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Simulating pitch angle scattering using an explicitly solvable energy-conserving algorithm
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Particle distribution functions evolving under the Lorentz operator can be simulated with the Langevin
equation for pitch-angle scattering. This approach is frequently used in particle-based Monte-Carlo simulations
of plasma collisions, among others. However, most numerical treatments do not guarantee energy conservation,
which may lead to unphysical artifacts such as numerical heating and spectra distortions. We present a structure-
preserving numerical algorithm for the Langevin equation for pitch-angle scattering. Similar to the well-known
Boris algorithm, the proposed numerical scheme takes advantage of the structure-preserving properties of the
Cayley transform when calculating the velocity-space rotations. The resulting algorithm is explicitly solvable,
while preserving the norm of velocities down to machine precision. We demonstrate that the method has the same
order of numerical convergence as the traditional stochastic Euler-Maruyama method. The numerical scheme is
benchmarked by simulating the pitch-angle scattering of a particle beam and comparing with the analytical
solution. Benchmark results show excellent agreement with theoretical predictions, showcasing the remarkable
long-time accuracy of the proposed algorithm.
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I. INTRODUCTION

Coulomb collisions constitute one of the most basic forms
of interaction among particles in a plasma. For each plasma
scenario, simplifications can be made to the description of
Coulomb collisions based on physical limits such as mass
ratio and timescale ordering. One notable example is the
Lorentz operator for pitch angle scattering. By itself, the
Lorentz operator is frequently used to model electrons collid-
ing with a cold stationary ion background; more generally, it
appears as a term in the test particle collision operator for col-
lisions with a stationary Maxwellian background [1–4]. Since
it is the limit of Coulomb collisions when the heavier parti-
cles are infinitely massive compared to the lighter particles,
the Lorentz operator conserves particle energy. In a realistic
plasma, this mass ratio is small but finite, and pitch-angle
scattering will result in an energy transfer of order O(m/M ),
where m and M represent the mass of the lighter and heavier
species, respectively. Therefore, a numerical simulation in
the zero mass ratio limit should not be allowed to introduce
an energy error that is higher than O(m/M ). However, this
energy conservation is not necessarily satisfied in numerical
simulations.

A common technique to “fix” the energy conservation is
by recording the particle energy before the collisions, and
then rescaling the velocity vector after [5,6]. Such techniques,
while sufficient to some extent, are inherently ad hoc and
not ideal, because the choice of where to allocate the energy
compensation is unspecified. For example, one can rescale
the magnitude of the vector while keeping its direction fixed
or choose to adjust an arbitrary component until energy is
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conserved. Alternatively, higher order stochastic integrators
can be used [7–9]. However, these methods only decrease
the error in energy at each time step, instead of removing the
error completely. They can also be computationally expensive,
especially in multiple dimensions, if iterative root finding or
sampling of correlated random processes is required [7,8,10].

One solution to overcome this difficulty is to adopt
structure-preserving geometric algorithms analogous to those
that have been successfully developed and applied for de-
terministic dynamical systems [11–19]. Existing work on
structure-preserving stochastic algorithms mainly focuses on
symplectic stochastic systems [20–27]. However, these algo-
rithms are not suitable when the system under study is not
Hamiltonian, as is the case for the Lorentz operator.

In this paper, we present an energy-conserving numerical
scheme that explicitly advances the Langevin equation for
pitch-angle scatting. The energy-conserving property is real-
ized using the Cayley transform, which has been long adopted
in deterministic differential equations to represent rotations,
such as in the well-known Boris algorithm [28,29] and other
high-order volume-preserving algorithms [30–32]. We show
that the presented algorithm is of global strong order 1/2,
similar to the classic Euler-Maruyama (EM) scheme, while
particle energies are exactly conserved independent of time
steps. We then benchmark the performance of the algorithm
against an analytically solvable Fokker-Planck (FP) equation
for the Lorentzian plasma and demonstrate its excellent long-
time accuracy in both the calculated transport coefficients
and the particle distribution functions. This is particularly
important when the total time of the simulation exceeds a few
collision times, as is the case with time-dependent simulations
of a fusion plasma discharge.

Although we focus on the Lorentz operator to high-
light the structure-preserving properties, this algorithm is in
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principle generalizable to non-energy-conserving collisions. It
is specifically applicable to particle-based simulations and can
be considered a complementary approach to directly solving
the FP equations when a lighter weight calculation is desired.
We note in passing that structure-preserving algorithms can
also be applied to solve the FP equation, such as the recently
proposed metriplectic methods for the Landau collision op-
erators [33,34]. These methods are excellent candidates for
solving FP equations directly, and have distinct advantages
when dealing with nonlinear systems.

The paper is organized as follows. Section II provides
a brief review on the connections between the FP and the
Langevin equations, and then derives the Langevin equation
for pitch-angle scattering. Section III presents the explicitly
solvable (ES) algorithm and studies its convergence behav-
iors. Section IV introduces the benchmark problem on beam
diffusion and shows the corresponding numerical results.

II. BACKGROUND

A. Stochastic differential equations
and the Fokker-Planck equation

A simple example of a Langevin equation is the stochastic
drag-diffusion equation known as the Ornstein-Uhlenbeck
process,

dx

dt
= −νx(t ) + ã(t ), (1)

where ν > 0 is the constant that represents deterministic
drag, and ã is the random variable describing the stochastic
forcing. When representing Brownian motion, this stochastic
forcing is interpreted as “kicks” to the macroscopic particle
by the thermal motion of the background particles [35].
Assuming that

〈ã(t )〉 = 0, (2)

〈ã(t )ã(t ′)〉 = 2Dδ(t − t ′), (3)

where 〈·〉 denotes expectation values, the Langevin equation
(1) is equivalent to the FP equation,

∂P(x, t )

∂t
= ∂

∂x
(νxP) + ∂2

∂x2
(DP), (4)

in the sense that the FP equation governs the transition prob-
abilities P(x, t ) that the solutions x(t ) to equation (1) must
satisfy [35–37].

The Langevin approach has earned great popularity in
treating similar systems within the physical sciences, since
it offers a more concrete picture with relatively small com-
putational effort compared to binary collision models [38].
However, difficulties arise when the system under study re-
sponds nonlinearly to fluctuations or, in other words, when
the magnitude of the fluctuation depends on the state of the
system itself:

dx

dt
= −νx(t ) + ã(x, t ). (5)

Since ã is only defined up to the second moment by Eqs. (2)
and (3), we are free to choose all higher moments. As is
common in physics, we can choose the kicks to be Gaussian

distributed, both for mathematical convenience and due to the
fact that the cumulative statistics of many small random kicks
is likely to be Gaussian based on the central limit theorem.

Before proceeding to discuss the nonlinear Langevin equa-
tion, we first transform Eq. (5) into the standard form of a
stochastic differential equation (SDE),

dx = −νx(t )dt + σ (x, t )dWt , (6)

where σ (x, t ) is now a deterministic function satisfying
σ 2(x, t ) = 2D and Wt denotes the standard Wiener process.
Importantly, the increments of Wt in time are independent of
each other and follow a Gaussian distribution with zero mean,

〈W (t + �t ) − W (t )〉 ∼ N (0,�t ). (7)

The stochastic differential dWt in (5) is then naturally defined
as the �t → 0 limit of (7), also known as the Gaussian white
noise.

The Wiener process is a peculiar function that is continuous
but nowhere differentiable. It can be understood as a Fourier
series that includes all the frequencies,

Wt =
∞∑

n=0

Znφn(t ) for 0 � t � T, (8)

where Zn are independent standard Gaussian random variables
and φn(t ) are the usual Fourier basis functions normalized for
the time interval (0, T ):

φn(t ) = 2
√

2T

(2n + 1)π
sin

[
(2n + 1)πt

2T

]
. (9)

This form is known as the Karhunen-Loeve expansion, a
truncated version of which can be a convenient method for
numerical implementation [37].

Returning to the SDE (6), we can now intuitively interpret
the fluctuation term as a series of kicks whose magnitude
is a Gaussian random number scaled by the factor σ (x, t ).
However, a question remains: When during the time interval
(t, t + dt ) does the kick arrive? Since Wt is nowhere differen-
tiable, this choice in interpretation leads to distinct solutions.

This problem has been coined the Ito-Stratonovich
dilemma [39], named after the two popular interpretations of
stochastic calculus. In the Ito interpretation, all kicks arrive at
the beginning of the time interval, whereas in the Stratonovich
interpretation, each discrete kick is understood as the aver-
age forcing within the (infinitely narrow) time interval. This
dilemma arises whenever the stochastic differential dW is
multiplied by a nonconstant function, a situation frequently
termed as multiplicative noise. The converse is termed addi-
tive noise. SDE systems with multiplicative noise is frequently
seen in plasma physics and beyond. When treating these sys-
tems, one must take care in choosing the proper interpretation.
Although both are mathematically valid, the wrong choice
could lead to invalid physical results [39].

Similar to the equivalency between Eqs. (1) and (4), it has
been shown through stochastic calculus that, in general, the
vector SDEs,

Ito: dv = μ(v)dt + σ(v)dW t , (10)

Stratonovich: dv = μ̄(v)dt + σ(v) ◦ dW t (11)
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(where ◦ denotes Stratonovich calculus) are equivalent to the
FP equations in the Ito form,

∂ f (v, t )

∂t
= − ∂

∂v
· μ(v) f + ∂

∂v
∂

∂v
: D(v) f , (12)

and the Stratonovich form

∂ f (v, t )

∂t
= − ∂

∂v
· μ̄(v) f + 1

2

∂

∂v
· σ(v) · ∂

∂v
· (σ(v) f ),

(13)

respectively, where we have defined D = 1
2σσT [40]. These

two forms of the FP equations will in general have different
drag coefficients when the diffusion tensor D is a function
of v. Note that because the diffusion tensor D is required
to be positive semi-definite [39], the decomposition of D
into 1

2σσT is in general possible, for example, via Cholesky
decomposition [41].

B. The Langevin equations for pitch-angle scattering

The FP equation for pitch-angle scattering is

∂ fe(v, t )

∂t
= 1

2
μ̂ei

∂

∂v
· U (v) · ∂ fe

∂v
, (14)

where U (v) ≡ 1
v

(I3 − v̌v̌), v̌ is the unit vector in v direction
[4]. The right-hand side of Eq. 14 is the Lorentz operator. The
constant μ̂ei is given by

μ̂ab = nbq2
aq2

b ln 	

4πε2
0 m2

a

= νabv
3
a, (15)

where νei is the standard thermal collision frequency [42]. The
energy conservation of the system can be easily demonstrated
by integrating against v2, taking advantage of the fact that U
projects onto the plane perpendicular to v.

To find a Langevin SDE whose statistical ensemble repro-
duces the behavior described by the FP Eq. (14), we need
to first transform the FP equation into the Ito form (12) and
the Stratonovich form (13). Through straightforward algebraic
manipulations, we find that for the given the FP Eq. (14), the
drag and diffusion coefficients are

μ(v) = −μ̂eiv/v3, (16)

μ̄(v) = 0, (17)

σ(v) = σT (v) =
√

μ̂ei

v
(I3 − v̌v̌), (18)

in the notations consistent with Eqs. (12) and (13). We then
arrive at the final Langevin equations that will be solved
numerically in the rest of the paper:

Ito: dv = −μ̂ei
v
v3

dt +
√

μ̂ei

v
(I3 − v̌v̌)dW t , (19)

Stratonovich: dv =
√

μ̂ei

v
(I3 − v̌v̌) ◦ dW t . (20)

Despite their appearances, these two equations are mathe-
matically equivalent and lead to the same solution. They are
both still energy conserving when integrated with the correct
choice of stochastic calculus.

Equations of a similar structure are also seen whenever an
SDE is desired to simulate the effect of the Lorentz operator,
for example, in the stochastic Landau-Lifshitz dynamics of
magnetization [10]. The algorithm that we proceed to derive
in the next sections will also be suitable for such equa-
tions outside of plasma physics when norm-preservation is
desired.

C. Ito-Stratanovich dilemma and numerical methods for SDEs

The Ito-Stratonovich dilemma in the interpretation of
stochastic calculus has interesting consequences for numerical
algorithms. Specifically, each choice of discretization may
inherently correspond to one type of interpretation, while
being completely incompatible with the other. The stochastic
generalizations of the forward Euler method and the midpoint
method, for example, respectively correspond to the Ito and
Stratonovich interpretations. In this section, we will briefly
review both of these methods as they are closely related to the
proposed algorithm. For simplicity of notations, we set the
constant μ̂ei ≡ 1 for the rest of this section.

The popular EM method (Algorithm I), is the natural
generalization of the deterministic forward-Euler method to
stochastic calculus, where each increment in time is advanced
with the current derivative [37]. This directly aligns with the
Ito interpretation, where the stochastic kicks come in at the
beginning of the time interval. Observing that the projection
operator (I3 − v̌v̌) could be written as two cross products,

(I3 − v̌v̌)dW t = (v̌ × dW t ) × v̌, (21)

the EM scheme for Eq. (19) is given by [37]

v̄EM
k+1 − vk = −vk

v3
k

h + (vk × �W ) × vk

v
5/2
k

, (22)

where h is the step size in time, vk = ‖vk‖ is the norm of the
velocity, and �W = W (t + h) − W (t ) ∼ N (0, I3h) is a vec-
tor Wiener process. The EM scheme is fully explicit, similar
to their deterministic counterpart, and is therefore straightfor-
ward to implement. We stress that the EM method strictly
corresponds to the Ito interpretation, and at the continuous
limit the energy is conserved. However, one can show that
the norm of the velocities vk is not preserved with finite time
step h. Integrating Eq. (20) with the stochastic EM method,
for example, will lead to a catastrophic energy error that is
unbounded in time (see Appendix A).

Algorithm 1 The Euler-Maruyama (EM) Method

Input: Initial velocity v0, time interval T , step size h

Input: A prescribed sample path W (t )

1: for k = 0 to T/h do

2: tk = t0 + kh

3: �W = W (tk + h) − W (tk )

4: vk+1 = vk + μ(vk )h + σ(vk )�W

5: end for
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Similarly, the Stratanovich interpretation naturally corre-
sponds to implicit methods of integration, where information
at both the beginning and the end of the time interval is
required. A classic example is the stochastic midpoint method,
where the function is advanced with the average of the deriva-
tives at both end points [20,43]. The midpoint discretization
for Eq. (20) therefore reads

v̄MP
k+1 − vk = (v̄k+1/2 × �W ) × v̄k+1/2

v̄
5/2
k+1/2

, (23)

where v̄k+1/2 ≡ (vk + v̄MP
k+1)/2 is the velocity at the midpoint

and v̄k+1/2 = ‖v̄k+1/2‖ is the norm of the velocity vectors. As
pointed out in Ref. [10], the midpoint scheme preserves the
magnitude of velocity in principle. However, v̄k+1 cannot be
explicitly solved from Eq. (23). This means that a root finding
routine such as the Newton iteration is required to solve for the
midpoint v̄k+1 at each time step, and the resulting accuracy of
the velocity magnitude vk depends on the convergence of the
root finding [10,44]. Moreover, like any implicit integrator, the
necessity of root finding at each time step adds significantly to
the total computational cost.

III. THE EXPLICITLY SOLVABLE
ENERGY-CONSERVING ALGORITHM

We propose the following implicit discretization for the
Stratonovich SDE (20):

v̄ES
k+1 − vk = (vk × �W ) × v̄k+1/2

v
5/2
k

, (24)

where again v̄k+1/2 ≡ (vk + v̄ES
k+1)/2. Before proceeding to

demonstrate the numerical convergence of the proposed al-
gorithm, we first solve for v̄k+1 explicitly as promised. This
is possible because the dependency on the future state v̄k+1 is
linear on both sides of the equation. Since the cross product
between two vectors X, Y could be written as the product of
the skew-symmetric matrix X̂ and the vector Y:

X × Y ≡ X̂Y :=
⎛
⎝ 0 −X3 X2

X3 0 −X1

−X2 X1 0

⎞
⎠

⎛
⎝Y1

Y2

Y3

⎞
⎠. (25)

We can define a skew-symmetric matrix M̂k from vector Mk ,

Mk := vk × �W

2v
5/2
k

, (26)

which depends only on the current state vk . Then v̄ES
k+1 is

explicitly solved by

v̄ES
k+1 = C(M̂k )vk, (27)

where

C(M̂k ) := (1 − M̂k )−1(1 + M̂k ) (28)

is the Cayley transform of matrix âk [12,29]. The Cayley
transform can be numerically computed either with direct
matrix inversion or with a Rodriguez-type formula [45]. Since
the matrix M̂k is skew symmetric, an explicit formula for the

Cayley transform could be derived (see Appendix B). The
algorithm is summarized in Algorithm II.

Algorithm 2 The Explicitly Solvable (ES) Energy-Conserving
Method

Input: Initial velocity v0, time interval T , step size h

Input: A prescribed sample path W (t )

1: for k = 0 to T/h do

2: tk = t0 + kh

3: �W = W (tk + h) − W (tk )

4: Mk = vk × �W/2v
5/2
k

5: C(M̂k ) = (1 − M̂k )−1(1 + M̂k )

6: vk+1 = C(M̂k )vk

7: end for

The conservation of energy can be easily verified by dot-
ting both sides of Eq. (24) with v̄k+1/2, which gives v2

k −
v̄2

k+1 = 0.

A. Strong and weak convergence of numerical errors

Similar to the truncation errors in deterministic numerical
schemes, the strong and weak errors of stochastic numerical
schemes are central to understanding its convergence proper-
ties [8,37]. In this section, we will first define strong and weak
errors and then argue that the proposed ES algorithm has the
same order of convergence as both the EM method and the
midpoint method.

For SDEs (10) and (11) with initial condition v = v0 at t ∈
[t0, T ], the definition of global strong and weak errors for the
time interval is given by

εs := 〈|v(T ; t0, v0) − v̄(T ; t0, v0, h)|〉, (29)

εw := |〈v(T ; t0, v0) − v̄(T ; t0, v0, h)〉|, (30)

where v(t ; t0, v0) is the exact solution, v̄(tk; t0, v0, h) is the
time discrete approximation, and tk = t0 + kh. As usual, 〈·〉
denotes expectation values, and | · | denotes absolute values.
Intuitively, the strong error measures the errors of individual
sample paths, whereas the weak error measures the error of
the statistics distribution.

A numerical scheme is said to converge strongly with
order α and weakly with order β, if there exists finite and
independent constants C1 and C2, and a positive constant h0,
such that

εs � C1hα , (31)

εw � C2hβ, (32)

for any h ∈ (0, h0) [37]. Both the EM scheme and the mid-
point scheme are of strong order 1/2 and weak order 1
[20,37].
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A closely related idea to the above stated global strong
and weak errors is the concept of one-step strong and weak
errors:

εs,o := 〈|v(t0 + h; t0, v0) − v̄(t0 + h; t0, v0, h)|〉, (33)

εw,o := |〈v(t0 + h; t0, v0) − v̄(t0 + h; t0, v0, h)〉|. (34)

For a given numerical algorithm with one-step errors of order
p1 in the weak sense and p2 in the strong sense, the algorithm
is known to convergence globally with strong order p2 − 1/2
if and only if p2 � 1/2, p1 � p2 + 1/2 [43]. Taking advan-
tage of this fact, we found that the proposed ES algorithm
converges strongly with global error of order 1/2, which also
implies that the algorithm converges weakly globally as well.
Details of this calculation are included in Appendix C. A more
rigorous proof of convergence and detailed discussions on the
numerical properties of the algorithm will be included in a
separate paper [46].

B. Numerical verification of convergence

To examine the convergence of strong and weak errors
numerically, the definitions (29) and (30) are not feasible
since the analytical solutions of the SDEs are unknown. How-
ever, we could define the following relative errors for time
step hl :

ε̄s,l = 〈|vω(T ; hl+1) − vω(T ; hl )|〉, (35)

ε̄w,l = |〈vω(T ; hl+1)〉 − 〈vω(T ; hl )〉|, (36)

where 〈·〉 denotes ensemble average. It is easy to see that for
an algorithm with strong order α and weak order β, these
definitions of strong and weak errors converge at the same
rate: ε̄s,l ∼ O(hα

l ), and ε̄w,l ∼ O(hβ

l ).

Algorithm 3 Strong Convergence Test

Input: Time interval T , initial velocity v0

Input: � independent Wiener processes W ω(t )

Input: Number of discretization levels L

Input: Test algorithm Alg

1: for ω = 0 to � do

2: for l = 0 to L do

3: Calculate step size hl = T/2l

4: Find vω(T ; hl ) by Alg using Wiener process W ω and

time step hl

5: if l > 0 then

6: δvω(hl−1) = |vω(T ; hl ) − vω(T ; hl−1)|
7: end if

8: end for

9: end for

Algorithm 4 Weak Convergence Test

Input: Time interval T , initial velocity v0

Input: � independent Wiener processes W ω(t )

Input: Number of discretization levels L

Input: Test algorithm Alg

1: for l = 0 to L do

2: for ω = 0 to � do

3: Calculate step size hl = T/2l

4: Find vω(T ; hl ) by Alg using Wiener process W ω and

time step hl

5: end for

6: Calculate μ(hl ) = 〈vω(T ; hl )〉
7: if l > 0 then

8: δμ(hl−1) = μ(hl ) − μ(hl−1)

9: end if

10: end for

For numerical tests of global strong convergence, the
Wiener processes are prepared with the Karhunen-Loeve ex-
pansion given in Eq. (8). The discrete approximations are
then found with different time step sizes hl = T/2l , where
l denotes discretization level, and the numerical errors are
computed at the end of the time interval t = T . The detailed
procedures for the strong convergence test are given in Algo-
rithm III. Figure 1 shows the numerical results of the strong
convergence test, with total computation time T normalized to
1. The top panel shows one set of approximate solutions for a
single underlying Wiener process, with different discretization
levels. We specifically show the convergence of v‖ as an
example, defined as the component of v parallel to the initial
condition v0. The sample paths of v‖(t ; hl ) clearly converge
as hl approaches zero. The bottom panel shows the strong
convergence of global errors for both the EM method and the
ES method. Comparing with the reference line for O(

√
h),

both the EM and ES methods show a clear global strong
convergence of order 1/2, consistent with expectations.

For the weak convergence tests, the underlying Wiener
processes are regenerated for each individual sample path
and the ensemble averages are calculated at the end of the
computational interval. The detailed procedures for the weak
convergence tests are given in Algorithm IV and the numerical
results are shown in Fig. 2. The ensemble average of v‖ shows
clear signs of global convergence as hl approaches zero with
convergence rate similar to that of the EM method.

Figure 3 shows the promised energy conservation prop-
erties of the ES method, compared with the EM method.
The average particle speeds are shown as lines with shades
showing the standard deviation within the ensemble. Particle
speeds calculated from the EM method shows significant
spread even with a very small time step size 10−4. In contrast,
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FIG. 1. Global strong convergence. Top: Example solutions for
one underlying Wiener process W (t ) with increasing discretization
levels l , calculated with the ES method. The solutions converge as
time step size h = 2−l approaches zero. Color of lines corresponds
to the values of l . Bottom: Scaling of global strong error at t = T
with step size h shows a clear convergence rate of order 1/2 (error
bars too small to be visible), same for both the EM and ES method.
A reference line for the expected convergence rate is shown as black
dashed line. Sample size N = 103.

the error in particle speeds from the ES method remains close
to the machine precision even for larger stepsizes.

IV. BEAM DIFFUSION IN VELOCITY SPACE

The setup of the benchmarking problem is as follows. A
collection of N charged particles is injected into a background
Maxwellian plasma at uniform initial velocity v0. According
to Eq. (14), the evolution of the test particle distribution
function can be written as

∂ f (v, t )

∂t
= Cei[ f ] + S, (37)

where Cei is the pitch-angle scattering operator defined in (14)
and S is the source function given by

S = Nδ(v − v0)δ(t ). (38)

This test problem is analytically solvable by noting that, in
spherical coordinates,

Cei[ f ] = −νeiL[ f ], (39)

FIG. 2. Global weak convergence. Top: Convergence of calcu-
lated 〈v‖〉 as step size h approaches zero. Bottom: Scaling of relative
error with step size h shows an approximate order 1 convergence.
Dashed lines connect points for each method to guide the eye. A
reference line for the expected order 1 is shown in black dashed line.
Sample size N = 109.

where L is the Lorentz operator:

L := −
(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin2 θ

∂2

∂φ2

)
. (40)

We can then find the series solution to (37) as

f (v, θ, φ) =
∞∑

l=0

l∑
m=−l

f m
l (v)Y m

l (θ, φ), (41)

where Y m
l are the eigenfunctions of the Lorentz operator,

known as the spherical harmonics,

L
[
Y m

l (θ, φ)
] = l (l + 1)Y m

l (θ, φ), (42)

Y m
l (θ, φ) ≡ Pm

l (cos θ ) exp imφ, (43)

and Pm
l is the associated Legendre functions of the first kind.

Taking advantage of the orthonormality of the Legendre
series, the differential equation can be solved term by term
in l . The exact form of the series coefficients f m

l (v) can be
found through fairly straightforward calculations, giving the
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FIG. 3. Comparison of the energy-conserving properties of the
proposed explicitly solvable algorithm and the Euler-Maruyama
method. The lines shows the average speed of the ensemble and
the shaded area shows the spread within the ensemble. Sample size
N = 103.

final solution for the dynamics of the beam distribution:

f (v, t ) = N�(t )

2πv2
0

δ(v − v0)

×
∞∑

l=0

(
2l + 1

2

)
e−νei l (l+1)t/2Pl

(
v‖
v0

)
, (44)

where �(t ) is the Heaviside step function, Pl are the Legendre
polynomials of order l , and v‖ is the velocity parallel to the
beam initial velocity:

v‖ ≡ (v · v0)/v0. (45)

Without loss of generality, the initial beam axis can be aligned
with the x axis:

v0 = vx0, (46)

v‖ = v sin θ, (47)

|v⊥| =
√

v2
y + v2

z = v cos θ , (48)

vy/vz = tan φ. (49)

This definition of the coordinate system is adopted in all
figures in the current section.

A few physical insights can be gained from the analytical
solution. First, the particle speed (energy) is indeed conserved,
since the dependency of f (v, t ) on the magnitude of velocity
is a delta function δ(v − v0) at the initial speed. Second, the
distribution only depends on the pitch v‖/v0 = sin θ of the
particles and not on the azimuthal phase φ. Since the initial
condition is azimuthally symmetric, this symmetry will also
be preserved when evolving in time. In other words, our

physical system is confined to evolve along “rings” on a unit
sphere, with two ignorable coordinates velocity magnitude
v and aximuthal phase φ, and only one degree of freedom
v‖/v = sin θ .

The time evolution of f can also be intuitively interpreted.
Since higher orders of Legendre polynomial decay exponen-
tially faster in time, the distribution will be “smeared” out into
a uniform distribution in sin θ as time goes on. Indeed, when
taking the long-time limit t → ∞, the only nonzero term left
in the summation is l = 0, indicating a uniform distribution
on the v = v0 sphere.

The particle distributions are calculated by integrating the
Ito SDE Eq. (19) with the traditional EM method, and the
Stratonovich SDE Eq. (20) with the proposed ES algorithm.
Figure 4 shows the locations of simulated particles in velocity
space (v‖, v⊥). Without loss of generality, we chose the sign of
v⊥ to be the same as that of vy. We can see that while the EM
method produces a large spread in particle speed (the radial
distance to the origin), the proposed ES method confined the
particles exactly on the spherical surface. This is consistent
with the previous numerical results shown in Fig. 3. In all
figures, time is normalized with collision time τ0 = 1/νei.

The histograms of particle velocity distributions calculated
by the ES algorithm are shown in Fig. 5 as three snapshots
in time. The corresponding analytical solutions from Eq. (44)
are overlaid with the histograms. Only the first ten terms
are used in the Legendre series. Both the spectra of v‖ and
the azimuthal symmetry represented by the distribution in
angle φ show excellent agreement with the analytical solution.
The time evolution of the Legendre components is also shown
in Fig. 6. The Legendre coefficients for the simulated dis-
tribution are found by fitting a truncated Legendre series to
the histogram of velocity distribution. Slight deviations from
theoretical expectation can be seen at small t since higher
order components have larger contributions at t → 0 but are
artificially truncated in the numerical fit.

The diffusion process can also be studied by calculating
the second jump moment of the velocity distribution, shown
in Fig. 7. In the short-time limit, both the EM and the ES
method recovered the diffusion coefficient of the FP equation
with minimal uncertainty. In the long-time limit, we expect
an isotropic distribution that becomes stationary in time as is
evident from the FP solution (44). We can see from Fig. 7
that this limit is reached by the ES method after about two
collision times, whereas the EM method continues to show
clear numerical heating. This observation is also consistent
with what is shown in Figs. 3 and 4, where the EM method
injects a “spread” in particle speed.

V. CONCLUSION

In this paper, we present an energy-conserving numerical
algorithm to integrate the Langevin equation for pitch-angle
scattering. Although the algorithm is formally implicit, it
can be solved explicitly and is straightforward to implement.
The algorithm converges globally with a similar order as
that of the classic EM method. However, since the velocity
trajectories are confined to the sphere of constant speed, the
numerical errors are effectively diverted to the azimuthal
“phase” in velocity space. This means that the dynamics of
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FIG. 4. Comparison of velocity space rotation calculated with
the EM method (top) and the ES energy-conserving algorithm (bot-
tom). Velocity space location is shown as v⊥ = Sgn(vy )

√
v2

y + v2
z

v.s. v‖ = vx . While EM method produces considerable spread in
particle energy, the ES method conserves energy exactly. Sample size
N = 103.

the distribution functions are not influenced by the buildup
of numerical errors, as can be seen from the beam diffusion
example. Consequently, the proposed ES algorithm is a good
candidate for integrating the pitch-angle scattering operator
because of its excellent long-time accuracy.

Future work may include implementing the ES method
under various external electromagnetic fields and studying
its numerical properties. We also aim to generalize the ES
method to more complex collision operators and to apply
the algorithm in more realistic plasma physics problems. An
extension to solving nonlinear Fokker-Planck equations using
SDEs that depend explicitly on distribution functions is also
possible [47–50].

FIG. 5. Simulated distributions of v‖/v0 and azimuthal angle
φ = 2

π
tan−1(vy/vz ) from the ES energy-conserving algorithm (his-

togram) compared with analytical solutions of the Fokker-Planck
equation (solid lines). Three snapshots in time are shown. Simula-
tion results show excellent agreement with theoretical expectations.
Sample size N = 104.

FIG. 6. Simulated time evolution of coefficients fl for the Leg-
endre components (solid lines) compared with analytical solution
(dashed lines). The first four coefficients are shown (>99% of total
distribution). Simulation results agree well with theoretical expecta-
tion. The increased noise for f4 is attributed to finite-sampling noise.
Sample size N = 104.
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FIG. 7. The short (top) and long (bottom) time behavior of the
evolution of the normalized jump moment 〈δv2

⊥/v2
0〉. While the

EM method results in numerical heating, the ES energy-conserving
algorithm shows excellent long-time accuracy and agreement with
theoretical expectations (shown as black dashed lines). All time
normalized to collision time. FP solution for short-time limit is
shifted upward for visualization. Sample size N = 103.
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APPENDIX A: CATASTROPHIC DRIFT IN ENERGY

Stochastic calculus in general is strongly coupled to the
choice of numerical schemes. For example, in deterministic
calculus, the forward and backward Euler integrations of the
differential equation

∂ f

∂t
:= f ′(t ) = C f (t ) (A1)

will inevitably converge to the same result as the step size h
approaches zero. However, such is not the case in stochastic
calculus.

If one were to erroneously integrate a Stratonovich SDE
with the EM method, for example, the equation being inte-
grated numerically ends up being a different SDE. Since a
Stratonovich can be converted to an Ito SDE, and vice versa,

FIG. 8. Catastrophic drift in energy resulting from integrating
the Stratonovich SDE with the Euler-Maruyama method. After five
collision times, the average speed of particles have doubled. Five
snapshots in time are shown. Sample size N = 103.

via the relation

a(t, x)dt + b(t, x) ◦ dWt = ã(t, x)dt + b(t, x)dWt , (A2)

where

ã(t, x) = a(t, x)dt + 1

2
b(t, x)

∂b

∂x
(t, x), (A3)

the error in choosing the correct numerical scheme will lead
to a spurious drift, which could be at the same order of
magnitude as the actual drift or the variable Xt itself.

As a simple example, we integrate Eq, (20) with the EM
method Algorithm I. The resulting particle distribution in
velocity space is shown as five snapshots in time, in Fig. 8. We
can see that the radius of the circle that the velocity vectors
lie on, which corresponds to the speed of the particles, is
steadily increasing in time. By five collision times, the average
speed of the particles have almost doubled. This is quite an
unacceptable result.

APPENDIX B: EXPLICIT FORM
FOR ES VELOCITY UPDATE

The explicit form of the Cayley transform is derived as
follows. The vector M in Eq. (26) can be explicitly given as

M =
⎛
⎝Mx

My

Mz

⎞
⎠ = 1

2v5/2

⎛
⎝vy�Wz − vz�Wy

vz�Wx − vx�Wz

vx�Wy − vy�Wx

⎞
⎠, (B1)

where subscript k (for time steps) is omitted for simplicity
of notations. It is easy to calculate that the norm squared of
vector M is

M2 = M · M = [v2�W 2 − (v · �W )2]/4v5. (B2)

Due to its skew-symmetric nature, the following two iden-
tities hold for M̂:

M̂2 = −M2I + MM, (B3)

M̂3 = −M2M̂, (B4)
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where MM is the tensor product of vector M. Using Eq. (B4),
we find that

(I − M̂)−1 = I + 1

1 + M2
(M + M2). (B5)

Thus, the Cayley transform defined in Eq. (28) can be simpli-
fied as

C(M̂) := (I − M̂)−1(I + M̂)

= I + 2

1 + M2
(M + M2)

= 1

1 + M2
[(1 − M2)I + 2M̂ + 2MM]. (B6)

Noticing that

MM · v = M(M · v) = M
(v × �W ) · v

2v5/2
= 0, (B7)

the one-step approximation v̄ is therefore given explicitly by

v̄ = C(M̂)v

= 1

1 + M2
[(1 − M2)I + 2M̂]v

= 1

1 + M2
[(1 − M2)v + 2M × v]. (B8)

In addition, with this explicit form, we can easily verify
that the one-step approximation conserves the magnitude of
the velocity:

v̄ · v̄ = (1 − M2)2v2 + 4(M × v) · (M × v)

(1 + M2)2
= v2.

From Eq. (24), it is clear that the direct discretization of the
Stratonovich form of the SDE (20) using the midpoint method
conserves energy and the direct discretization of the Ito form
(19) using the EM method does not. However, this does not
imply that the Ito form does not admit energy-preserving
discretization. In fact, since our algorithm is ES, it is possible
to transform Eq. (24) into a discretization of the Ito SDE
Eq. (19). Equation (B8) could be written as

v̄ − v = − 2M2

1 + M2
v + 1

1 + M2

(v × �W ) × v
v5/2

, (B9)

which is similar to the EM method in Eq. (22) but has
modified drift and diffusion coefficients. This can be viewed
as an energy-preserving algorithm for the Ito SDE.

APPENDIX C: GLOBAL STRONG CONVERGENCE

For a given current state vk , assume the exact solution for
next step is vk+1. The one-step difference between the ES
method Eq. (24) and EM method Eq. (22) at next step is
v̄ES

k+1 − v̄EM
k+1:

1

2
Mk × (

v̄ES
k+1 − vk

) + vk

v3
k

h

= 1

2
Mk × (

Mk × v̄k+1/2
) + vk

v3
k

h, (C1)

where we have defined Mk := vk × �W/v
5/2
k for convenience

of notations.
Notice that for the theorem on the strong convergence

in Ref. [43], the order of strong convergence is defined in
the mean-square sense. Thus, in this section, we used the
following two definition of strong error:

ε2
s := 〈|v(T ; t0, v0) − v̄(T ; t0, v0, h)|2〉, (C2)

ε2
s,o := 〈|v(t0 + h; t0, v0) − v̄(t0 + h; t0, v0, h)|2〉. (C3)

Due to the Lyapunov inequality [37],

〈|X |〉 �
√

〈|X |2〉, (C4)

the strong error we defined in an absolute sense in Sec. III A
is bounded by the root-mean-squared error, and therefore has
convergence rate up to that demonstrated here.

First, we estimate the one-step strong error. Using the
triangle inequality,

〈|X + Y |2〉 � 2〈|X |2〉 + 2〈|Y |2〉
∼ O(〈|X |2〉) + O(〈|Y |2〉), (C5)

we can estimate the one-step strong error of ES method by

〈∣∣v̄ES
k+1 − vk+1

∣∣2〉 = 〈∣∣v̄ES
k+1 − v̄EM

k+1 + v̄EM
k+1 − vk+1

∣∣2〉
∼ O

(〈∣∣v̄EM
k+1 − vk+1

∣∣2〉) + O

(∣∣∣∣vk

v3
k

h

∣∣∣∣
2)

+ O

(〈∣∣∣∣1

2
Mk × (Mk × v̄k+1/2)

∣∣∣∣
2
〉)

.

(C6)

The first term in Eq. (C6) is the one-step strong error of the
EM method and is known to be O(h2) [43]. The second term is
deterministic and is of order O(h2). Since the expected norm
of the Wiener function is 〈|�W 2|〉 ∼ O(h), the expectation for
the size of ak is also of the same order 〈|Mk

2|〉 ∼ O(h). The
third term in Eq. (C6) therefore also scales as O(h2). Thus the
one-step strong error of ES method is of order 1.

Next we estimate the one-step weak error of the ES
method. Using Eq. (24), we have

v̄k+1/2 = v̄ES
k+1 + 1

2 Mk × v̄k+1/2. (C7)

Plugging the equation above into Eq. (C1), we obtain the
difference between ES and EM as

1

2
Mk × (Mk × v̄k+1/2) + vk

v3
k

h

= 1

2
Mk × (Mk × vk ) + vk

v3
k

h

+ 1

8
Mk × [Mk × (Mk × v̄k+1/2)]. (C8)
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Applying the triangle inequality yields

∣∣〈v̄ES
k+1

〉 − 〈vk+1〉
∣∣ �

∣∣〈v̄ES
k+1

〉 − 〈
v̄EM

k+1

〉∣∣ + ∣∣〈v̄EM
k+1

〉 − 〈vk+1〉
∣∣

�
∣∣〈v̄EM

k+1

〉 − 〈vk+1〉
∣∣

+
∣∣∣∣
〈

1

2
Mk × (Mk × vk )

〉
+ vk

v3
k

h

∣∣∣∣
+

∣∣∣∣
〈

1

8
Mk × [Mk × (Mk × v̄k+1/2)]

〉∣∣∣∣.
(C9)

The first term in Eq. (C9) is the one-step weak error of
EM method, which is known to be O(h2) [43]. Because of the
double cross product and the fact that Mk · vk = 0, we find
that the expectation in the second term in Eq. (C9) cancels out
the deterministic term exactly:〈

1

2
Mk × (Mk × vk )

〉
= −vk

v3
k

h. (C10)

Using 〈|Mk|〉 ∼ O(h1/2) again, we see that the third term in
Eq. (C9) is at most O(h3/2). So the one-step weak error of the
ES method |〈v̄ES

k+1〉 − 〈vk+1〉| is also at most of order O(h3/2).
Therefore, the ES method also has order-1/2 global strong
convergence, same as the EM method.
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