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Nonlinear Landau damping of plasma waves with orbital angular momentum
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We present, using three-dimensional particle-in-cell simulations, an observation that orbital angular mo-
mentum (OAM) is transferred to resonant electrons proportionally to longitudinal momentum when Laguerre-
Gaussian plasma waves are subjected to Landau damping. A higher azimuthal mode number leads to a larger net
orbital angular momentum transfer to particles traveling close to the phase velocity of the plasma wave, implying
a population of electrons that are orbiting the same center of rotation as the plasma wave. This observation has
implications on magnetic field excitation as a result of the formation and damping of OAM plasma waves. The
energy distributions of electrons in damping Laguerre-Gaussian plasma waves are significantly changed as a
function of azimuthal mode number. This leads to larger numbers of lower energy particles tending towards a
significant narrowing of the energy distribution of accelerated particles.
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I. INTRODUCTION

Electromagnetic waves carrying orbital angular momen-
tum (OAM), described as Laguerre-Gaussian solutions to the
paraxial equation in cylindrical geometry [1], have a variety of
applications in optics. Applications with low-intensity beams
include those for compact storing of information, nanoscale
imaging, and manipulation [2]. More recently applications
at higher intensities are showing the potential of OAM light
in particle focusing and acceleration, generation of strong
plasma waves, and quasistatic magnetic fields [3–6].

A proper description of the propagation of electromagnetic
waves with OAM through a plasma requires the understanding
of excitation and evolution of electrostatic waves (plasmons)
carrying OAM [7]. In addition to this, these OAM plasmons
may have applications of their own, as several studies [8,9]
show, for the generation of complex quasistatic magnetic
fields.

The description of OAM plasmons damping requires the
kinetic framework. However, the Laguerre-Gaussian (LG)
functions are not the eigenfunctions of the electron kinetic
equation. For this reason, a simplified consideration [10] leads
to an inaccurate expression of the dispersion, and thus of the
phase velocity, and damping of these waves even in the linear
regime. A more consistent approach using the expansion on
the paraxial parameter—the ratio of the plasma wavelength
2π/k to the radial width of the wave packet wb (or more con-
veniently written as 1/kwb)—leads to dispersion and damping
coefficients being shown to be strongly mode dependent in
certain regimes [8].

For an electron, with a sufficiently small initial velocity v,
traveling through a low-amplitude plasma wave, the electric
field of an OAM plasma wave reversibly transfers linear
momentum and orbital momentum to the particle during one

half cycle and then back in the second one. When the plasma
wave is damped, this symmetry is broken and momentum,
both linear, and possibly orbital angular momentum, can
be transferred. Calculations have been performed to find
the proportion of angular momentum transferred from the
electrostatic wave to individual particles [11]. In this pa-
per we study the irreversible transfer occurring via Landau
damping in the nonlinear regime where particle trapping can
occur.

II. LINEAR THEORY

A. OAM plasma waves

To aid in understanding of this study we briefly restate the
formalism used for description of OAM plasma waves [8]. A
small-amplitude plasma wave is described by an electrostatic
potential � and electron distribution function f related by the
Poisson equation, SI units are used throughout this paper with
noted exceptions:

∇� = e

ε0
δne = e

ε0

∫
dvδ fe, (1)

where e is the unitary charge, ε0 is the vacuum per-
mittivity, δ fe the perturbed distribution function, and δne

the charge density. The solutions to the paraxial equa-
tion in the limit 1/kwb,0 � 1 are of the form, with k be-
ing the wave number and ω the frequency of the plasma
wave:

�(z, r, θ, t ) =
∑
p,l

φp,lFp,l exp(−iωt + ikz

+ ilθ + iψp,l + iqX ), (2)
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f (z, r, θ, v, t ) =
∑
p,l

fp,l (v)Fp,l exp(−iωt

+ ikz + ilθ + iψp,l + iqX ). (3)

Here q is the term accounting for front curvature, X = r2/w2
b

is the normalized radial coordinate, and ψp,l is the Gouy
phase. For this study we consider a plasma wave with the
constant beam waist wb. This means considering the structure
within the Rayleigh zone |z| � zR, such that the contributions
of q and ψp,l are ignored. Fp,l is the Laguerre-Gaussian

function given by

Fp,l (X ) = Cp,l X
|l|/2L|l|

p (X )e−X/2, (4)

L|l|
p is a generalized, or associated, Laguerre polynomial with

radial mode integer p � 0 and azimuthal mode integer l , and
Cp,l = √

p!/(|l| + p)! is a normalization factor to ensure that
solutions are orthonormal. As presented in Ref. [8] for the
Vlasov equation, the solutions given in Eqs. (2) and (3) are
not plasma wave eigenmodes, and so neighboring modes are
coupled in higher orders of the paraxial parameter 1/kwb.

The dielectric permittivity for a plasma supporting a wave
with OAM, in the case |z| < zR, reads

ε(ω, k) = 1 + e2

ε0k2

∫
dv

[
−1 + ω (ω − kvz )

(ω − kvz )2 − (2p + |l| + 1)v2
⊥/2w2

b,0

]
∂ε fe0 = 0, (5)

where v⊥ and vz are the perpendicular and axial velocity
components, fe0 is the unperturbed distribution function. For
this analysis the distribution fe0 is considered to be a Maxwell
distribution. The solution of this equation in the limit ω �
kvth, where vth = √

Te/me is the electron thermal velocity,
Te the electron temperature in energetic units, and me is the
electron mass, can be found by using a standard expansion
procedure. The real part of Eq. (5) gives the plasma wave
dispersion:

ω2 ≈ ω2
pe

(
1 + 3k2λ2

De + 2p + |l| + 1

k2w2
b,0

)
, (6)

where ωpe =
√

e2ne0/meε0 is the plasma frequency and λDe =
vth/ωpe is the electron Debye length, e the electron unitary
charge, and me the electron mass. The last term in this dis-
persion relation accounts for the OAM and finite beam waist
and makes a nonthermal contribution to the frequency. To find
the damping rate the residues in the resonance terms on the
right-hand side of Eq. (5) are taken. The Landau resonance in
the case for OAM plasma waves is split into two resonances
v±

z = ω/k ± (v⊥/kwb,0)
√

p + (|l| + 1)/2, which are shifted
with respect to the standard linear resonance vz = ω/k for a
plane wave. The calculation of the corresponding integrals of
these residues leads to the damping rate [8,11]:

γL

ω
≈

√
π

8

1

k3λ3
De

exp

(
− ω2

2k2v2
th

)
R

[√
p + (|l| + 1)/2

k2λDewb,0

]
.

(7)

Here γL = −Im ω, the function R(ξ ) accounts for the OAM
and can be written as

R(ξ ) ≡ 1 +
√

π

2
ξ exp

(
ξ 2

2

)
erf

(
ξ√
2

)
(8)

where “erf” denotes the error function and ξ =√
p + (|l| + 1)/2/k2λDewb,0. In the limit where ξ → 0,

the plasma wave damping rate is reduced to the Landau
damping of a plane wave. For a plasma wave with OAM, or
finite beam waist, the contributions due to ξ 	= 0 are of the
same order for the dispersion and for the damping. The OAM

carried by plasma waves results in the increase the dispersion
and damping for long wavelengths under the conditions
where (kλDe)2 � λDe/wb,0.

B. Electric field

For simplicity we consider here a structure of a single mode
p and use the electric potential given in Ref. [8] containing
only one term characterized by the amplitude φp,l :

�(z, r, θ ) = φp,lFp,l (X ) cos(kz − ωt + lθ ). (9)

The electric field is found by taking the gradient of the
potential:

Ez = E0Fp,l (X ) sin(kz − ωt + lθ ), (10)

Eθ = lE0

kwb
X −1/2Fp,l (X ) sin(kz − ωt + lθ ), (11)

Er = −2
E0

kwb
X 1/2F ′

p,l (X ) cos(kz − ωt + lθ ), (12)

where E0 = kφp,l is the amplitude of the axial electric field.
The axial field dominates, and the transverse field amplitudes
are smaller by a factor 1/kwb. When looking at Eqs. (11) and
(12), one can immediately observe from these two equations
that Eθ /Ez = l/kr.

A previously published calculation [11] has been per-
formed to find the momentum gain from the electron equation
of motion in an electric field described by Eqs. (10), (11),
and (12). This calculation is made assuming a small first-
order change, which would still be in the realm of a small
deviation occurring per plasma oscillation. This calculations
yields a ratio of �vθ /�vz = l/kr or considering the change
in radial position as well �(rvθ )/�vz = l/k. This relation
can be written in terms of the orbital angular momentum as
�lz/�pz = l/k where �lz is the change in the z component
of the particle orbital momentum.
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III. NUMERICAL SIMULATION SETUP

A. Plasma wave amplification

For this study the particle-in-cell (PIC) code OCEAN [12]
is used. To create a stable plasma wave a similar initialization
to that described in Refs. [8,11] can be used to adiabatically
drive a plasma wave for a small number of oscillations,
a description of the amplification process is presented in
the Appendix. An electric field is volumetrically imposed
according to Eqs. (10), (11), and (12). Several simulations
are run, each for a single mode, the first with a standard
Gaussian profile, with p = 0 and l = 0, the remaining three
simulations with p = 0 and l = 1, 2, and 4. The simulation
box boundaries are reflecting on the transverse edges, to
preserve any OAM particles may have gained, and periodic
along the wave propagation axis in order that the wave can be
excited.

For these simulations a plasma is set up so that a cold phase
velocity of ωpe/k = 0.53 c is chosen, with an initial tem-
perature Te = 0.03 mec2 � 15 keV such that vth = 0.173 c.
The resolution is set so that �x = 0.8278 λDe and �t =
0.01318 Tpe, where Tpe = 2π/ωpe is the plasma wave period.
The grid resolution is observed to be sufficient to ensure
energy conservation and other nonphysical effects for at least
4000 �t . The plasma wave transverse width is wb = 0.95 λpe,
where λpe = 2π/k is the plasma wavelength, so that the
paraxial parameter is kwb = 6.

The waves are initially driven with the described elec-
tric field over five periods with a dimensionless amplitude
eE0/meωpec = 0.08. The amplitude of the plasma waves reach
only eE0/meωpec ∼ 0.025, due to a slight mismatching be-
tween the phase of the imposed electric field and the plasma
response, and due to the damping of the wave occurring dur-
ing the amplification process. The amplitudes of the different
modes compare well between simulations; the total energy of
the plasma wave in each run varies less than 3% from the mean
plasma-wave energy across all simulations.

The simulation parameters are chosen foremost with the
aim of studying the wave-particle interaction in three dimen-
sions and at the same time being achievable computationally,
while also not having a Landau damping rate so high that no
plasma wave survives. With the second concern being having
some Landau damping at velocities that are observable within
the PIC code given the limited number of particles per cell
achievable in three dimensions. The amplitude of the wave is
also carefully chosen so that the resulting plasma wave is not
close to the wave-breaking regime, while still being visible
above PIC noise.

B. Model for the tail of electron distribution function

When generating a distribution of electrons in a 3D PIC
simulation a good resolution of higher energy regions of the
distribution function, e.g., regions very far from the mean
velocity, is necessary in our case. To achieve a reasonable res-
olution for the diagnostics related to the distribution function,
for a moderate temperature plasma (vth � c), the velocity
distribution function along the wave propagation axis is split
into three parts. The first part being a truncated Gaussian
distribution such that the distribution is cut of at vz < |vs| and

is symmetrical about the mean velocity. The remaining two
parts consist of tail distributions truncated such that |vz| > vs.
For the main body distribution a Box-Mueller transform [13]
can be used to generate a Maxwellian distribution followed by
a simple accept-reject method to make the cutoffs at the ±vs

edges of the distribution. For the last two parts the method
described in chap. 9 in Devroye [14], for sampling a Gaussian
tail distribution is efficient enough that it can be employed
to generate the two tail distributions for a split value of vs =
2.5 vth. The result is two electron species; the first consisting
of macroparticles with larger statistical weights to represent
the bulk of the electrons with lower energies, the second a
species with smaller statistical weights accounting for higher
energy particles.

When tested using a plasma wave with vph = c, so that
no damping will occur (as in Ref. [8]), the simulations with
multiple electron species and single species produce identical
results. However, the simulations with lower values of vph �
3 vth, where Landau damping is expected to be stronger, with
just a single species of electrons were seen to artificially sup-
press Landau damping as there are not enough macroparticles
in the correct region to exchange energy with the plasma
wave. When testing the number of particles required in the
extra species of electrons to initiate damping, a small number
were added to each simulation run until the behavior was seen
not to change significantly from run to run. The electrons in
each simulation are split into two species, with 100 particles
per cell for the main-body distribution, and 20 particles per
cell for both tail (|vz| > vs) distributions.

For this study only a split along the wave propagation
direction is considered. While it is possible to add extra
particles in the transverse direction it is not necessary for
observing Landau damping of a wave with a phase velocity
vph � vth.

IV. SIMULATION RESULTS

A. Nonlinear Landau damping and particle trapping

Finding a regime where linear Landau damping is clearly
observable in a 3D PIC environment, while still resolving
relevant processes, is extremely challenging; for a full dis-
cussion see the Appendix. Linear Landau damping operates
over a time shorter than the time required for particle trap-
ping, and the characteristic time of wave evolution is a few
damping times. Consequently, the linear regime is realized for√

eE0k/me = ωb � γL (where ωb is the bounce frequency),
the nonlinear damping regime is realized in the opposite case.
The linear damping condition poses a limit on the wave ampli-
tude E0 � γ 2

L me/ek. Using the value for the Landau damping
of a Gaussian wave, calculated in Table I, the amplitude of the
wave is required to be ekE0/meωpec � 0.005 for the damping
to be in the linear regime. Producing a low-amplitude wave
that is still observable over numerical noise requires grid
resolutions and particle numbers computationally prohibitive
in a 3D regime. However, obtaining results for a relatively
stable nonlinear regime is achievable.

The conditions in the presented PIC simulations, along
with the extra resolution provided by the additional particle
species, give rise to nonlinear Landau damping as the bounce
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TABLE I. Values predicted using linear theory for the phase
velocity and damping rate, the value of kλDe = 0.3264. The first
row shows the predicted dispersion ω/ωpe, the second row shows
the predicted phase velocity ω/kc = vph (c), the third row shows
the minimum momentum pph that an electron can have traveling
at the phase velocity. The fourth and fifth rows show details of the
calculation of the linear regime Landau damping rate; the fourth row
shows the value ξ used in Eq. (8), the fifth row shows the result of
Eq. (8), and the sixth row shows the predicted Landau damping rate,
γL/ω, calculated using Eq. (7). The damping rate for the Gaussian
wave is calculated using a value of ξ = 0 for reference. It is worth
noting that the predicted damping rates of the modes with l > 1 are
slightly reduced as the increase in the phase velocity outweighs the
contribution of the OAM.

l plane wave 1 2 4

ω/ωpe 1.160 1.173 1.184 1.208
ω/kc 0.615 0.621 0.628 0.640
pph 0.780 0.792 0.807 0.833
ξ – 0.511 0.625 0.807
R(ξ ) – 1.285 1.446 1.814
γL/ω 0.0325 0.0369 0.0359 0.0349

frequency ωb = √
eE0k/me � 0.7ωpe is only slightly smaller

than the plasma frequency. The maximum amplitude achieved
in the simulations is lower than the wave-breaking threshold
[15] (i.e., eE0/meωpe < vph), and so wave breaking is not
observed. Another nonlinearity to note is that the phase ve-
locity (at the lowest condition for a Gaussian mode ω/k =
0.61 c from the Bohm-Gross dispersion), while not strongly
relativistic (an electron with a velocity of only the phase
velocity will have relativistic factor γ = 1.26) will lead to
particles accelerating into relativistic regimes.

While these conditions present more difficulty in analysis
and linking to linear theory, they do provide an interesting test
to observe the transfer of OAM from an electrostatic plasma
wave to resonant particles. The rotation in phase space (vz, z)
for nonlinear Landau damping is observable in Fig. 1, in the
Gaussian case as we can integrate over the whole transverse
plane. In the case of higher LG modes this rotation is seen
when changing variables to “untwisted” coordinates. The
phase of a planar plasma wave φl,pe = kz − ωt , an electron
traveling at a speed similar to ω/k sees an approximately
stationary wave. In the case of the twisted wave there is an
additional coordinate in the phase φOAM,pe = kz − ωt + lθ
and for a copropagating electron the phase depends on the
azimuthal angle as z + lθ/k. Therefore, phase rotation is
included in the “untwisted” phase so that the axial coordinate
is chosen as z̃ = z + lθ/k. An important relation between
the axial and azimuthal momenta can be obtained from the
equation of electron motion in the plasma wave: dp/dt =
e∇�. Indeed, by using Eq. (9) and assuming that the particle
is not displaced radially we find in the nonrelativistic limit the
following relation between pz and pθ :

kr pθ − l pz = Amec, (13)

where A is a dimensionless constant with the expected value of
0. This means that average axial and orbial momentum are in
a linear relationship. Evidently, this is valid only for particles

FIG. 1. Phase plots of vz vs z at different times for the Gaussian
beam (left) and an l = 2 Laguerre-Gauss beam, the top row shows
the simulations at t = 3.1 Tpe, the second row t = 6.3 Tpe, and the
last row at t = 9.4 Tpe after the simulation has started. These plots
are calculated by integrating over the whole range of r and θ . The
Gaussian wave clearly shows rotation in the vz, z space; this is not
visible for the Laguerre-Gauss wave until the appropriate variable
(vz, z̃) is selected, where z̃ = z + lθ/k. As there is only a single mode
with a single phase velocity in each simulation rotation is visible only
in the positive vz direction.

close to the phase velocity vph of the plasma wave, as at lower
vz the potential averages to zero.

There are three distinct periods of time during the sim-
ulations, which need to be considered. The first period t =
0 − 5 Tpe, is the time during which the plasma wave is ampli-
fied, with an increase in energy for both fields and particles.
The second period t = 3 − 4 Tpe can be defined as a span
of time, where a quasilinear Landau damping occurs (where
dE0/dt < 0, e.g., the amplitude decreases at a slower rate than
linear theory predicts, but has not yet saturated; see Table I).
Here the electric field energy decreases, while the particle
energy rises at the same rate. The final period t > 8 − 9 Tpe,
being the span of time where there is a dynamic exchange
between the electric field energy and particle energy. As the
damping rate is dependent on the gradient of the distribution
function around the phase velocity, it can be expected that the
distribution function is flattened out around the phase velocity
starting during the second period and completing in the third
period; this can be seen in Fig. 2.

An additional indication of nonlinear behavior is the reduc-
tion of the resonant frequency, typical for nonlinear Landau
damping interactions, where a plateau is created in the dis-
tribution function due to trapped particles [16–18]. Trapped
particles are spatially bound and act in competition to the
driving plasma wave, so reducing the restoring force, which
consequentially reduces the frequency of the plasma wave. A
discussion of the role of trapped particles in the alteration of
the resonant frequency can be found in Ref. [19]. The phase
velocity can be calculated by measuring the frequency of the
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FIG. 2. Distribution of the particles on velocity in the axial
direction (a), on energy (b), and deviation from the Maxwellian
(c), at time t = 5 Tpe, or five plasma periods after amplification has
finished. The solid light gray line shows the initial conditions for
the simulations. The red dotted line shows the distribution for the
Gaussian wave simulation, the cyan line for the case of LG mode
l = 1, the green dashed line for l = 2, and the solid blue line for
l = 4. The vertical dashed black line in plot (a) shows the magnitude
of the measured phase velocity. The vertical dashed gray line in plot
(b) shows Ek = 0.30 mec2 relevant to Fig. 3.

wave by taking the Fourier transform over the time domain
in the electric field measured at several points in space. The
points are located at the radial position of the peak in Ez for
each mode, and at azimuthal angles θ = 0, π, π/2, with z
being equally spaced along the both length. The first 20 Tpe

after the amplification period is chosen as the time domain
so that there is enough accuracy to determine differences in
the phase velocity. When taking the longitudinal electric field
at these points Ez the measured value is ω/ωpe = 1.12 ± 0.01
(or vph = 0.59 c assuming constant k), which corresponds to a
plasma frequency lower than the Bohm-Gross dispersion pre-
dicts. This value is also lower than the dispersion calculated
according to Eq. (6) (see Table I), which can be related to the
nonlinear frequency shift due to the trapped particles. There is
no observable change in the phase velocity as a function of l
in this regime, that is, the nonlinear frequency shift increases
with orbital momentum.

The average transverse transit time of an electron moving
across the plasma wave with a thermal velocity is approxi-
mately 6 Tpe, while the approximate bounce period is ∼1.4
Tpe. This indicates, that while particles will remain trapped for

some time, there is some irreversible transverse loss of energy
from the wave to trapped particles.

There are two caveats to note, while analyzing the numer-
ical results obtained in the setup described above. The first
caveat is that the theory developed in previous works [8,11]
supposes, for simplicity, a Maxwellian distribution, which,
given the magnitude of the phase velocity vph ∼ 0.6 c, may
not be sufficient. Moreover, the Landau damping rate is a
function of the derivative of the distribution function df /dvz

around the resonance region vz ∼ vph, which is slightly shal-
lower in the Maxwellian distribution when compared to the
more realistic (for Te → mec2) Maxwell-Jüttner distribution
applying for relativistic electrons. The second caveat is that
there are a finite number of particles in a periodic box. In
this case the alteration of df /dvz|vph

is much more significant
as the gradient parallel to the wave propagation direction
becomes flattened around phase velocity vph, and so less
momentum is transferred from the electrostatic wave to the
particles. This may lead to a significant problem in comparing
the measured phase velocity and damping rate that occurs in
simulations like this to theoretical models, which assume fixed
distribution functions. However, in the case of the nonlinear
damping of a plasma wave, an appreciation of how momen-
tum is transferred from the wave to the particles is possible
and presented below.

B. Energy distribution

It is important to note that in each simulation the same
amount of energy is input via the amplification process, the
same temperature is initially selected, and that the distribution
function for particles with energies less than ∼0.30 mec2

remain unchanged throughout the length of the simulation
(more than 2000 time steps). Despite the fact that the low-
energy particle behavior is similar in each simulation, the
distribution of particles with energies higher than 0.30 mec2

is quite different. The first difference is the shape of the distri-
bution function [though the total energy is roughly constant;
see Fig. 2(b)]. The second difference is in the distribution of
energy among the three components of velocity vz, vθ , and vr

(see Fig. 3).
In each of the simulations the energy distribution derivative

around the high-energy region [Fig. 2(b)] starts to decrease
almost immediately as the plasma-wave is amplified. After
approximately three to four periods after the amplification
of the wave (approximately eight to nine plasma periods) a
steady state is reached, where the energy transfer between the
electric field and the particles becomes reversible and the rate
of change of both becomes zero.

The distribution of particles in the high-energy tail is
significantly different depending on the mode chosen [see
Fig. 2(b)]. The Gaussian mode promoting particles to higher
energies (with a maximum ∼0.7 mec2). The modes with larger
l have larger numbers of particles accelerated but to lower
energies (with a maximum of ∼0.55 mec2 in the case where
l = 4). An interesting point to note is the reduction in the
number of particles with very high energies at higher l . For
l = 4 the distribution of energy of the accelerated particles is
significantly narrower than those with lower mode numbers.
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FIG. 3. Velocity distributions for particles with energies over
Ek > 0.3 mec2, split into the axial z direction (a, b), azimuthal θ

direction (c, d), radial r direction (e, f), and the distribution of rvθ

(g, h). The plots on the left have a logarithmic scaled y axis, while
the plots on the right have a linear scale; the data are identical. Data
taken at time t = 5 Tpe, or 5 plasma periods after amplification has
finished. This plot uses the same line styles as in Fig. 2. The vertical
lines show the average velocity for each component except the radial
velocity plot where 〈vr〉 = 0 for all simulations. The lines shown here
are smoothed using a moving average over five bins.

C. Momentum distribution

The largest differences in resonant electron behavior be-
tween the modes are apparent in the distribution of momentum
when resolved into axial pz, azimuthal pθ , and radial pr com-
ponents. Distributions of electrons on vz, vθ , and vr , shown
in Fig. 3, shows that an increase in l leads to a decrease of
〈vz〉 with a corresponding increase of 〈vθ 〉. While 〈vr〉 = 0 the
spread of the momentum increases only slightly as a function
of l .

The values for 〈vz〉, 〈vθ 〉, and 〈rvθ 〉 are given in
Table II, in agreement with Eq. (13), a linear relationship is
found between the axial and orbital momenta. In the non-
relativistic regime it becomes krvθ /c = lvz/c + A a linear fit
to l〈vz〉/c versus k〈rvθ 〉/c is fulfilled with a proportionality
coefficient of 0.94 ±0.02, and a constant value of A = −0.02
±0.02. This relation is shown graphically in Fig. 4. A differ-
ence of the proportionality coefficient from the expected value
of 1 is due to a small average radial displacement of electrons

TABLE II. Average velocity and orbital momentum components
as a function of azimuthal mode number l , the averages in the second,
third, and fourth columns are plotted in Fig. 3, the averages and
errors are calculated from Gaussian function fits, with an error of
2 × 10−2 for 〈vz〉 and 10−3 for the remaining averages. There is a
linear relationship between l〈vz〉 and k〈rvθ 〉 with a gradient of 0.94
±0.02.

Mode no. l 〈vz〉 (c) 〈vθ 〉 (c) 〈rvθ 〉 (c2ω−1
pe )

0 0.70 0.00 0.00
1 0.67 0.07 0.32
2 0.66 0.12 0.64
4 0.63 0.17 1.25

and due to relativistic corrections which are not considered
in Eq. (13). Thus, relation (13) explains a proportionality
between the axial and angular momentum transfer observed
in the linear regime in Ref. [11].

D. Angular momentum transfer

The distribution of the density of angular momentum, nelz,
as a function of electron axial momentum, pz, can be seen as in
Fig. 4(a). It is convenient to overlay the negative and positive

FIG. 4. Dependence of the orbital momentum density nelz/γ me

at a time t = 6.3 Tpe. Plot (a) shows the distribution of the positive
and negative parts of nelz (× for positive, ◦ for negative). Plot
(b) shows 〈lz〉 as a function of pz. The × markers show the peak
〈lz〉 used in the bottom plot; this peak is found by fitting the curve
by a Gaussian function panels a) and b) use the same line styles
as displayed in the legend in 2. Plot (c) shows the peak in k〈lz〉pz

as a function of l pz with a linear best fit, the gradient of this fit is
0.9 ± 0.2, the intercept A = 0.04 ±0.05. The lines shown here are
smoothed using a moving average over five bins.
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FIG. 5. Plots showing the distribution of lz and pz among accel-
erated particles taken at a time t = 6.3 Tpe. The red dashed lines show
plots of Eq. (13) for A = 0.

nelz so that the relative amount of nelz can be readily observed.
For values of pz in the range 0.7–1.1 mec a net positive
orbital angular momentum can be seen, while above a certain
threshold (∼1.05 mec for l = 4, ∼1.1 mec for l = 2, and
∼1.15 mec for l = 1) orbital angular momentum is negative.

It can be seen in Fig. 4(b) that there is positive angular
momentum associated with particles with a velocity close
to pph, where pph ∼ 0.75 is the approximate momentum an
electron has while traveling at the phase velocity vph ∼ 0.6.

The linear relationship between the quantities k〈lz〉|pz and
l pz is shown in Fig. 4(c). Similar to the analysis of the average
velocities, a linear relationship between the averaged k〈lz〉 as
a function of l pz appears to be a good fit for the data with
a proportionality of 0.9 ±0.2. The distribution of lz versus
pz is plotted as a 2D histogram in Fig. 5. This image also
shows plots of Eq. (13) with a constant value of A = 0 to
estimate spread of lz away from this relationship. A greater
spread in lz can be seen for higher values of the azimuthal
mode number l , with some particles still having significant
logitudinal momentum without the associated OAM.

V. CONCLUSIONS

The presented study demonstrates, with use of 3D numer-
ical simulations, the effect of nonlinear Landau damping of
plasma waves carrying a nonzero orbital angular momentum.
Several conclusive observations can be made from this study.
The first, and most significant, is that particles are observed
to be trapped in OAM plasma waves. These trapped electrons
follow in a phase space with the same twisted geometry as
the OAM plasma waves themselves. Figure 1 shows the same
rotation in phase space for OAM plasma waves as is seen
with planar waves when the space is transformed to take into

account the phase rotation. In addition to this we find a direct
relationship between the linear momentum transferred and the
angular momentum in Eq. (13) that is supported by the PIC
results shown in Fig. 4.

The second conclusion is that the energy distributions of
electrons in damping Laguerre-Gaussian plasma waves are
significantly changed as a function of azimuthal mode num-
ber. This dependence leads to larger numbers of lower energy
particles, tending towards a significantly narrowed spread in
gained energies for accelerated particles; see Fig. 2.

The third is that angular momentum is transferred from
the plasma wave to the resonant electrons when Laguerre-
Gaussian plasma waves are subject to Landau damping. The
transfer of OAM and longitudinal momentum are proportional
to each other; see Fig. 3 and Eq. (13).

Last, it is observed, from results shown in Fig. 4, that the
damping of a plasma wave with a higher azimuthal mode
number leads to a larger net orbital angular momentum lz in
particles traveling close to vph; see Fig. 5 for the distribution
of the OAM. This implies the existence of a population of
electrons, with a longitudinal velocity close to the phase
velocity of the plasma wave, that are orbiting the same center
of rotation as the plasma wave.
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APPENDIX: LANDAU DAMPING IN A 3D
PIC ENVIRONMENT

There are several challenges in attempting to simulate
linear Landau damping in a 3D PIC code in addition to
the limit imposed by the bounce frequency (E0 � γ 2

L me/ek).
One reason for this difficulty is that the linear theory is
developed assuming a static distribution function—meaning
that the Landau damping rate is strongly dependent on the
gradient of the distribution function around the phase velocity
of the wave in question (df /dvz|vph±δv). Only particles with
velocities similar to but less than the phase velocity contribute
to the damping, conversely particles with velocities similar to
but greater than the phase velocity give energy back to the
wave. In a box without a steady supply of thermal electrons
near the phase velocity the gradient in this region tends to 0
(df /dvz|vph±δv → 0), and at this point damping stops as there
are equal numbers of particles either side of vph.

The challenge is to find a regime where damping is strong
enough to be observable while weak enough that some damp-
ing occurs before saturation, or even weak enough that the
plasma can support a plasma wave at all. While it is possible
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to use boundary conditions that will replace exiting electrons
with a thermalized electrons, this creates problems in exciting
a stable long-lived plasma wave. It is more convenient to
use periodic boundary conditions in the direction of travel to
maintain the progression of the wave through space. Using a
longer box can help with this problem to some extent, though
this is computationally very expensive, and so in this study a
box 4λpe long in the propagation direction is used.

For a driven plasma wave, the force equation, continuity,
and Poisson equations are

me∂t upe − e∇φpe = −eEd , (A1)

∂tδne + n0∇ · upe = 0, (A2)

∇2φpe = δne
e

ε0
, (A3)

where upe, φpe, δne are the perturbation velocity, potential, and
charge density, respectively, while Ed is an imposed driving
electric field of the form required; see Eqs. (10), (11), and
(12) for the form used in this study. The following forced
oscillation equation for the plasma wave electric field can be
found from this:

∂2
t Epe + ω2

peEpe = ω2
peEd , (A4)

where Epe is the electric field associated with the plasma
wave. If we put in an oscillating field of the form Ed =

êsE0 cos(ωpet ), where ês is the unit vector associated with the
s component and E0 is the amplitude of the imposed field, the
solution gives an Epe out of phase with Ed . The solution for
Epe in this case is

Epe = ês
ωpeE0t sin(ωpet )

2
, (A5)

where E0 is the amplitude of the wave and t is the time over
which the driving electric field is imposed. While the growth
of the electric field in this case is linear, there are second-
order effects, such as small magnetic fields, which may be
amplified much quicker. However, if the driving term small
enough (Ed � Epe), we can get close to a situation where
the second-order effects are suppressed. This method avoids
amplifying the plasma wave too quickly into regimes where
wave breaking or other large amplitude coupling occurs, it is
also similar to the method presented in Ref. [19]. Frequency
matching is important for good coupling, the frequency of
the driving force is chosen using Eq. (6). The rate of Landau
damping in the linear regime is independent of the amplitude
of the wave and so acts to reduce the maximum achievable
plasma wave amplitude. Once the wave enters the transition
stage to nonlinear behavior (when ωb > γL) the frequency of
the wave also changes and the frequency of the driving electric
field becomes slightly mismatched.
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