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Superfast ion scattering by solar wind discontinuities
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Large-amplitude fluctuations of the solar wind magnetic field can scatter energetic ions. One of the main
contributions to these fluctuations is provided by solar wind discontinuities, i.e., rapid rotations of the magnetic
field. This study shows that the internal configuration of such discontinuities plays a crucial role in energetic ion
scattering in pitch angles. Kinetic-scale discontinuities accomplish very fast ion pitch-angle scattering. The main
mechanism of such pitch-angle scattering is the adiabatic invariant destruction due to separatrix crossings in the
phase space. We demonstrate that efficiency of this scattering does not depend on the magnetic field component
across the discontinuity surface, i.e., both rotational and almost tangential discontinuities scatter energetic ions
with the same efficiency. We also examine how the strong scattering effect depends on the deviations of the
discontinuity magnetic field from the force-free one.
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I. INTRODUCTION

The supersonic solar wind is filled by large-scale mag-
netic field fluctuations, such as Alfven waves and solar wind
discontinuities (SWD) [1,2]. Recent Parker Solar Probe ob-
servations found an abundance of such SWD at small radial
distances from the Sun [3,4]. These fluctuations contribute
significantly to the solar wind heating [5], as well as accelera-
tion [6] and scattering of energetic ions [7,8]. Such scattering
results in random jumps of ion pitch angles due to the ion
interaction with magnetic field fluctuations [9], which are
dominated by magnetic field rotations [10,11].

Energetic ion (more than a few keVs of thermal energy)
scattering is responsible for the cross-field transport [12] af-
fecting ion propagation time in the heliosphere [13] and ion
spatial distributions [14]. The classical theory of ion scattering
is based on consideration of an ensemble of random magnetic
field fluctuations [7,8,15], whereas the internal structure of
such fluctuations has not been studied in detail. Compres-
sional fluctuations, e.g., high-β current sheets, are known to
be effective ion scatters [16]. However, solar wind fluctuations
are dominated by compressionless magnetic field rotations
(so-called rotational SWD, see [1,10]), and there is no theory
describing the role of the SWD internal structure in the ion
scattering. This study focuses on the ion scattering by such
SWD consistent with observed magnetic field configurations.

Figure 1 shows a typical example of rotational SWDs
observed by the ARTEMIS spacecraft [17] at 1 AU. The
magnetic field rotates while |B| ≈ const [see Fig. 1(a)]: the
reversal of the magnetic field component along the maximum
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variance direction, Bl is compensated by a peak of the abso-
lute value of the intermediate variance direction component,
Bm [see Fig. 1(b)]. Using the solar wind velocity projected
onto the normal direction to the SWD surface, that of the
minimum variance, n (e.g., Ref. [18]), we transform time to
space rn and normalize it to the proton inertial length dp =√

mpc2/4πnpe2, where np is the solar wind density. The spa-
tial scale of this SWD is few dp, and the current density peak
reaches jm ≈ (c/4π )∂Bl/∂rn ∼ 30 nA/m2 [Fig. 1(c)]. These
are typical scale and jm for the most intense SWDs with Bl

magnitude B0 comparable to the |B| [18–20]. Ion scattering is
expected around the strongest magnetic field gradient [21,22],
i.e., around the Bl reversal.

II. BASIC EQUATIONS

We fit the observed magnetic field around the discontinuity
center (Bl reversal) by a simple model: Bl ≈ B0(rn/L), Bn =
const, Bm =

√
B2

0 − B2
l ≈ B0(1 − r2

n/2L2), where L is the dis-
continuity thickness, L ≈ cB0/4π jm ≈ 250 km. The ion (of
mass m and charge q) motion in such a field is given by the
Hamiltonian:

H = 1

2m
p2

n + 1

2m

[
pl − qB0

c

(
rn − r3

n

6L2

)]2

+ 1

2m

(
pm − qBn

c
rl + qB0

c

r2
n

2L

)2

, (1)

where momenta p = (pl , pm, pn) are conjugate to coordinates
r = (rl , rm, rn). We introduce dimensionless variables
(x, z) = (rl − pmc/qBn, rn)/

√
Lρ, (px, pz ) = (pl , pn)/

√
hm

(note pm = const because ∂H/∂rm = 0), H → H/h,
κ = (Bn/B0)

√
L/ρ, where ρ = √

2hmc/qB0 and h =
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FIG. 1. Example of a discontinuity observed by ARTEMIS
[17] on February 2, 2020: (a) magnetic field in the discontinuity
coordinate system (l is the maximum variance direction, m is the in-
termediate variance direction), (b) magnetic field hodogram (Bl , Bm )
and the circle (Bm − 0.75 nT)2 + B2

l ≈ 36 nT2 (red dased curve),
(c) current density profile, (d) ion energy spectrum with the solar
wind flow energy mpv

2
sw/2 shown with red dashed line; two bottom

axes show κ parameter calculated for the spectrum energy minus the
flow energy, �E = E − mpv

2
sw/2 (�E is zero for ions moving with

the solar wind; two Bn values are used for κ). We show κ for the
energetic part of spectrum only as interaction of these ions with SWD
is considered. Magnetic field at 0.25-s resolution is from the fluxgate
magnetometer [23], whereas ions at 4-s resolution, the spin period, is
from the electrostatic analyzer [24]. The local coordinate system and
the current density are obtained from maximum variance analysis
[25] and timing, respectively (see details in Ref. [18]). ARTEMIS
data are processed with SPEDAS V3.1 [26]. Two ARTEMIS obser-
vations are not sufficient to accurately estimate the direction along
the normal n to the SWD surface (see discussion in Ref. [27]), and
thus we use a range of Bn values (normalized to the Bl magnitude)
for the κ calculation in panel (d).

(qB0L/mc)2m (i.e., ρ = L for this normalization) and rewrite
Eq. (1) as:

H = 1

2
p2

z + 1

2

(
px − z + z3

6

)2

+ 1

2

(
κx − z2

2

)2

. (2)

The distinctive feature of Hamiltonian in Eq. (2) is the term
∼z3/6 describing magnetic field Bm peak; previous analysis
of ion motion was limited to Hamiltonians with p2

x/2 [22,28]
or (px − z)2/2 [29,30] terms, describing discontinuities with
Bm = 0 and Bm = const. In this study we demonstrate that
the new term ∼z3/6 qualitatively changes the ion scattering
efficiency.

In most discontinuities the observed Bn/B0 � 1 [31], i.e.,
κ � 1 and variables (κx, px ) change much slower than (z, pz )
[see the range of κ values in Fig. 1(d)]. This determines the
character of the ion interaction with discontinuities. For frozen
(κx, px ), the Hamiltonian (2) describes periodic motion in the
(z, pz ) plane with conserved generalized magnetic moment
Iz = (2π )−1

∮
pzdz. For slow changes of (κx, px ) Iz remains

conserved, now as an adiabatic invariant [32]. Iz only changes
due to a significant change of the trajectory configuration [33].
The conservation of Iz and energy [Hamiltonian in Eq. (2) is
conservative] is sufficient to fully integrate the ion motion, and
thus without Iz destruction there is no ion scattering at discon-
tinuities. Generally, the adiabatic invariant Iz is conserved with
an exponential accuracy ∼ exp(−const/κ2) [21,34,35], i.e.,
ion scattering is quite weak (slow). However, the Hamiltonian
in Eq. (2) describes two different types of ion motions in
the (z, pz ) plane [see Fig. 2(a) showing two types of phase
portraits] and change of one type of motion to another type
corresponds to an Iz jump of the order of ∼κ or ∼1 due to
crossing of the separatrix demarcating phase domains with
two types of motions [36–38].

Jumps of Iz due to separatrix crossings have been stud-
ied for special cases of the Hamiltonian of Eq. (2) with
∼p2

x/2 [22] and ∼(px − z)2/2 terms [30]. In both systems
these jumps are found to be random with an amplitude ∼κ

and zero mean value, 〈�Iz〉 = 0, after averaging over many
separatrix crossings, i.e., there is slow diffusion of Iz with vari-
ance 〈(�Iz )2〉 ∼ κ2 and diffusion rate 〈(�Iz )2〉/τ ∼ κ3 � 1
[39], where τ ∼ 1/κ2 is the timescale between two separatrix
crossings [timescale of the ion motion in the (κx, px ) plane].

Besides the exponential ∼ exp(−const/κ2) or slow ∼κ3

destruction of Iz for systems with κ � 1, there also exists a
so-called geometrical destruction (with 〈�Iz〉 ∼ 1) predicted
theoretically [40] and not yet found for conservative Hamil-
tonians describing ion interaction with discontinuities (see
discussion in Ref. [30]). In this study we show that the term
∼z3/6 (i.e., Bm peak) results in such geometrical Iz destruction
and produces very fast ion scattering.

III. JUMPS OF THE ADIABATIC INVARIANT

To show the effect of Iz change due to separatrix crossings,
we color the (κx, px ) plane according to the phase portraits
in a (z, pz ) plane. Note the two types of phase portraits cor-
respond to two profiles of effective potential energy U (z) =
H − p2

z/2: There are two potential wells [one or two possible
orbits in the (z, pz ) plane at fixed H] in the left portrait in
Fig. 2(a), and there is a single potential well [one possible
orbit in the (z, pz ) plane at fixed H] in the right portrait
shown in Fig. 2(a). In Figs 2(c) and 2(d) the region with a
single possible orbit is yellow and the region with two possi-
ble orbits is red (lines 	1−5 demarcate these regions). Orbits
crossing 	1−4 do not change their potential well of U (z), i.e.,
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FIG. 2. Properties of Hamiltonian system of Eq. (2) for total energy H = 1/2. (a) Phase portraits of Hamiltonian (2) at frozen (κx, px ): H
values of each curve are shown in the plot; κx = 2.5, px = 1 in the left panel and κx = 0, px = 0.5 in the right panel. (b) Ion trajectories for
many periods of slow motion in the (κx, px ) plane (κ = 0.01); color shows instantaneous value of Iz; arrows show different types of orbits:
Except for the permanently closed orbits that never cross the separatrix, all other curves are sections of the same orbit reflecting from 	5 and
changing Iz at these moments. All the orbits have H = 1/2 and initial (κx, px ) = (5.5, 2.0), (0.0,−3.5), (0.0, 0.5). (c) Plane (κx, px ) colored
according to the type of motion in (z, pz ) plane with frozen (κx, px ): Yellow denotes a single possible orbit in the (z, pz ) plane at fixed H = 1/2
(the right phase portrait in panel (a) or the left phase portrait in panel (a), but with only one orbit having H = 1/2), red denotes two possible
orbits in the (z, pz ) plane at fixed H = 1/2 [the left phase portrait in panel (a)], and gray denotes the absence of solutions. (d) Zoomed-in
section of (c) at κx ∈ [0.85, 1.05] and px ∈ [−0.1, 0.1]. (e) One-dimensional profiles of potential energy U (z) = H − p2

z/2 at frozen (κx, px ):
Numbers correspond to # marks in (c).
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the corresponding particles continue oscillating in the same
well. Separatrix crossings occur when orbits cross (or reflect
from) the boundary 	5. Particles moving with κx decreasing
at crossing 	5 change oscillations in one of the two potential
wells to oscillations covering the both wells (and vice versa
for particles moving with κx increase). Particles moving with
κx decrease and reflecting from 	5 change oscillations in one
of the two potential wells to oscillations in another well. Such
crossings correspond to change of the well that results in Iz

jump (this 2π�Iz jump equals to the difference of areas of
two regions surrounded by the separatrix in the (z, pz ) plane
and does not depend on κ , see Ref. [33]). This is why Iz always
changes when the orbit reflects from 	5 in (κx, px ) plane [and
thus switches from oscillations in one well to oscillations in
another well in (z, pz ) plane]: Figure 2(b) demonstrates the
change of Iz (shown in color) for a single orbit.

There are two main populations of trajectories in the
(κx, px ) plane. The first consists of trajectories reflected
from 	5 curve and quickly scattered due to �Iz ∼ 1 jumps.
The second consists of so-called closed trajectories trapped
within the discontinuity, which never arrive close to 	5 [see
Fig. 2(b)]. Exchange between these two ion populations
should be controlled by external forces and dissipative pro-
cesses (e.g., wave-particle interactions [41] or discontinuity
evolution [10,42]). Such evolution and (or) dissipation makes
the system nonconservative (i.e., particle energy changes dur-
ing particle interaction with the discontinuity) and results in
evolution of the boundary separating these two populations
in the phase space [39,43]. A third (minor) population of
quasiclosed trajectories that cross 	5 rarely is quite small for
Hamiltonian (2). Let us discuss peculiarities of these three
populations regarding their interaction with 	5.

The first two populations are as follows: (i) regular trajec-
tories never approaching 	5 with Iz ≈ const [in the (κx, px )
plane these trajectories occupy region located to the left from
	5] and (ii) transient trajectories reflecting from 	5. Due to
geometrical Iz jumps trajectories of this latter population are
characterized by rapid destruction of Iz invariant. The pop-
ulation (iii) consists of ion trajectories that cross 	5. We
can call these trajectories quasiregular, because ions on these
trajectories can spend a long time on the boundary of the reg-
ular trajectory region (Iz ≈ const for this motion), but rarely
does such a trajectory cross 	5 and go to the (κx, px ) region
of transient trajectories. Figure 3 shows an example of this
quasiregular behavior: The ion moves along a quasiclosed
orbit on the left from 	5 (within the region of closed trajec-
tories) for quite a long period of time; then, finally, the weak
scattering in Iz results in crossing 	5 and escape into the region
of transient trajectories. An analog of this orbit with the ion
moving in the opposite direction would be represented by the
ion approaching 	5 from the right and then crossing 	5. Note
that the absolute majority of trajectories approaching 	5 from
the right are transient trajectories, which are reflected from 	5.

To estimate the amount of such quasiregular trajectories
we use the Poincaré section technique: We run 105 trajec-
tories with initial 10 values of κx ∈ [−1, 1], px = 0, and
uniformly distributed z; then we plot the points where the tra-
jectories cross the z = 0 plane with pz > 0. These points are
spread within the circle (κx)2 + p2

x = 2H and their distribu-
tion shows the three populations of trajectories (see Fig. 4): (i)

p x

−2

−1

0

1

2

κx
−1 0 1 2 3

FIG. 3. Quasiregular trajectory (black curve) of the ion moving
along a quasiclosed orbit within the region of regular trajectories and
then escaping this region by crossing 	5. Blue denotes the boundary
of the region of allowed particle motion (outer curve) and 	1-	5

curves.

Ions moving along regular trajectories fill closed curves in the
Poincaré section; (ii) quickly scattered ions on transient trajec-
tories fill some domain in the Poincaré section by random and
sparse points (note the density of points is determined by the
typical timescale between two successive crossings of z = 0
plane, and rapidly scattered ions can get quite small Iz cor-
responding to strongly elongated trajectories in the (κx, px )
plane with long excursions between two z = 0 crossings); and
(iii) ions moving along quasiregular trajectories cross z = 0

FIG. 4. Poincaré section of the system (2): The closed red curves
denote particles moving along regular trajectories; black random
sparse dots denote particles moving along transient trajectories; blue
random dense dots denote particles moving along quasiregular tra-
jectories, which cross 	5.
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(b)(a)

FIG. 5. Panel (a) shows Iz distributions and panel (b) shows
pitch-angle distributions (we use pitch-angle values evaluated at the
z = 0 plane): (red) κ = 0.05, (green) κ = 0.01, (blue) κ = 0.01, and
Hamiltonian (2) contains p2

x/2 instead of (px − z + z3/6)2
/2. The

initial distribution is shown by gray, whereas all colored distributions
correspond to κt = 100 simulation time.

with a short period (regular trajectories correspond to large Iz),
but positions of crossings are randomly distributed. Figure 4
demonstrates that quasiregular trajectories (crossing 	5) fill a
layer separating regular trajectories and transient trajectories,
but the total area of these quasiregular trajectories is smaller
than the areas filled by both regular and transient trajectories.

IV. STATISTICS OF ADIABATIC INVARIANT JUMPS

Figure 2(b) shows that different sections of orbit crossing
the separatrix are associated to quite different Iz values. This
is an important property of the geometrical Iz destruction:
Jumps 〈�Iz〉 ∼ 1 do not depend on κ and are quite large, i.e.,
even for arbitrarily small κ the ion scattering is fast and effec-
tive. Note that κ → 0 means the transition between rotational
(with Bn 
= 0) and tangential (Bn → 0) types of SWDs [44].
Figure 5 (left panel) shows evolution of initially narrow Iz

distribution for two κ values: Geometrical jumps of Iz quickly
widen Iz distributions. The scattering rate in the slow time
κt does not depend on κ . However, the rotation period τ of
particle motion in the (κx, px ) plane is of order 1/κ . This
period determines the timescale of the ion interaction with
the same SWD, i.e., after one separatrix crossing ions turn
around at large κx and come back to the separatrix again after
∼τ period. Ion scattering and destruction of Iz is equivalent to
the pitch-angle scattering, because Iz determines the ion pitch
angle, e.g., at z = 0, px = 0 the ion pitch angle is defined
as cos α = v · B/Bv = [κx +

√
2h − (κx)2]/

√
1 + κ2. Each

trajectory in the (κx, px ) plane is associated with some Iz

value, and jump of Iz means change of trajectory. As each
trajectory is characterized by some κx at px = 0 crossing,
jumps of Iz result in changes of this κx [see Fig. 2(b)].
Thus, Iz jumps lead to values of κx at px = 0 jumps and
to α = α(κx) jumps (note h = const for ion scattering). Fig-
ure 5 (right panel) shows evolution of pitch-angle distributions
recalculated from Iz distributions: Starting with a narrow α

distribution, ions are quickly scattered and fill a broad α

range.
To demonstrate the effect of magnetic field component

Bm on ion scattering we compare Iz, α distributions ob-
tained for Hamiltonian (2) with the (px − z + z3/6)2 term

(b)(a)

FIG. 6. (a) Distribution of characteristics of ion-scale discon-
tinuities from Ref. [18] statistics: compressionality �B/〈B〉 (with
�B = max B − min B) and Bm/B0. (b) Iz distributions for κ = 0.01
and different Bm/B0. Gray denotes the initial Iz distribution.

(Bm peak) and with the p2
x/2 term (Bm = 0; classical com-

pressional discontinuity, see Ref. [22]). Figure 5 shows
that in the absence of Bm peak (i.e., when Bm = 0) the
ion scattering is quite weak: Iz, α distributions are nar-
row peaks around the initial distribution (in agreement
with theoretical predictions of slow Iz destruction, see
Refs. [36,37]).

Although Fig. 1 shows almost force-free discontinu-
ity (B ≈ const), the Bm magnitude is slightly smaller than
Bl magnitude, i.e., the field model B2

m + B2
l = const in

Hamiltonian (2) is an approximation. To study ion interaction
with discontinuities having Bm/B0 < 1 we consider statistics
of ion-scale L ∼ di discontinuities from [18]. Figure 6(a)
shows Bm/B0 distribution and �B/〈B〉 (deviation from the
force-free condition) for ∼250 individual discontinuities:
There is a significant fraction of Bm/B0 ∈ [0.5, 0.75] events,
whereas for most of events �B/B ∼ 0.03. To examine how
effect of strong Iz destruction depends on Bm/B0 we plot Iz dis-
tributions for κt = 100 simulation time and different Bm/B0

values in Hamiltonian (2). For Bm/B0 > 0.75 the Iz destruc-
tion rate is comparable to one for Bm/B0 = 1, whereas for
Bm/B0 < 0.75 the Iz destruction rate is smaller and resulted
Iz distribution is narrower. Therefore, the effect of the fast Iz

destruction remains actual for a wide range of observed Bm/B0

values. Note we consider rotational discontinuities that are
typically Alfvenic-type structures with B ≈ const [10,18,31],
but solar wind ions also interact with various compressional
structures contributing to the solar wind magnetic field spec-
trum [45,46], e.g., mirror mode structures (e.g., Refs. [47,48])
and interplanetary shocks (e.g., Refs. [49–51]). Investiga-
tion of ion scattering by such structures (with Bm/B0 � 1
and asymmetrical Bl profiles) deserves a separate study. An
important element of compressional structures with the ion
kinetic scales is a polarization electric field forming due to
the decoupling of ion and electron motions (e.g., Ref. [52]).
Such field almost absents in the force-free discontinuities
[53] but can strongly influence ion scattering in compres-
sional discontinuities [54]. Therefore, further investigations
of ion interaction with partially force-free and compressional
structures would require inclusion polarization fields into
consideration.
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V. DISCUSSION AND CONCLUSIONS

In Hamiltonian (2), κ determines the time interval between
two scatterings [a timescale of one period of ion motion in the
(κx, px ) plane]. In systems with multiple SWDs, the timescale
between scatterings would be partially controlled by the SWD
occurrence rate, which does not depend on κ . This further
reduces the importance of Bn (or κ) value for the ion scattering
and makes separation between almost tangential (small but
finite Bn) and rotational SWDs unimportant for determination
of their role in ion scattering. Thus, we show that Bn ampli-
tude (κ value) does not control the ion scattering rate in the
presence of geometrical Iz destruction, i.e., ions are similarly
scattered by rotational and almost tangential (with small, but
finite Bn) SWDs.

This scattering is a universal mechanism for SWDs with
the Bm peak comparable to the Bl magnitude (the most
common configuration of compressionless SWDs, e.g.,
Refs. [1,10,19,42]) and sufficiently hot ions (or sufficiently
thin SWDs; L ∼ ρ). The condition L ∼ ρ can be rewritten

for the ion energy h/Ti ∼ βi(L/dp)2 with Ti and βi being
solar wind temperature and the ratio of thermal and magnetic
pressures. For most intense discontinuities L/dp ∈ [1, 10]
[18–20] and typical βi ∈ [0.1, 10] (see Ref. [55]). Thus,
almost all suprathermal solar wind population can be strongly
scattered due to interaction with SWDs. This effect, together
with scattering by plasma waves (e.g., Refs. [41,56]), should
shape the observed low-anisotropic distribution of solar wind
ions at 1 AU [55] and contribute to the quick cross-field
transport of high-energy ion populations [12–14].
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