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Coulomb logarithm accuracy in a Yukawa potential
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We present a complete theory of the scattering of a particle in a Yukawa potential when the screening length is
much larger than the classical impact parameter for 90◦ deflection and than the de Broglie length. The classical
limit, the quantum limit, and the intermediate case are investigated, enabling an accurate determination of the
argument of the Coulomb logarithm in the general case. The connection with previously published results
is made.
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I. INTRODUCTION

In plasmas the Coulomb logarithm plays a major role in
transport theory. It is indicative of the effect of numerous
small angle collisions compared with few large angle colli-
sions. In a recent paper [1] the determination of the Coulomb
logarithm has been questioned and a critical revision has
been proposed. As a matter of fact, a rigorous justification of
the argument of the Coulomb logarithm is often skipped in
the literature, so that a clarification is needed. Though some
important results have been obtained, sometimes decades ago
[2–5], no complete overview linking the different approaches
has been done. In this article, we give the missing links en-
abling such an overview.

We study a simplified model problem, namely, the scatter-
ing of a particle of mass m and nonrelativistic velocity v by
a screened Coulomb (Yukawa) potential V (r) = (α/r) e−r/λ,
where λ is the screening length. We thus ignore here the
polarization of the medium by the particle itself [5–7]. In
addition to the screening length λ, two other lengths will
appear in our discussion: the classical impact parameter for
90◦ deflection in a pure Coulomb field, b0 = α/mv2, and the
de Broglie length divided by 2π , λdB = h̄/mv. The Coulomb
parameter η is the ratio of these two lengths, η = b0/λdB =
α/h̄v. We will limit our discussion to the case where b0 � λ

and λdB � λ for which the repulsive and attractive collision
integrals are equal, i.e., they do not depend on the sign of α, in
contrast to the case where, for instance, b0 and λ are not much
different [8,9].

We are interested in the cross section σ (θ ), where θ de-
notes the scattering angle, in the total cross section given by

σ = 2π

∫ π

0
σ (θ ) sin θ dθ, (1)

and in the cross section for momentum transfer,

σ1 = 2π

∫ π

0
(1 − cos θ ) σ (θ ) sin θ dθ. (2)
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A closely related problem is the heavy ions stopping in
matter [5,10–18], where the stopping power due to free elec-
trons initially at rest is given by an expression proportional to
the cross section for momentum transfer (2). Our aim is not to
review this problem, but simply to recall the correspondence
between the model using a Yukawa potential with screening
length λ and the models using an unscreened Coulomb poten-
tial between the ion and the atomic electrons, V (r) = α/r, but
taking into account the binding of the atomic electrons, with
λ = v/ω, where ω is the characteristic atomic frequency of
motion.

In Sec. II, we treat the purely classical limit (λdB � b0),
Sec. III is devoted to the quantum limit (b0 � λdB), and
Sec. IV to the general case. In the first case we base our
discussion mainly on the impact parameter b, in the second
case on the scattering angle θ , and in the last case on the
quantum number l corresponding to the angular momentum.

II. THE CLASSICAL LIMIT η � 1

In this section, we totally neglect quantum effects. For-
mally, it corresponds to η = ∞.

For large angle scattering (close collisions), because of the
condition b0 � λ, the screening can be neglected and one
recovers the usual relation between the scattering angle and
the impact parameter,

tan(θ/2) = b0/b, (3)

and the Rutherford expression for σ (θ ), denoted as σR(θ ),

σR(θ ) = b2
0

4 sin4(θ/2)
. (4)

For small angle scattering (distant collisions), the screening
has to be included, but one may use the straight-line approxi-
mation, giving [2,3,19]

θ

2
≈ b0

λ
K1(x), (5)
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FIG. 1. Cross section σ (θ ), divided by the Rutherford cross
section σR(θ ), as a function of (λ/b0 ) θ , in the purely classical
case, with λ � b0. The dotted line corresponds to a pure Coulomb
potential with σ (θ ) truncated at a minimum scattering angle
θmin ≈ 2.9365 b0/λ, which is almost equivalent to what would give a
Coulomb potential truncated at r = bmax ≈ 0.6811 λ. The two curves
correspond to the same Coulomb logarithm (the area under the curves
is the same in this representation where a logarithmic scale is used
for θ ).

where x = b/λ, and where K1 denotes the modified Bessel
function of first order,

K1(x) = x
∫ ∞

1
e−xt

√
t2 − 1 dt . (6)

We recall that K1(x) � 1/x for x � 1. Note that Eqs. (3) and
(5) are both valid for b0 � b � λ. Furthermore, Eqs. (3) and
(5) can be combined into a single expression, valid for all
values of b,

tan
(θ

2

)
≈ b0

λ
K1(x), (7)

and the cross section can then be put into the following semi-
implicit form:

σ (θ ) ≈ σR(θ ) × xK3
1 (x)

|dK1/dx| . (8)

Figure 1 shows the ratio σ/σR as a function of (λ/b0) θ . The
effect of the screening is visible for small angles.

The total cross section, which also reads σ = 2π
∫ ∞

0 b db,
diverges, as expected in a purely classical theory, for which
only potential vanishing at a finite radius, such as the one
corresponding to hard balls scattering, can lead to a finite cross
section (we will see further on that quantum effects modify
this behavior, even for a large but finite value of η).

To compute the cross section for momentum transfer, one
can write

σ1 = 2π

∫ ∞

0
(1 − cos θ ) b db (9)

and divide the collisions into two groups corresponding to
b < bi and b > bi, the intermediate value bi belonging to the
range b0 � bi � λ, for which Eqs. (3) and (5) are both valid.
Equation (3) is used to evaluate the first term and Eq. (5) to
evaluate the second term, and the sum appears independent of

the exact value of bi. This procedure is equivalent to the one
used by other authors, including Bohr [10] or Liboff [3]. As
noticed by Jackson [5], this is totally equivalent to keeping
only the second term and setting bi = b0, with finally

σ1 ≈ 4πb2
0

∫ ∞

b0/λ

x K2
1 (x) dx. (10)

Now we use the following property of modified Bessel func-
tions [20],

xK2
1 = − d

dx

[
xK0K1 − x2

2

(
K2

1 − K2
0

)]
, (11)

where

K0(x) =
∫ ∞

1

e−xt

√
t2 − 1

dt . (12)

The integral (9) can then be readily done. Using the asymp-
totic forms of the modified Bessel functions, in particular
the property K0(x) � ln 2 − γ − ln x for x � 1, where γ ≈
0.5772 is the Euler constant, and the property K0,1(x) �
(π/2x)1/2e−x for x → ∞, one obtains

σ1 ≈ 4πb2
0 ln 
c, (13)

where ln 
c denotes the classical Coulomb logarithm,

ln 
c = ln (λ/b0) + ln 2 − γ − 1/2 (14)

or

ln 
c = ln (bmax/b0) (15)

with

bmax = (2/eγ+ 1
2 )λ ≈ 0.6811 λ. (16)

The integral (9) calculated with the pure Coulomb potential,
but truncated for large impact parameters at b = bmax, would
give the same result. For this particular value of the impact
parameter, the resulting minimum scattering angle would be
θmin = 2 b0/bmax ≈ 2.9365 b0/λ. The cross section for such
a truncated Coulomb potential is represented in Fig. 1 as a
dotted line.

We now discuss briefly the correspondence with the re-
sults of the Bohr’s model for ion stopping in matter. In that
model, a heavy ion slows down due to energy exchange with
bound electrons of mass m. The interaction between the ion
and the electron corresponds to an unscreened Coulomb po-
tential, V (r) = α/r, and ω is taken to be the characteristic
atomic frequency of motion. Similarly to what happens for the
screened potential where the screening matters only for distant
collisions, close collisions are unaffected by the binding, in
contrast with distant collisions. Then the stopping power of
electrons appears to be proportional to a logarithmic term of
the form [5,10]

ln 
Bohr ≈
∫ ∞

ωb0/v

x
[
K2

1 (x) + K2
0 (x)

]
dx. (17)

Doing the integrals, one obtains

ln 
Bohr ≈ ln 
c + 1/2 (18)
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FIG. 2. Cross section σ (θ ), divided by the Rutherford cross sec-
tion σR(θ ), as a function of (λ/λdB ) θ , in the quantum limit, with λ �
λdB. The dotted line corresponds to a pure Coulomb potential with
σ (θ ) truncated at a minimum scattering angle θmin ≈ 1.6487 λdB/λ.
The two curves correspond to the same Coulomb logarithm (the
area under the curves is the same in this representation where a
logarithmic scale is used for θ ).

if one sets the adiabatic impact parameter λ = v/ω in the
expression of 
c. Note that the physical origin of the sup-
plementary term 1/2 on the right-hand side of (18) has been
discussed by Sigmund and Schinner [14].

III. THE QUANTUM LIMIT η � 1

In the preceding section we neglected the quantum ef-
fects. As the uncertainty in the impact parameter �b and
the uncertainty in the angle �θ are linked by the Heisenberg
principle, �b × mv�θ ≈ h̄, the classical approach, which is
possible only if �b × �θ � bθ ≈ b0, implies λdB � b0, that
is, η � 1.

In the opposite limit, b0 � λdB, that is η � 1, the problem
can be treated with the Born approximation, which leads to
the cross section [4,21]

σ (θ ) = b2
0

4
[
sin2(θ/2) + (λdB/2λ)2

]2 . (19)

Figure 2 shows the ratio σ/σR as a function of (λ/λdB) θ . The
effect of the screening is visible for small angles. Note that the
transition is faster than in the classical case; that is, the ratio
σ/σR decreases faster with 1/θ . Due to this fast decreasing,
the total cross section is now finite [4,21],

σ ≈ 4η2 πλ2, (20)

while the cross section for momentum transfer is given by

σ1 ≈ 4πb2
0 ln 
B (21)

with

ln 
B = ln (λ/λdB) + ln 2 − 1/2 = ln (bmax/bB), (22)

where

bB = λdB/eγ ≈ 0.5615λdB. (23)

Comparing the classical and quantum limits, one obtains

ln 
B = ln 
c + ln η + γ . (24)

In Eq. (22) the length bB appears as a minimum impact
parameter replacing the quantity b0, with bB � b0, but the
formulation in terms of impact parameter might be mislead-
ing, because large angle scattering, classically due to impact
parameters comparable to b0, is not suppressed in the quantum
regime [it can be seen in Eq. (19) that the cross section
does not differ significantly from the Rutherford one for
large angles]. On the other hand, the Coulomb logarithm can
also be put under the form ln 
B = ln(2/θmin) with θmin/2 =
bB/bmax. Classically this minimum scattering angle would
correspond to a maximum impact parameter b′

max ∝ ηλ � λ

[the same length b′
max appears, within a numerical factor, as

an effective radius of the total cross section (20)], but again it
would be incorrect to conclude that the potential is somehow
truncated for impact parameters larger than ηλ. In fact, the
description in terms of impact parameters is inappropriate in
the quantum limit, because of the Heisenberg principle, as
discussed by Bohr [12].

IV. THE GENERAL CASE

A. The partial wave decomposition approach

In the general case, one could simply use a Coulomb loga-
rithm of the form

ln 
 = ln

[
bmax

max(b0, bB)

]
, (25)

but a better accuracy is possible. First, we note that the Born
approximation requires η � 1, so that it cannot be used in the
general case. On that point we disagree with the authors of
Ref. [1], who consider that the Born approximation is valid
unless η � 1. The cross section is given by [21]

σ (θ ) = | f (θ )|2, (26)

where f (θ ) is the scattering amplitude, given by the standard
partial wave decomposition,

f (θ ) = λdB

2 i

∞∑
l=0

(2l + 1)(e2iδl − 1)Pl (cos θ ), (27)

where δl is the partial wave phase shift and Pl the Legendre
polynomial of order l .

For moderate values of l (l � λ/λdB), one can use the
purely Coulomb result [21],

δl = arg (l + 1 + iη) − η ln(2r/λdB). (28)

The last term in (28) corresponds to the plane wave distor-
tion due to the Coulomb potential at radius r and diverges
as r → ∞. This divergent term does not depend on l , so
that it does not play any role when one calculates the cross
section for momentum transfer, which depends on the phase
shift differences (δl+1 − δl ) [13]. But it is essential to treat it
correctly when one calculates the total cross section, which
depends on the individual values of δl .

For the screened potential, one can remark that the phase
shift should be limited to a finite value of the radius r, of the
order of the range λ of the potential. One takes advantage
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of the fact that that value does not depend on l . As will be
found further on by studying the quasiclassical limit, which
is relevant for large values of l , the correct value is r = λ/eγ ,
so that

δl = arg (l + 1 + iη) − η [ ln(λ/λdB) + ln 2 − γ ]. (29)

For max(1, η) � l , one has arg (l + 1 + iη) � η ln l , and
thus for max(1, η) � l � λ/λdB, one has

δl � η [ ln l − ln(λ/λdB) − ln 2 + γ ]. (30)

On the other hand, for max(1, η) � l and in the case of the
screened potential, one can use the quasiclassical form of the
phase shift [21],

δl � −
∫ ∞

r0

mV (r) dr

h̄2
√

k2 − l2/r2
, (31)

with r0 = l/k and k = 1/λdB, so that [18]

δl � −ηK0(x), (32)

where x = l λdB/λ. Note that for x � 1, i.e., for l � λ/λdB,
one has K0(x) � ln 2 − γ − ln x, and one recovers Eq. (30),
which is valid in the range max(1, η) � l � λ/λdB, where
the two expressions (29) and (32) have a common range of
validity.

B. The total cross section

The total cross section is easily calculated from Eqs. (26)
and (27). Using the following property of Legendre
polynomials:∫ π

0
Pl (cos θ )Pl ′ (cos θ ) sin θ dθ = 2

2l + 1
δll ′ , (33)

one obtains [21]

σ = 4πλ2
dB

∞∑
l=0

(2l + 1) sin2 δl . (34)

The dominant terms in the sum correspond to values of l satis-
fying the condition max(1, η) � l , so that one can replace the
sum by an integral and use the asymptotic form (32), leading
to

σ ≈ 4πλ2
dB

∫ ∞

0
(2l + 1) sin2[ηK0(x)] dl (35)

≈ 4πλ2
∫ ∞

0
2x sin2[ηK0(x)] dx. (36)

In the purely quantum limit, η � 1, the argument of the
sine is small compared to 1 (except for very small values of
x which, in any case, do not contribute significantly to the
integral), and

σ ≈ 4πη2 λ2
∫ ∞

0
2xK2

0 (x) dx (37)

≈ 4η2 πλ2, (38)

an expression that we already obtained directly via the Born
approximation [Eq. (20)]. We remark here that using the qua-
siclassical form of the phase shift, Eq. (32), is sufficient to get
that result.

FIG. 3. Function 2x sin2[ηK0(x)] for η = 100. This function ap-
pears in the integral (36) giving σ . The dotted line corresponds
to its averaged value x up to the point xmax ≈ 5.15 for which
ηK0(xmax) ≈ π/10.

In the general case, σ has to be calculated numerically.
Note that, when 1 � η, which corresponds to the classical
limit, one here obtains a finite value of the total cross sec-
tion. As noticed, for instance, by Landau and Lifshitz [21],
this result holds whenever the potential is decreasing faster
than 1/r2. The sin2 term in (36) quickly oscillates, with
an average value of 1/2, between x = 0 and the point xmax

for which ηK0(xmax) ≈ π/10. Figure 3 shows the function
2x sin2[ηK0(x)] for η = 100, together with its averaged value
x up to the point xmax ≈ 5.15. For x > xmax, the argument of
the sine goes rapidly to 0 and the contribution to the integral
can be neglected, so that

σ ≈ 2πλ2x2
max. (39)

A crude approximation is xmax ≈ ln η, leading to σ ≈
(2 ln2 η) πλ2, significantly larger than πλ2, but finite.

C. The cross section for momentum transfer

To compute the cross section for momentum transfer, one
has to use the property

cos θ Pl = 1

2l + 1
[(l + 1)Pl+1 + l Pl−1], (40)

together with Eq. (33), to obtain [13]

σ1 = 4πλ2
dB

∞∑
l=0

(l + 1) sin2(δl − δl+1). (41)

In this sum, it is necessary to treat separately moderate values
of l (l � λ/λdB), and large values of l [max(1, η) � l]. At
the end we will connect the two ranges of values of l by their
common range of validity, namely, max(1, η) � l � λ/λdB.

For l � λ/λdB, by using (28), one easily gets [13]

δl+1 − δl = arg(l + 1 + iη) (42)

and

sin2(δl+1 − δl ) = η2

(l + 1)2 + η2
, (43)
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while for max(1, η) � l , using (32) and δl+1 − δl ≈ dδl/dl
with dK0(x)/dx = −K1(x), one gets

sin2(δl+1 − δl ) ≈ sin2[b0K1(x)/λ] ≈ (b0/λ)2K2
1 (x). (44)

Expressions (43) and (44) both give

sin2(δl+1 − δl ) ≈ η2/l2 (45)

in the range max(1, η) � l � λ/λdB. To compute the cross
section for momentum transfer, we split the infinite sum of
Eq. (41) into two terms σ1− and σ1+, corresponding, respec-
tively, to 0 � l < li and to li � l . The intermediate value li
is chosen so that max(1, η) � li � λ/λdB. The splitting is
similar to the one made in the purely classical case when
calculating the integral (9). Each term gives a contribution of
the form

σ1± = 4πb2
0 ln 
± (46)

with

ln 
−(η) =
li∑

l=1

l

l2 + η2
, (47)

where we have shifted l to l1 = l + 1 and dropped the sub-
script 1, and

ln 
+ ≈
∫ ∞

xi

x K2
1 (x) dx, (48)

where we have defined xi = liλdB/λ and replaced the second
sum, which is independent of η, by an integral.

For η → 0,

ln 
−(0) =
li∑

l=1

1

l
≈ ln li + γ , (49)

while

ln 
+ ≈ − ln xi − γ + ln 2 − 1/2. (50)

The sum of the two terms does not depend on li, and

ln 
(0) = ln 
−(0) + ln 
+
≈ ln (λ/λdB) + ln 2 − 1/2. (51)

It corresponds to the result of the Born approximation used in
Sec. III. Note that the same result would have been obtained
by keeping only the first term, i.e., ln 
 = ln 
− and replacing
li by lmax = bmax/λdB.

In the general case one can focus on the first term ln 
−(η)
since the second one does not depend on η. One denotes �(η)
the difference

�(η) = ln 
(0) − ln 
(η) = η2
li∑

l=1

l

l (l2 + η2)
. (52)

As li � 1, the sum can be extended to ∞ without significantly
changing the result [13]. This expression corresponds to the
Bloch correction [11] and is related to the Digamma function

[20] ψ (z) = [d(z)/dz]/(z) by the equation

�(η) = Reψ (1 + iη) + γ . (53)

For η � 1, one has Reψ (1 + iη) � ln η, and

�(η) � ln η + γ , (54)
which corresponds to Eq. (24). For intermediate values of η,
the function Reψ (1 + iη) can be approximated by [13]

�(η) ≈ ln
√

1 + (eγ η)2. (55)

Using Eq. (22) and the approximation (55), one can write

ln 
(η) = ln(bmax/bmin) (56)

with

bmin ≈ (b2
B + b2

0)1/2. (57)

An even more precise approximation of �(η), correct to
higher order both for η → 0 and for η → ∞, gives

bmin ≈
(

b4
B + c b2

Bb2
0 + a b4

0

b2
B + a b2

0

)1/2

(58)

with

a = [1 − 2ζ (3)/C]/(1 − C/6) ≈ 0.5138,

c = 1 + aC/6 ≈ 1.2716, (59)

where C = e2γ ≈ 3.1722 and ζ (z) is the Riemann Zeta func-
tion, with ζ (3) ≈ 1.2021.

We note here that the Bloch correction (52) is related to
small values of the quantum number l , i.e., to close collisions,
for which the screening can be neglected. This explain why
it is the same as for the problem studied in fact by Bloch,
which corresponds to the quantum version of the Bohr model,
as similarly bounding forces can be neglected for small values
of l . As a result, the term 1/2 appearing in the right-hand
side of Eq. (18) and characterizing the difference between the
screened potential model and the bound electrons model is
independent of η.

V. CONCLUSION

We made a complete study of the scattering of a particle
in a Yukawa potential when the screening length is much
larger than the classical impact parameter for 90◦ deflection
and than the de Broglie length. The argument of the Coulomb
logarithm has been accurately established, in the general case.
A link with already known results has been given, and un-
ambiguous justifications have been given in every case. In
particular it has been demonstrated that the Born approxi-
mation is not convenient if the Coulomb parameter η is not
small compared to 1, in contrast to the assertion of Ref. [1],
but in agreement with other authors [13]. The relation with the
problem of ion stopping in matter has been briefly considered.
However, our aim was not to discuss all the numerous aspects
of ion stopping, which would be far beyond the scope of this
paper. Similarly we have ignored the dielectric polarization of
the medium by the moving particle.
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