those cases and the least
square Gaussian fit finds a better estimation of the diffusion
value.

Although smaller IR size promotes a faster convergence,
the IR size must be chosen large enough such that the majority
of the particles in one IR remain in the same IR in the
next frame that it is being correlated to. This is why the
measurement’s accuracy is improved with larger IR sizes in
Table I. Therefore, similar to PIV processing, we suggest
that the minimum IR is four times bigger than the estimated
displacement of the particles within the frames such that at
least half of the particle population has a corresponding match
between the frames. The convergence can be further improved
with a window shifting technique if the mean displacement
within the ROI is nonzero and the amount of random dis-
placement is within 0.5 pixels. Window shifting should be
implemented such that there is no window overlap as that

TABLE I. Effect of IR size on convergence.

IR size 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024

Average number of images used 2 7 15 53 187 718
to achieve convergence

Avergae number of IRs used 3941 6068 3878 3350 2997 2873
to achieve convergence

% error in measurement iPED 14.25 ± 1.80 3.96 ± 1.09 1.61 ± 0.56 0.46 ± 0.25 0.12 ± 0.08 0.26 ± 0.06
% error in measurement PSEC 37.38 ± 1.18 15.62 ± 0.79 6.17 ± 0.77 2.22 ± 0.39 0.49 ± 0.32 0.31 ± 0.20
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FIG. 4. (a) Comparison of the generated Gaussian PDF to iPED
and PSEC. Image of particles with (b) Gaussian (c) non-Gaussian
intensity profiles.

can cause some particles to contribute more than once to the
measured PDF.

III. RESULTS AND DISCUSSION: PERFORMANCE
ASSESSMENTS OF iPED USING SYNTHETIC IMAGES

In this section, we evaluate the performance of iPED and
compare it to PSEC using synthetic images. We divide these
analyses in two main categories, namely, Gaussian processes
and non-Gaussian processes. Each category consists of the
study of Gaussian and non-Gaussian particle intensity pro-
files. For the case of non-Gaussian processes, we provide
several examples to cover a wider range of applications.

A. Gaussian processes

The Gaussian process that we study in this paper is the dif-
fusion of spherical particles. Diffusion is modeled as random
displacements drawn from a 2D Gaussian distribution with a
zero mean and a standard deviation of σ = √

2Dτ , where D
is the Stokes-Einstein diffusion coefficient [20] which is set
to be 5 [ px2

Frame ] and τ is the time lag between images which
is set to be 1 frame. We generated 20 independent synthetic
image sets to compare the iPED estimation of the diffusion
coefficient to that of PSEC.

The green bar chart in Fig. 4(a) shows the generated
PDF of the displacements for the particles with Gaussian

and non-Gaussian intensity profiles. The estimated PDF of
displacements in the X direction [

∫ ∞
−∞ PDF(x, y)dy] found

from both iPED and PSEC are shown in Fig. 4(a). Error bars
show the standard deviation of 20 independently generated
images from the same prescribed PDF. The resulting diffusion
coefficient for the particles with Gaussian intensity profiles
[shown in Fig. 4(b)] using iPED shows 3.75 ± 1.01%
error while the PSECs estimation has 13.52 ± 1.58% error.
The estimated D for particles with non-Gaussian intensity
profiles [shown in Fig. 4(c)] with iPED has 9.61 ± 0.67%
error while the PSECs estimation shows 40 ± 1.98% error. So
iPED provides approximately four times better measure of the
diffusion coefficient value in both cases. Note that violation of
the underlying assumptions of PSEC causes a deteriorated es-
timation of the PDF which is manifested in all the cases in this
section, except the diffusion of particles with Gaussian inten-
sity profiles. Therefore, PSEC shows its best performance on
estimating the generated PDF and consequently the diffusion
coefficient for the particles with Gaussian intensity profiles in
Fig. 4(a), because its underlying assumptions are met.

1. Noise analysis

Experimental images are often associated with some level
of thermal noise due to the sensitivity of the imaging devices.
In this section, we study the effect of noise on the performance
of iPED and compare it against PSEC using synthetic images.
To mimic imaging noise in real systems, we added uncorre-
lated Gaussian noise to each pixel, with a mean value of 0 and
a standard deviation that is defined as a percentage of pixel
peak intensity.

We use synthetic images where Gaussian particles undergo
a Gaussian process (D = 5 [ px2

Frame ]), in order to quantitatively
compare iPED’s measurement of the diffusion coefficient to
that of PSEC while changing the noise level in the images.
We generated 20 independent data sets for noise levels of 0%,
25%, 50%, and 75%.

We present the error in diffusion coefficient measurements
of both methods for different noise levels in Table II. We show
that iPED consistently provides lower bias error in the diffu-
sion measurement by a factor of about 2 and a lower random
error by a factor of approximately 3. We also show that the
number of images required for convergence increases as the
noise level increases (see Table II). We plot the measured
diffusion coefficients normalized by the expected value in
Fig. 5. The box plots show the median and one quartile above
and below the median as well as the minimum and maximum
measurements. Inset images in Fig. 5 show representative
examples of the images with different noise levels. The results
confirm that iPED consistantly provides a better estimate of
the diffusion coefficient compared to PSEC.

TABLE II. Noise effects on the accuracy and convergence.

Noise level 0% 25% 50% 75%

% error in iPED measurement 4.58 ± 0.82 1.81 ± 0.86 6.12 ± 0.87 13.00 ± 1.03
% error in PSEC measurement 8.11 ± 2.64 5.02 ± 2.54 17.86 ± 2.47 19.01 ± 2.45
Average number of full images required for convergence 481 397 832 2322
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FIG. 5. Normalized diffusion coefficient vs image noise levels
are shown as box plots. The blue square markers represent PSEC
results and red circle markers show iPED results. One representative
image of each noise level is shown. The expected normalized diffu-
sion value is 1.

2. Particle size analysis

The size of the particles in the images are shown to affect
the accuracy of PIV measurements [21]. We studied the effect
of the particles’ size by varying the diameter of particles with
Gaussian intensity profiles from 3 to 10 px. We generated

FIG. 6. Error in the diffusion measurement vs particles diameter.
The blue square markers represent PSEC results and red circle
markers show iPED results.

synthetic images with Gaussian PDF of displacement (D =
5 [ px2

Frame ]) and studied 20 independent cases for each particle
size.

We report the error in the diffusion coefficient measure-
ment using both iPED and PSEC for different particle sizes
in Fig. 6, where the box plots show the median and the
quartiles of the 20 runs. We show that the accuracy of iPED
is consistently higher than the PSEC for all the particle sizes.
The measurement error for iPED where the particle size is
5 px is shown to be approximately 4% while PSEC shows
approximately 15% error in the diffusion measurement.
Figure 6 shows that for particle sizes from 3 to 6 px the
accuracy of iPED is not affected by the size of the particles
however PSEC seems to work best with smaller particles.

B. Non-Gaussian processes

1. Zero mean Laplace distribution

Non-Gaussian PDFs are observed in several systems, for
example in particle transport through porous media [22–26],
tracers motions in colloidal suspensions, or in the presence
of active swimmers [27–31]. Laplace PDF of displacement
has been broadly used to model some of the non-Gaussian
processes such as diffusive diffusivity [30,31]. Here, we gen-
erated particles with Gaussian and non-Gaussian intensity
profiles similar to case of the Gaussian process, but in this
case, the displacements are randomly drawn from a zero mean
Laplace distribution shown in Eq. (11),

f (�x,�y|b) = 1

2b

[
exp

(
−|�x|

b
− |�y|

b

)]
, (11)

where �x,�y are the displacements in the Cartesian x, y
directions and b defines the sharpness of the Laplace distri-
bution.

We generated 20 independent cases for two cases of
Laplace PDFs with standard deviations of 3.16 and 6 and both
Gaussian and non-Gaussian intensity profiles were studied in
this section.

We provide a comparison of the generated and estimated
PDF of displacements in the X direction from both methods
in Fig. 7. The green bar charts show the generated PDFs and
the error bars show the standard deviation of 20 independent
runs for iPED and PSEC. Figure 7 shows that using PSEC
can lead to a wrong estimation of the PDF depending on
how much different the underlying PDF is from a Gaussian
profile, therefore iPED outperforms PSEC in this case and
PSEC measurement deviates from the true PDF especially for
higher b values.

2. Uniform distribution

Uniform distribution is a common PDF of displacement
in a shear flow with homogeneous particle seeding. Particles
with Gaussian and non-Gaussian intensity profiles are used
similar to the previous cases and the displacements are ran-
domly drawn from a uniform distribution shown in Fig. 8(b).
We show a comparison of the generated and estimated PDF
of displacements in the X direction at y = 0 using both iPED
and PSEC for 20 independent cases in Fig. 8(a). The green
bar chart shows the generated PDF and the error bars show
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FIG. 7. Comparison of the generated PDF of the Laplace process to iPED and PSEC (a) where standard deviation of the PDF is 3.16,
(b) where standard deviation of the PDF is 6.

the standard deviation of 20 independent runs for iPED and
PSEC. Figure 8(a) shows that iPED provides a better estima-
tion of the displacement PDF compared to that of PSEC.

This example shows that if the shape of the PDF does not
have a rather sharp peak (unlike previous cases), iPED can still
resolve the true shape of the PDF. The resulting PDF found
from iPED can be used not only to find the standard deviation
around the peak but also to provide more insight about the
physics of the problem under investigation. For example, the

FIG. 8. (a) Comparison of the generated PDF to iPED and PSEC.
(b) 2D generated uniform PDF of displacement.

PDF in this case can be used to report the minimum and
maximum velocities captured in the field.

3. Multimodal PDF of displacements

The goal of generating a multimodal PDF is to show the
power of iPED in resolving complex PDFs within the image
domain. Here, Gaussian particles are generated, and the dis-
placements are randomly drawn from a 2D displacement PDF
shown in Fig. 9, where four Gaussian profiles with different
standard deviations are superposed in different locations in
space.

The generated and estimated PDFs of displacements in two
dimensions using both methods are shown in Fig. 9. It shows
qualitatively that iPED provides a more realistic estimate of
the PDF compared to that of PSEC.

Since the PDF is more complex in this case compared to
previous cases, the number of required images for conver-
gence was higher than the previous cases (approximately 1000
vs 400 images). As expected, this suggests that if the under-
lying PDF of displacements within the images is complex, a
greater number of images are required for a reliable estimation
of the PDF.

IV. APPLICATION OF IPED ON EXPERIMENTAL DATA:
DIFFUSION OF PARTICLES IN WATER

Analysis of particles’ Brownian motion in a liquid medium
is widely used in the literature to measure the diffusion
coefficient, particle size, or microrheological properties of
the liquid. This displacement of monodisperse particles in
a Newtonian fluid is known to have a Gaussian PDF for
displacements [20]. This Gaussian PDF as discussed in pre-
vious sections is related to the diffusion coefficient. We used
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FIG. 9. (a) Two-dimensional generated PDF of displacement. (b) Estimated PDF from iPED. (c) Estimated PDF from PSEC.

this information to measure the diffusion value of known size
particles.

Here, we captured experimental images of fluorescent
polystyrene particles (Bangs Laboratories, Inc.) with known
diameters, freely diffusing in water at room temperature. We
diluted particles in water to a final concentration of 0.005%
solids and added the sample between two cover glasses that
are separated with a 500-μm spacer . We used a Nikon Ti-
E microscope with an oil immersion 60× objective lens to
capture 1000 12-bit 1024 × 1024 px2 images at a rate of ten
frames per second using a Phantom high-speed camera (model
630085), with a final pixel size of 0.16 µm.

We provide the iPED and PSEC’s measurements of dif-
fusion coefficient and the ground truth values which is
calculated from the Stokes-Einstein equation [20] for different
particle sizes in Fig. 10. The error bars show the standard
deviation of 16 independent realizations for each particle size.
Black error bars show the expected standard deviation in the

FIG. 10. Experimental diffusion coefficient measurement for dif-
ferent particle sizes.

true diffusion due to the size distribution of particles reported
by the manufacturer. We show that iPED provides a lower
random error and lower bias error among all the particle
sizes, for example, for 1-μm sized particles, PSEC shows
approximately 50% error while iPED measurement overlaps
with the expected diffusion coefficient value. The potential
reason why PSEC is underperforming in these experiments
is that the real experimental microscopy images of particles
rarely have a perfect Gaussian-shaped intensity profile due to
out-of-focus effects and the PSEC assumption for Gaussian
particle intensity profile is not fully satisfied.

V. CONCLUSIONS

We developed and presented a generalized cross-
correlation based method, to estimate the PDF of displace-
ments from images of moving patterns, that requires no as-
sumptions about the process PDF and the particles’ intensity
profile. We compared the results of iPED with the existing
cross-correlation based method (PSEC) and showed approx-
imately three times better accuracy in the measurements of
diffusion coefficient using synthetic images. We also demon-
strated iPED’s performance on real experimental images for
measuring the diffusion coefficient. Both experimental and
synthetic images provide compelling evidence that the iPED
method measures the PDF in a more robust and accurate way
compared to the existing method.

We showed that iPED can reliably measure the PDF of
displacements of objects within images. In this paper we used
the resulting PDF to measure diffusion coefficient of particles
as an example of the applications of PDF estimation. The PDF
of displacements can also be used to find the Reynolds stresses
or to report statistics of the flow field which is needed for
example in uncertainty quantification [7].

Data are publicly available through the Purdue University
Research Repository (PURR) [32]. A reference implementa-
tion of iPED can be found as an open-source code [33].
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