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This paper reports on the molecular dynamics simulations of classical two-dimensional (2D) electric dipole
systems. The properties of 2D systems with bare (nonscreened) and screened dipole-dipole interactions have
been investigated. Based on the polygon construction method, we present simulation results on the phase
transition, and we locate the melting and freezing points of 2D dipole systems in terms of a polygon disorder
parameter, with the polygon disorder parameter being the sum of nontriangular polygon order parameters. It
was found that the phase transition of the system occurs when the polygon disorder parameter has a value
0.165. This result was cross-checked by using both local and overall orientational order parameters. We also
identified that the value of the average local orientational order parameter at the phase transition point is 0.67.
These results are valid for the ordinary (bare) dipole-dipole interaction as well as the screened dipole-dipole
interaction, and they are expected to be general for other 2D systems with repulsive pair interaction. We observed
that both melting and freezing points shift to lower values of temperature due to screening. In the liquid state, the
radial distribution function and polygon construction method show the loss of order in a structure as screening
becomes more severe. Furthermore, the impact of screening on the system’s collective excitation spectra and
diffusive characteristics at liquid and solid states has been studied. Results show the decrease in the values of
both longitudinal and transverse sound speeds and the emergence of anomalous superdiffusive motion in the
liquid state due to screening.
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I. INTRODUCTION

Classical and quantum two-dimensional (2D) systems rep-
resent practical as well as fundamental interest [1,2]. The
interaction between particles in such systems significantly
varies depending on the type of particles, external fields, and
other system parameters [1]. We focus on the 2D system
of classical particles interacting via a repulsive dipole-dipole
potential. The pair dipole-dipole interaction is realized in
complex plasmas [3,4] and in a classical 2D monolayer of
colloidal systems [5–7]. Polar molecules with a large mean in-
terparticle distance is another example of a system of dipoles
[1,8]. Additionally, bound electron-hole excitons in semicon-
ductors create a dipolelike excitonic phase state that can be
modeled as a classical 2D system of dipoles [9,10]. The
formation of such a phase in electron-hole bilayers was stud-
ied by both quantum path integral Monte Carlo simulations
[11–13] and classical molecular dynamics simulations [14].
As Tiene et al. [15] have recently discussed, screening due
to excess charges modifies electron-hole systems, including
electron-hole excitons.

Pair interaction potentials can be conditionally classified
into long-range and short-range. From a computational point
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of view, the potential can be considered to be long-ranged if
the introduction of the cutoff distance for a pair interaction
potential does not allow reducing the scaling of the force
computation time to O(N ) (e.g., using neighbor lists or cell
lists), where the cutoff distance is the distance at which the
pair interaction potential is gauged to be negligible for the
simulation of a system, and N is the number of particles.
Such a potential is often also referred to as a quasi-long-range
potential.

As is well known, the presence of charged particles leads
to the screening of electrostatic interactions. Screening can
result in drastic changes of system properties compared to
the case of bare interactions due to the transformation of the
long-range pair interaction to the short-range pair interaction
[16,17]. A prominent example is given by the comparison
of the Coulomb system properties to that of a many-particle
system interacting via the Yukawa (Debye-Hückel) potential.
Therefore, it is natural and interesting to inquire whether the
inclusion of screening has similar dramatic effects on the
properties of dipole systems. To this end, the first objective
of our research is to study the effect of screening on the
properties of 2D dipole systems. In particular, we consider
dipoles with parallel dipole moments embedded into a polariz-
able (screening) bulk medium. Such screened dipole systems
are realized in complex plasmas due to a stationary flux of
ions relative to charged dust particles [3,4,18–25], where a
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negatively charged dust particle together with the deformed
ion cloud around the dust particle is considered as a compound
particle with nonzero dipole moment, and screening of the
field of such a compound particle is due to background ideal
electrons [3,4,18–25]. Also, we anticipate that such systems
with screened dipole-dipole interaction can be realized in the
case of colloidal particles immersed in an electrolyte [26,27].

The 2D system with bare dipole-dipole interaction was
extensively studied using molecular dynamics (MD) simu-
lation [2,5,9,10,28–30]. Golden et al. [10] revealed that for
2D dipole systems, the dispersion of collective oscillations
shows an acoustic mode in the long-wavelength limit, and
this mode in the classical system is not different from that
of quantum systems. Additionally, they showed that the 2D
dipole system does not permit a random phase approximation
(RPA) -type approximation, i.e., the effect of interparticle
correlations is crucial even in the long-wavelength limit, in
contrast to, e.g., nonideal Coulomb systems [9,31]. Khrapak
et al. [2] studied collective excitation spectra, sound speed,
and thermodynamics of 2D dipoles from the weakly coupled
gas to the strongly correlated fluid and crystalline states. Re-
cently, Mistryukova et al. [32] performed a detailed study of
the so-called “q-gap” corresponding to the domain of wave
vectors where transverse excitations are absent in liquids. To
extend these studies, in this paper we present the extensive
and systematic study of dynamical and structural properties
of 2D dipole systems in screening bulk media. We consider
both fluid and solid phases. Furthermore, to gauge the effect
of screening, all results are compared to the case of bare
dipole-dipole interactions.

Moreover, we investigated the melting and freezing of 2D
dipole systems. For that we used an orientational order pa-
rameter [33–37] along with a polygon order parameter [38],
the latter of which is obtained from a polygon construction
method [38,39]. For 2D dipole systems, the behavior of poly-
gon order parameters in the course of melting and freezing
was not studied before. Compared to the orientational order
parameter, polygon order parameters bear more detailed as
well illustrative information about defects in the system, and
thus they can be an effective tool for the identification of
phase-transition points. Therefore, the second objective of the
research presented in this paper is the polygon construction
method based identification of the dynamical criterion of
melting and freezing in 2D dipole systems.

The paper is organized as follows: In Sec. II we discuss the
screened dipole-dipole potential by making use of a Poisson
equation in bulk media and multipole expansion. Simulation
details are given in Sec. III. Section IV is devoted to results
and discussions of structural properties and the phase transi-
tion, and in Sec. V we present results of dynamical properties,
namely collective excitation spectra and the mean-squared
displacement.

II. THE INTERACTION POTENTIAL

First, we briefly discuss a standard multipole expansion
method for the derivation of the dipole-dipole interaction
potential. This will help us to convey how to generalize this
method to the derivation of the interaction potential between
dipoles in screening media.

FIG. 1. A supplementary illustration for the discussion of the
multipole expansion method for systems with an internal charge
distribution.

A. Bare dipole-dipole interaction potential

Consider two systems with a discrete charge distribution
as shown in Fig. 1. Denote the first collection of charges as
System i and the second one as System j. Let r be a vector
from the origin of System i to the origin of System j, so
that r = |r| is much larger than the characteristic sizes of
both systems. Here, our objective is to describe electrostatic
interactions between these two systems. As a first step, we
examine a potential of System i at a distance r in terms of
a multipole expansion. If ra is a position vector of charge qa

subject to System i, then the Coulomb potential of this system
at r is given by

V (r) = 1

4πε0

Ni∑
a=1

qa

|r − ra| , (1)

where Ni is the number of charges confined in System i. The
Taylor expansion of Eq. (1) at r � ra reads

V (r) = 1

4πε0

(
Qi

|r| − pi · ∇ 1

|r| + · · ·
)

, (2)

where Qi = ∑Ni
a=1 qa and pi = ∑Ni

a=1 qara are the monopole
charge and electric dipole moment of System i, respectively.

Now, one can find the electrostatic potential energy of
interaction considering System j is in the electric field created
by System i. If rb is a position vector of charge qb subject to
System j, then the interaction energy of Systems i and j is
given by

U = 1

4πε0

Nj∑
b=1

qbV (r + rb), (3)

where Nj is the number of charges belonging to System j. The
expression for V (r + rb) given in Eq. (2) is further expanded
in a Taylor series taking into account that r � rb. By substi-
tuting the resulting Taylor series into Eq. (3), we have

U = 1

4πε0
[QjV (r) + p j · ∇V (r) + · · · ], (4)
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where a monopole charge Qj = ∑Nj

b=1 qb and a dipole moment

p j = ∑Nj

b=1 qbrb are source charges in System j.
Since we aim to investigate only dipole-dipole interaction,

the sum of all moments except the dipole moment in multipole
expansions is set to zero. Thus, taking the gradient of the
remaining second term in Eq. (2) and substituting the result
into Eq. (4), one arrives at the familiar interaction energy of
Systems i and j comprised of dipoles,

U = (pi · p j )r2 − 3(pi · r)(p j · r)

r5
. (5)

Further, if particles have dipole moments parallel and equal to
each other, i.e., pi = p j and pi · r = p j · r = 0, then Eq. (5)
reduces to

U = p2

4πε0r3
, (6)

where p = |pi| = |p j |, with dipole moments being perpendic-
ular to the monolayer. We refer to potential (6) as the bare
dipole-dipole interaction potential.

B. Screened dipole-dipole interaction potential

At large distances, the electric field of System i in the
screening bulk media satisfies the following Poisson equation:

(
� + k2

s

)
Vs(r) = − 1

ε0

Ni∑
a=1

qaδ(r − ra), (7)

where ks is the inverse screening length due to polarization
of the bulk media, and the subscript s denotes the screened
potential. Making use of the Green’s function of the equation
(� + k2

s )G(r′, s) = δ(r′ − s),

G(r, s) = − 1

4π

exp(−ks|r − s|)
|r − s| ,

it is straightforward to find the following solution of Eq. (7):

Vs(r) = − 1

ε0

∫
ds G(r, s)

{
Ni∑

a=1

qaδ(s − ra)

}

= 1

4πε0

Ni∑
a=1

qa exp(−ks|r − ra|)
|r − ra| . (8)

From the comparison of Eq. (8) with Eq. (1), we un-
derstand that to get the screened dipole-dipole interaction
potential, one must use the screened potential (8) instead of
the Coulomb potential in the multipole expansion given in
Sec. II A. The Taylor expansion of Eq. (8) has the same form
as Eq. (2), with the difference being that the kernel 1/|r| has
to be replaced with exp (−ks|r|)/|r|, i.e.,

Vs(r) = 1

4πε0

(Qi exp (−ks|r|)
|r|

−pi · ∇ exp (−ks|r|)
|r| + · · ·

)
. (9)

The potential energy is obtained by placing Vs(r + rb)
instead of V (r + rb) in Eq. (3). Then, once again taking the
Taylor expansion of Vs(r + rb) at r � rb, one derives

U = 1

4πε0
[QjVs(r) + p j · ∇Vs(r) + · · · ]. (10)

Equations (9) and (10) enable us to describe any system
comprised of screened point charges, dipoles, quadrupoles,
etc. As we are interested in systems consisting only of electric
dipoles, setting Qi = Qj = 0 and neglecting quadruple and
higher-order terms in Eq. (10), we get the appropriate equation
for the screened electrostatic interaction energy of dipoles:

U = exp (−ksr)

4πε0r5
{[(pi · p j )r

2 − (pi · r)(p j · r)(3 + ksr)]

×(1 + ksr) + (pi · r)(p j · r)ksr}. (11)

Since we consider the case when compound particles have
dipole moments parallel and equal to each other, Eq. (11)
reduces to

U = p2 exp (−ksr)

4πε0r3
(1 + ksr). (12)

The associated interaction force is given by

Fi j = −∇U = p2 exp (−ksr)

4πε0r4

(
3 + 3ksr + k2

s r2
)
r̂i j,

where the subscript i j indicates the force exerted by dipole i
on dipole j, and r̂i j = r/r is a unit vector directed from i to j.

III. SIMULATION DETAILS

We considered the ensemble of point particles with the
pair interaction potential given by Eq. (6) or (12). MD
simulations of the system consisting of N = 5041 identical
particles confined in a 2D square box have been performed.
A side length of the box is determined by the number of
particles, i.e., L = √

πNa, where a is the mean interparti-
cle distance, which is directly related to the areal density
of particles n through the equation a = (πn)−1/2. In a crys-
talline structure, a refers to the Wigner-Seitz radius. To
discard the boundary effects, periodic boundary conditions
were used. The convenient choices of basic units are a for
the units of length, the inverse characteristic dipole oscillation
frequency ω−1

D = [p2/(2πε0ma5)]−1/2 for the units of time,
and ε = p2/(4πε0a3) for the units of energy. There are two di-
mensionless parameters that set up the conditions of the model
system. First, the coupling parameter �D = p2/(4πε0a3kBT ),
which is defined as the ratio of the potential energy at a
distance a to the thermal kinetic energy of particles. Second,
the screening parameter κ = aks, i.e., the reduced inverse
screening length.

We focused on the investigation of the liquid and solid
states of dipoles and the impact of screening on such systems.
For these states, the value of the coupling parameter is set to
�D = 60 and 500 corresponding to liquid and solid phases,
respectively. The agreement of the prescribed coupling param-
eter values to the stated phases is shown in Sec. IV A. For a
given value of the coupling parameter, we varied the screening
parameter as κ = 0, 1, and 2. The results of the following
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sections, devoted to structural and dynamical properties, were
measured and averaged over 1000ω−1

D periods of time.
In the case of the bare dipole-dipole interaction potential

(6), i.e., κ = 0, a direct summation of the interaction force
is highly time-consuming. To maintain the accuracy of the
calculations, one needs to generate a rather large number of
particles. The quasi-long-range character of the bare potential
can be circumvented by many methods [40–43]. To avoid a
direct summation scaling as O(N2), we used gradient-shifted
force (GSF) electrostatics [44] based on the Wolf method [45],
which scales as O(N ). In GSF electrostatics, the damping
coefficient α and the cutoff radius rc should be assigned ap-
propriate values. For a commonly used cutoff value rc = 12 a,
the optimal value of the damping coefficient was shown to
lie in the range 0.175 � α a � 0.225 [46]. Hence, in our
simulations we set rc = 12 a and α = 0.2 a−1.

IV. STRUCTURAL PROPERTIES AND PHASE
TRANSITION

A. Structural properties in liquid and solid states

To see the overall features of the system structure and the
changes due to the screening effect, we calculated the radial
distribution function (RDF), which shows the dependence of
the particles’ density distribution on a radial distance from
any reference particle. The results of the RDF calculations are
shown in Fig. 2. At all the considered values of κ , from Fig. 2
one can see that �D = 60 and 500 corresponds to liquid and
solid phases, respectively. At �D = 60, and for all three values
of κ in Fig. 2(a), the monotonically decreasing maxima and
increasing minima of curves with distance r definitely indicate
a liquidlike structure. In the same manner, at �D = 500, the
curves in Fig. 2(b) with their sharp first maximum and zero
first minimum (R �= 0), followed by the irregularly spaced
maxima and minima, describe the solid state, again for all
three values of κ . Note that for �D = 60 and κ = 0, our data
on RDF are in agreement with the results of Ref. [9].

Further analysis of the curves shows that in both liquid
and solid states, the screening effect leads to a decrease of
order in the system. To be more specific, at �D = 60 the first
maximum of RDF drops from about gκ=0

max ≈ 2.85 (where a
subscript refers to the maximum or minimum and a super-
script denotes the value of κ) to gκ=1

max ≈ 2.66 and then to
gκ=2

max ≈ 2.16, and the corresponding first minimum (R �= 0)
increases as gκ=0

min ≈ 0.34, gκ=1
min ≈ 0.42, and gκ=2

min ≈ 0.58. Per-
forming the same analysis of data at �D = 500, we find for
nonscreened dipoles gκ=0

max ≈ 8.87 and for successive screening
values gκ=1

max ≈ 8.19 and gκ=2
max ≈ 5.98. As can be seen from

Fig. 2(b), the first minimum (R �= 0) in this case stays nearly
at zero, gκ=0

min ≈ gκ=1
min ≈ gκ=2

min ≈ 0.
The RDF gives a very nice qualitative and quantitative

description of the structure as long as the state of the system
under investigation does not change over time. Otherwise, the
lack of ensemble averaging gives poor RDF results, especially
in the case of MD simulations. It is clear that the RDF may
not be suitable for the analysis of structural changes if the
system is heated or cooled. For this reason, and also for a
better description of the structural properties, we use two ad-
ditional tools, namely an orientational order parameter (OOP)

FIG. 2. The radial distribution function (RDF) of dipole particles
at (a) liquid (�D = 60) and (b) solid (�D = 500) states for three
values of screening parameter κ .

[33–37] and a polygon construction method [38,39]. For the
investigation of the phase transition, these are major tools of
analysis and for indicating phase transitions points. By study-
ing the behavior of different order parameters during melting
and freezing, we have drawn important general conclusions as
discussed below.

The OOP was introduced by Halperin and Nelson in their
work on the 2D melting [33,34]. For a triangular lattice struc-
ture, the OOP for particle j is defined as

ψ j = 1

Nj

Nj∑
k=1

exp (6iθ jk ), (13)

where Nj is the number of nearest-neighbor particles, i is
the imaginary unit, and θ jk is the angle between an arbitrary
fixed direction, in our case the x-axis, and a bond connecting
particles j and k. Due to the fact that parameter ψ j is complex-
valued, it can be measured in two ways. The first way defines
the overall orientational order of the system, and it has the
form [36,47]

|〈ψ〉| =
∣∣∣∣∣ 1

N

N∑
j=1

ψ j

∣∣∣∣∣, (14)

that is, one takes the average over all particles and then mea-
sures the absolute value. The second way is to first take the
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TABLE I. The reduced potential energy per particle, overall and local orientational, and polygon order parameters of the 2D electric dipole
system at the liquid state, �D = 60, and the respective values of κ .

κ 〈U 〉/ε |〈ψ〉| 〈|ψ |〉 P3 P4 P5 P6

0 0.593 0.06 ± 0.03 0.593 ± 0.006 0.517 ± 0.007 0.180 ± 0.004 0.029 ± 0.002 0.0015 ± 0.0004
1 0.231 0.03 ± 0.02 0.553 ± 0.004 0.452 ± 0.006 0.188 ± 0.003 0.041 ± 0.002 0.0037 ± 0.0006
2 0.065 0.015 ± 0.008 0.503 ± 0.004 0.338 ± 0.005 0.181 ± 0.003 0.064 ± 0.002 0.015 ± 0.001

absolute value and then calculate the average [48,49], i.e.,

〈|ψ |〉 = 1

N

N∑
j=1

|ψ j |. (15)

The last one gives information about the average local ori-
entational order of the whole system. In perfect defect-free
structure, the value of both |〈ψ〉| and 〈|ψ |〉 is close to unity
and drops as the disorder spreads over the system.

The other tool for analyzing the structural properties of
the system is the polygon construction method of Glaser and
Clark [38,39]. This method describes defects in the system by
identifying an excess volume in the arrangement of particles.
In the polygon construction method, one starts by measuring
the position of each particle. Then, using a Delaunay trian-
gulation, bonds are created between neighboring particles.
To identify defects in the structure, some of the bonds are
removed. A bond subject to removal is identified in two ways:
either the bond is too long or the angle opposite to that bond
is too large. Thus, one can choose between the bond-length or
bond-angle approach for identifying long bonds for removal.
In the bond-length approach, a bond is considered to be long
if it exceeds the threshold bond length lth. The threshold
bond length should have a value in the range b < lth <

√
2b,

where b corresponds to a lattice constant of the given structure
[38,39]. In the same manner, in the bond-angle approach a
bond is removed if the opposite angle to the bond exceeds the
value of threshold angle θth, where θth is assigned a value in
the range 60◦ < θth < 90◦ [38,39]. In this work, we use the
latter approach and set θth = 75◦.

The result of the polygon construction method is a map
of polygons consisting of triangles, quadrilaterals, pentagons,
etc. The perfect defect-free structure consists only of trian-
gles, and the presence of any nontriangular polygons indicates
defects in the system. Hence in the polygon construction
method, polygons with more than three sides are defined as
geometrical defects [38,39]. Nontriangular polygons do not
emerge chaotically with the increase of imperfections in the
structure. Instead, as the disorder progresses, the abundance
of nontriangular polygons follows a pattern, with quadrilat-
erals being the most abundant, followed by pentagons, then

hexagons, etc. Therefore, by examining the quantity of each
geometrical defect, one can have a better insight into the
severity of disorder. Quadrilaterals can be viewed as the least
severe defects, while pentagons, hexagons, etc. are progres-
sively more severe [50].

In addition to providing visual information, the polygon
construction method defines a quantity called the polygon
order parameter [38]. This parameter provides information
about the fraction of a certain polygon type in the system, and
it is calculated by the equation

Pp = Np

2N
, (16)

where Np is the number of polygons with p (p = 3, 4, 5, 6)
sides. From a geometric perspective, P3 can be understood as
an “order” parameter while the sum of P4 + P5 + P6 we refer
to as the disorder parameter.

That being said, we have calculated the above-discussed
order parameters along with the values of reduced potential
energy per particle and changes in these quantities due to
the screening effect. Results are presented in Tables I and II,
where a bar over the quantities indicates the time averaging,
and the uncertainty of the mean value of order parameters cor-
responds to one standard deviation (i.e., 68.27% confidence
interval). First of all, we see that at both �D = 60 and 500 the
effect of screening is reflected by a drop in potential energy
of about 60% when the screening parameter is changed from
κ = 0 to 1, and a drop in energy of about 90% at κ = 2 com-
pared to the case κ = 0. This, in turn, implies the emergence
of disorder in the system structure, which is also indicated
by the changes in order parameters. To be more precise, the
order parameters |〈ψ〉|, 〈|ψ |〉, and P3 undergo a decline while
the disorder parameter P4 + P5 + P6 proliferate as we change
the screening parameter from κ = 0 to 1 and then to κ = 2.

Next, in addition to RDF results shown in Fig. 2, the fact
that �D = 60 corresponds to the liquid and �D = 500 to the
solid state can be confirmed by noting the values of |〈ψ〉|
and 〈|ψ |〉. In Table I we notice |〈ψ〉| < 0.1 and 〈|ψ |〉 < 0.6,
which indicates that the system has no rigid structure, but it
has that of liquid. And in Table II, OOPs have values close to
unity, which corresponds to a solid structure.

TABLE II. The reduced potential energy per particle, overall and local orientational, and polygon order parameters of the 2D electric dipole
system at the solid state, �D = 500, and the respective values of κ .

κ 〈U 〉/ε |〈ψ〉| 〈|ψ |〉 P3 P4 P5 P6

0 0.5729 0.9591 ± 0.0005 0.9680 ± 0.0004 0.9701 ± 0.0003 0.0006 ± 0.0002 0.00006 ± 0.00006 0
1 0.2114 0.9512 ± 0.0008 0.9621 ± 0.0006 0.9701 ± 0.0004 0.0008 ± 0.0002 0.00004 ± 0.00003 0
2 0.0495 0.905 ± 0.002 0.925 ± 0.001 0.957 ± 0.002 0.0070 ± 0.0008 0.00010 ± 0.0008 0
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FIG. 3. An illustration of the polygon construction method applied to the 2D dipole system structure at �D = 60 and the successive values
of κ . Sample figures correspond to the calculations given in Table I. Here, the triangles are shown in green, quadrilaterals in yellow, pentagons
in orange, hexagons in red, and the polygons with seven or more sides are in white.

Figure 3 illustrates the use of the polygon construc-
tion method, which corresponds to calculations presented in
Table I. In Fig. 3, vertices match the positions of particles
and all alike polygons drawn with the same color: triangles,
green; quadrilaterals, yellow; pentagons, orange; hexagons,
red; and polygons with seven or more sides, white. We are able
to observe visually the liquid structure and the emergence of
more abundant geometrical defects as a result of the stronger
screening.

B. Melting and freezing of 2D dipole systems

In this section, we explore the solid-liquid phase transition
of 2D electric dipole systems, and we investigate the influence
of screening on a solid-liquid phase transition point. The setup
of the model system is the same as before, with the difference
being that now the temperature of the system is controlled
by a thermostat. The simulations of a phase transition are
comprised of two stages. In the first stage, we start from
a crystal phase by setting the initial value of the coupling
parameter to �D = 500, which corresponds to a temperature
value of T = 0.002 ε/kB. Initially, the system is thermalized
over the 5000 ω−1

D periods of time to ensure that an equilib-
rium state is prepared. After that, the system is heated with a
constant rate equal to dT/dt = 10−6 εωD/kB until the final
value of the coupling parameter �D = 50, i.e., temperature
T = 0.02 ε/kB, is achieved. By noting that the initial and final
values of the coupling parameter should correspond to solid
and liquid states, respectively, we expect to capture a solid
to liquid phase transition (melting) point during the heating
period. In the second stage of simulation, the system starts at
�D = 50. Here, the system is gradually cooled at the same rate

dT/dt = 10−6 εωD/kB until �D = 500 is reached again. By
doing so, we are able to obtain a liquid to solid phase transition
(freezing) point. We note that if the rate of temperature change
is too fast, the system loses its equilibrium state and becomes
erratic far beyond the proper phase transition points. The
chosen rate dT/dt = 10−6 εωD/kB was found to be optimal in
terms of the computational effort and the quality of the results,
and the slower rates must not affect the results substantially.
To dampen the fluctuations in the measured quantities during
phase transition simulations, the averaging has been done over
five simulation runs.

Melting and freezing points can be identified by inspecting
the values of the potential energy, and the orientational and
polygon order parameters. In Figs. 4–6, plots of these quanti-
ties versus temperature are presented, where arrows serve to
discern two stages of the simulation. The abrupt change in
the values of measured quantities during heating and cooling
periods is the sign of the phase transition.

If we first consider the nonscreened case, when the screen-
ing parameter κ = 0, we notice the potential energy in
Fig. 4(a), and the disorder parameter in Fig. 6 undergoes a
sudden increase while overall [Fig. 5(a)] and local [Fig. 5(b)]
OOPs drop to values |〈ψ〉| < 0.1 and 〈|ψ |〉 < 0.6. These
changes are a signature of melting, and we find that melting
takes place in the temperature interval 0.0150 < kBT κ=0

m /ε <

0.0162 (where a subscript indicates melting). Then, as the
system is gradually cooled, an abrupt drop in the poten-
tial energy and the disorder parameter and an increase of
OOPs is observed, which we understand to be freezing of
the system. We find that freezing occurs in the interval
0.0131 < kBT κ=0

f /ε < 0.0145 (where a subscript indicates
freezing).

FIG. 4. The potential energy profile of 2D electric dipole systems during the heating and cooling periods: (a) at no screening, (b) at κ = 1,
and (c) at κ = 2. Red (light gray) and blue (dark gray) vertical dashed lines pass through the melting and freezing points, respectively, and
indicate the coupling parameter values at which phase transition occurs.
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FIG. 5. The overall (a) and local (b) orientational order parame-
ters (OOPs) measured during the heating and cooling periods. Red
(light gray) and blue (dark gray) dots are the melting and freezing
points with red (light gray) and blue (dark gray) vertical dashed lines
passing through these points. The green (rightmost), blue (mid), and
orange (leftmost) curves correspond to κ = 0, 1, and 2, respectively.

Next we set κ = 1. By examining the data in Figs. 4(b),
5, and 6, we obtain the melting range to be 0.0121 <

kBT κ=1
m /ε < 0.0128 and the range of freezing 0.0092 <

kBT κ=1
f /ε < 0.0109. The same analysis of curves at κ = 2

reveals the interval of melting 0.0063 < kBT κ=2
m /ε < 0.0069

and the freezing interval 0.0046 < kBT κ=2
f /ε < 0.0062.

Two things are obvious from the above-presented results.
First, we see that melting and freezing do not follow the same

FIG. 6. The disorder parameter obtained from the polygon con-
struction method shows the quantitative measure of disorder during
the heating and cooling periods. Red (light gray) and blue (dark gray)
vertical dashed lines pass through melting and freezing points and
cross the curves when the disorder parameter approximately equals
0.165. The green (rightmost), blue (mid), and orange (leftmost)
curves correspond to κ = 0, 1, and 2, respectively.

path. This is revealed by the emergence of hysteresis in all
quantities. The hysteresis was also observed in the study of
classical Coulomb systems, where it was shown that hys-
teresis results due to finite melting and cooling rates, and no
hysteresis occurs in the case of infinite simulation time (i.e.,
an infinitesimally small heating/cooling rate) [37,49]. Here,
we extend this statement to electric dipole systems, and we
explain the cause of hysteresis by the finite rate of temperature
change.

Second, the shifts of phase transition points to lower values
of temperature are observed as κ increases. Also, it is worth
noting that data presented in Figs. 4–6 show a correlation in
measured quantities. For example, during the heating period
at the point where the potential energy starts to show signs
of melting, the orientational order and disorder parameters
also capture this point, reflected by the abrupt increase of
the downward and upward trend of the curves, respectively.
The same is true when the system is cooled and undergoes
freezing.

From the inspection of data in Figs. 4–6 we found only in-
tervals of melting and freezing, and we have not yet addressed
the exact phase transition points. It is clear that melting and
freezing points of the system should occur somewhere in the
above-estimated ranges, but to find where exactly we refer to
the universality feature of the overall OOP [37]. Schweigert
et al. [37] have formulated that melting of 2D lattices occurs
when the overall OOP becomes |〈ψ〉| ≈ 0.45, at which point
the overall OOP drops abruptly to values close to zero due
to the loss of order in the system [e.g., such behavior can
be seen in Fig. 5(a)]. The authors ran simulations with bare
and screened Coulomb, Lennard-Jones, and 1/r12 repulsive
interaction potentials, and they checked the validity of the
criteria for these systems. Positive results allowed them to
conclude about the universality of the proposed criterion [37].

Thus, in order to find exact melting points, we look for
those points in Fig. 5(a) where curves cross |〈ψ〉| ≈ 0.45,
which is drawn as the horizontal black dashed line. By locat-
ing intersection points and drawing projection lines, which are
red vertical dashed lines, to the temperature axis, we obtain
melting points for successive screening parameters as T κ=0

m ≈
0.0159 ε/kB, T κ=1

m ≈ 0.0125 ε/kB, and T κ=2
m ≈ 0.0067 ε/kB.

Also, if we look from the viewpoint of 〈|ψ |〉 shown in
Fig. 5(b), we notice that melting of the system occurs when the
local OOP attains the value 〈|ψ |〉 ≈ 0.67. The conclusion is
drawn from the observation that the value 0.67 corresponds to
the intersection of 〈|ψ |〉 curves with the red dashed projection
lines of melting points. To locate exact freezing points during
the cooling period, we perform the same analysis. But now,
liquid to solid transitions are found from Fig. 5(b) by locating
points where curves cross 0.67. The freezing points found in
this way are T κ=0

f ≈ 0.0143 ε/kB, T κ=1
f ≈ 0.0109 ε/kB, and

T κ=2
f ≈ 0.0057 ε/kB.

In Fig. 5, melting points are correctly spotted by both over-
all and local OOP, but when it comes to freezing points there is
inconsistency between |〈ψ〉| and 〈|ψ |〉 indicated by blue verti-
cal dashed lines passing though the freezing points. The values
of |〈ψ〉| are well below the reference value 0.45, whereas
〈|ψ |〉 marks freezing of the system. The reason behind the
low values of |〈ψ〉| lies in the fact that it detects domains in
the structure with different overall orientational order [48,49],
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FIG. 7. The evolution of orientational order parameters (OOPs) and disorder parameter at the fixed values of temperature (close to the
phase transition point). The prescribed temperatures are T κ=0 = 0.01488 ε/kB, T κ=1 = 0.01157 ε/kB, and T κ=2 = 0.00594 ε/kB for three
cases of screening.

and ψ j of these different domains tends to cancel each other
when |〈ψ〉| is computed using Eq. (14). The initial state of
the system during the cooling period corresponds to liquid,
and as cooling gradually progresses, metastable domains are
formed giving rise to the above-mentioned inconsistency. It
is important to note that such a process was observed in the
experiment on freezing of colloidal monolayers composed of
diameter-tunable microgel spheres [48]. Therefore, the ob-
served inconsistency in detecting the freezing point between
|〈ψ〉| and 〈|ψ |〉 is not merely a simulation artifact. For this
reason, we come to the conclusion that liquid to solid phase
transition points should be found relying on the local OOP,
i.e., one should use Eq. (15) rather than Eq. (14). Note that in
the heating period of phase transition simulations, the system
starts from an equilibrium structure (perfect crystal) that is
free of domains with different orientational order, and as a
result |〈ψ〉| correctly detects solid to liquid phase transition
points.

The conclusions reached on melting and freezing points by
analyzing OOPs were used to analyze the behavior of the dis-
order parameter during melting and freezing as presented in
Fig. 6. The red and blue vertical dashed lines indicate melting
and freezing points, respectively, and they cross the curves
of the disorder parameter when they are approximately equal
to 0.165 (shown as a black horizontal dashed line). Hence,
according to the disorder parameter, the phase transition of
the system occurs when the sum of nontriangular polygon
order parameters, in other words P4 + P5 + P6 [see Eq. (16)],
reaches a value of 0.165. Since the disorder parameter is based
on the geometrical description of the structure, it may as well
serve as another universal parameter for identifying phase
transition points.

Turning our attention to Fig. 4 once again, we find for three
cases of screening that melting of the system occurs when
the potential energy per particle becomes 〈U 〉κ=0

m ≈ 0.5897 ε,
〈U 〉κ=1

m ≈ 0.2244 ε, and 〈U 〉κ=2
m ≈ 0.0552 ε. And freezing

occurs when 〈U 〉κ=0
f ≈ 0.5887 ε, 〈U 〉κ=1

f ≈ 0.2233 ε, and
〈U 〉κ=2

f ≈ 0.0547 ε.
It should be noted, however, that the obtained melting

and freezing points and respective potential energy values
are for a finite rate of temperature change. Thus, based on
the above-presented results, we report that the true phase
transition points of 2D electric dipole systems with bare and
screened interactions must lie in the intervals �κ=0

D = 67 ± 4,
�κ=1

D = 86 ± 6, and �κ=2
D = 163 ± 13.

In Refs. [37,49], by performing equilibrium MD simu-
lation at different values of temperature, it was shown that
over the course of the phase transition there is an interval of
temperatures around the phase transition point within which
Coulomb systems have the same probability to exist in crys-
talline and liquid states. We observed similar behavior in the
case of 2D dipole systems. This is illustrated in Fig. 7, where
the evolution of OOPs and the disorder parameter is shown
as a function of time for three cases of screening at tempera-
ture values T κ=0 = 0.01488 ε/kB, T κ=1 = 0.01157 ε/kB, and
T κ=2 = 0.00594 ε/kB. Here the thermostat was switched on
during simulations to keep the temperature at the prescribed
value. From Fig. 7 we see that the system switches between
crystalline and liquid states. Therefore, the effect of hysteresis
is most likely due to the finite heating and cooling rates. In
other words, we conclude that there should be no distinct
hysteresis in the limit of infinitesimally small rates of heating
and cooling.

V. THE EFFECT OF SCREENING ON DYNAMICAL
PROPERTIES

A. Longitudinal and transverse waves

The dynamical properties of bare and screened 2D electric
dipole systems have been examined during the calculation of
the longitudinal and transverse collective dispersion modes
and the mean-square displacement of particles. Longitudinal
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FIG. 8. (a)–(c) Longitudinal and (d)–(f) transverse dispersion
relations of 2D electric dipole systems. Results correspond to the
liquid state (�D = 60) and the different strengths of the screening
controlled by κ .

and transverse collective excitation spectra were computed
using the following equations [51]:

L(k, ω) = 1

2πNtmeas
|Ft [λ(k, t )]|2,

T (k, ω) = 1

2πNtmeas
|Ft [τ (k, t )]|2,

where tmeas stands for the measurement time, Ft denotes the
temporal Fourier transform, and λ(k, t ) and τ (k, t ) are the
longitudinal and transverse components of the microscopic
current j(k, t ) = ∑N

j=1 v j (t ) exp (ik · r j (t )), which are given
by

λ(k, t ) =
N∑

j=1

v jx(t ) exp (ikx j (t )), (17)

τ (k, t ) =
N∑

j=1

v jy(t ) exp (ikx j (t )). (18)

In Eqs. (17) and (18), the components of velocity v j (t ) and
position r j (t ) vectors of particle j at time t are obtained by
the MD simulation, and k is the wave number corresponding
to the wave vector taken to be parallel to the x-axis.

We calculated microscopic currents given by Eqs. (17) and
(18), and then we performed the temporal Fourier transform
to obtain the data of the longitudinal L(k, ω) and transverse
T (k, ω) current fluctuation spectra. To smooth out the data

FIG. 9. (a)–(c) Longitudinal and (d)–(f) transverse dispersion
relations of 2D electric dipole systems. Results correspond to the
solid state (�D = 500) and the different strengths of the screening
controlled by κ .

and obtain the most reliable results, the calculations have
been averaged over 10 simulation runs, where in each run
tmeas = 1000 ω−1

D . The results of the corresponding dispersion
relations (i.e., the dependence of the collective oscillation
wave frequency ω on the wave number k) are shown in
Figs. 8 and 9. The dispersion shown in Fig. 8 describes the
liquid state at the value of the coupling parameter �D = 60
and different values of the screening parameter κ . Note that
for κ = 0 and �D = 60, our data are in agreement with the
results of Ref. [9]. In Fig. 8, we observe an increase of the
peak width with an increase in wave number, which implies
a shorter lifetime of excitations at larger wave numbers. Both
longitudinal and transverse excitation spectra become more
degraded as κ increases. The tendency of peaks to spread with
respect to κ is also seen in Fig. 9, which corresponds to the
solid state with �D = 500. However, in this case peaks are
narrower and have a typical pattern for solid systems with the
feature of preserving long lifetime excitations.

To see the changes in the dispersion due to the screening
effect in more detail, the trace of peaks is extracted from both
Fig. 8 and Fig. 9 and combined as depicted in Fig. 10. From
Fig. 10 we can clearly notice the decay of an amplitude of
the dispersion curves as a result of screening. The decay has
nearly the same impact for both liquid [Figs. 10(a) and 10(b)]
and solid [Figs. 10(c) and 10(d)] states. Therefore, screening
results in a redshift of the collective excitation spectra. This
shift in dispersion curves of L(k, ω) and T (k, ω) implies the
changes in values of the respective sound speeds.
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FIG. 10. The peaks of the dispersion relation (obtained from
Figs. 3 and 4) at (a) and (b) liquid, and (c) and (d) solid states of 2D
electric dipole systems. The green (upper), blue (mid), and orange
(lower) curves correspond to κ = 0, 1, and 2, respectively.

Sound speeds were calculated in the long-wavelength
regime (k → 0) through the equation

lim
k→0

ω

k
= sL/T ,

where sL and sT denote longitudinal and transverse sound
speed, respectively.

The results of sound speed calculations for the solid state
are summarized in Table III, from which we see that the
longitudinal sound speed is decreased by 23% as κ = 0 is
increased to κ = 1, and dropped by 50% at κ = 2 compared
to the nonscreened case. For transverse sound speeds, we
estimated a 9% drop at κ = 1 and a 33% drop at κ = 2.

In the liquid state, �D = 60, longitudinal sound speeds are
sL ≈ 1.147 ωDa at κ = 0, sL ≈ 0.881 ωDa at κ = 1, and sL ≈
0.594 ωDa at κ = 2. The changes of longitudinal sound speeds
due to the screening in percentage ratio are about the same as
in the solid state.

In the liquid state, we cannot find transverse sound speeds,
because of a “q-gap,” i.e., the domain at ka � 1 where
transverse excitations are absent [52] [see Fig. 10(b)]. From
Fig. 10(b) one can observe that screening results in a larger
“q-gap.” For example, the “q-gap” is increased from ka ≈
0.17 in the case of κ = 0 to ka ≈ 0.26 at κ = 1, and then to
ka ≈ 0.44 at κ = 2.

TABLE III. Longitudinal sL and transverse sT sound speed val-
ues of 2D dipole systems at �D = 500 and for three values of
screening parameter κ .

κ 0 1 2

sL/ωDa 1.167 0.895 0.594
sT /ωDa 0.378 0.343 0.252

FIG. 11. The mean-square displacement (MSD) of particles eval-
uated at (a) liquid (�D = 60) and (b) solid (�D = 500) states for
three values of κ . Solid black lines are tangent to the MSD curves
at time intervals tωD < 0.5 and 50 < tωD < 100 with slopes corre-
sponding to diffusion exponent γ in Eq. (19). The green (lower),
blue (mid), and orange (upper) curves correspond to κ = 0, 1, and 2,
respectively.

B. Mean-square displacement

Now, we turn our attention to the mean-square displace-
ment (MSD) of particles, which is related to the diffusive
characteristics of the system. In particular, we investigated the
impact of screening on MSD. The MSD is calculated through
the equation

MSD(t ) = 〈|r(t ) − r(0)|2〉.
The MSD can be used to classify the diffusion type in

liquids by noting the proportionality

MSD(t ) ∝ tγ , (19)

where γ is the diffusion exponent, which defines the motion as
follows: γ = 2, ballistic; γ = 1, diffusive; and γ �= 1, anoma-
lous.

The physically meaningful data on the MSD are limited
with respect to time due to the finite length of a simulation
box [53–55]. This limit is estimated as L/sL. Using the above-
calculated values of the sound speed, sL, we estimated that for
N = 5041 (with L = √

πNa) the meaningful time intervals
are tκ=0 < 107 ω−1

D , tκ=1 < 140 ω−1
D , and tκ=2 < 211 ω−1

D .
Figure 11 presents the results of MSD calculations for 2D
electric dipole systems at liquid (�D = 60) and solid (�D =
500) states with three different values of κ . Solid black lines
in Fig. 11, which are shown tangent to each curve, serve
to display the behavior of each MSD curve and classify the
motion type in accordance with Eq. (19) at time intervals
tωD < 0.5 and 50 < tωD < 100.

In both liquid and solid states, the beginning of the par-
ticles’ MSD is characterized by the ballistic motion. After
about tωD ≈ 2 the effect of screening becomes evident, which
is indicated by the shift of curves to larger values. These shifts
imply that, at both �D = 60 and 500, particles become more
mobile with increasing κ .

If we consider two cases in more detail, first at �D = 60,
we note from Fig. 11(a) the increase of the diffusion exponent
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from γ ≈ 1.05 (almost normal diffusion) when there is no
screening to γ ≈ 1.13 at κ = 1.0, and to γ ≈ 1.19 at κ = 2.0.
This clearly shows the emergence of superdiffusive motion as
a result of screening in the case of a liquid state at 50 < tωD <

100.
In the case of a solid state, at �D = 500, the MSD curve

of κ = 0 in Fig. 11(b) has a very low diffusion exponent
γ ≈ 0.06, which is explained by the fact that in a crystal
most particles wander around a point, i.e., caged. The same
behavior is observed in the studies of transport coefficients of
classical 2D Yukawa systems when the coupling parameter is
chosen large [53]. The diffusion exponent changes to γ ≈ 0.1
at κ = 1 and noticeably to γ ≈ 0.25 when we set κ = 2.
Therefore, screening results in more mobile particles.

We note that the above-estimated diffusion exponents are
valid only at tωD < 100. Data presented for tωD ∼ 100 do not
imply the limiting values of diffusion rates at long times. Note
that the determination of such a limiting diffusion rate value
for 2D strongly correlated liquids is still an open problem
(see, e.g., Ref. [56]). The simulations of 2D Yukawa liquids
indicated that the diffusion exponent has a trend toward unity
at long time scales (t > 105ωp, with ωp being the plasma
oscillation frequency) [54]. It is probable that the diffusion
exponent of the 2D dipole system in the liquid state will show
a similar behavior at sufficiently long times. The confirmation
of this requires further research with a much larger number of
particles and much longer times of simulation.

VI. CONCLUSIONS

We investigated the 2D system of electric dipoles in screen-
ing bulk media. The effect of screening on structural and
dynamical properties and phase transition points was pre-
sented.

In the case of dynamical properties, the screening impact
manifests in the decrease of dispersion relation amplitudes
of both longitudinal and transverse waves. It was shown that
the sound wave velocity decreases due to screening. Diffusive
properties of 2D dipole systems also undergo changes as a re-
sult of screening. In the liquid state, the motion switches from
normal to anomalous type (superdiffusion) at 50 < tωD <

100, and in the solid state the displacement of particles from
a stationary point becomes more substantial.

The analysis of RDF data shows that the system loses
its structural order due to screening, which is also indicated
by the drop in the values of orientational and polygon order
parameters. The fact that the structural order in the system
diminishes as the degree of screening increases means that
the solid-liquid transition of the system is forced to occur at
larger values of the coupling parameter (lower temperatures).

The investigation of the behavior of the disorder parameter
(which is based on the polygon construction method) in 2D
dipole systems during melting and freezing points has been
performed. A comprehensive analysis of the value of the
disorder parameter corresponding to the melting as well as
freezing points has been realized with the help of such quanti-
ties as the overall and local OOPs, and the potential energy of
the system. As a result, it was revealed that the phase transition
of the system occurs when the sum of nontriangular polygon
order parameters (i.e., the disorder parameter) has a value
0.165. Moreover, we found that the local orientational order
parameter [given by Eq. (15)] has a value 0.67 at the phase
transition point. These results are valid for three different
potentials [with κ = 0, 1, and 2 in Eq. (12)]. In analogy with
previous studies of the universality of the orientational order
parameter value for the phase transition [37], it is expected
that the obtained values of the disorder and local orienta-
tional order parameters corresponding to the phase transition
point are universal for other 2D systems with a repulsive pair
potential.

We emphasize that the average orientational order parame-
ter [computed using Eq. (14)] effectively captures the melting
point, but not the freezing point during dynamic cooling (i.e.,
with a finite cooling rate). This was also observed in exper-
iments [48]. Simulation results clearly show that the local
orientational order parameter [see Eq. (15)] and the disorder
parameter are more suitable for the investigation of freezing.
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