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Diffusion enhancement in a levitated droplet via oscillatory deformation
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Recent experimental results indicate that mixing is enhanced by a reciprocal flow induced inside a levitated
droplet with an oscillatory deformation [T. Watanabe et al., Sci. Rep. 8, 10221 (2018)]. Generally, reciprocal
flow cannot convect the solutes in time average, and agitation cannot take place. In the present paper, we focus
on the diffusion process coupled with the reciprocal flow. We theoretically derive that the diffusion process can
be enhanced by the reciprocal flow, and the results are confirmed via numerical calculation of the over-damped

Langevin equation with a reciprocal flow.
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I. INTRODUCTION

A levitated-droplet system was intensively developed to
realize contactless manipulation. For instance, it was advanta-
geous to measure physical or chemical quantities by avoiding
the pollution and the significant disturbance from chamber
walls [1]. Thus, levitated-droplet systems were studied not
only under microgravity conditions in a spacecraft or during
a parabolic flight, but also in various conditions, i.e., elec-
trostatic levitation [2,3], magnetic levitation [4-6], acoustic
levitation [7-11], aerodynamic levitation [12], and optical
levitation [13]. For each levitation method, the droplet sys-
tem had to be designed for the stabilization of the levitated
state. Furthermore, in relation to the levitation techniques,
the dynamics of a droplet were also studied intensively
[6,14-17].

In this study, we focus on acoustic levitation, where a
droplet can be levitated at the valleys of a standing wave in
a three-dimensional sound pressure field [7-9]. By using the
arrays of the sound sources and controlling the phases of the
irradiated sound, multiple droplets can be levitated simulta-
neously and their positions can be controlled. This enables
merging of two or more levitated droplets with contactless op-
erations, which will be of significant importance for syntheses
of materials without any contact with the apparatuses.

Recently, a contactless mixing technique in an acoustic
levitation system was reported [18,19]. By applying the fre-
quency modulation to the sound pressure field, the levitated
droplet can exhibit an oscillatory deformation. By observing
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the time evolution of the fluorescent dye distribution, it was
concluded that such deformation enhanced the mixing inside
the droplet. The flow inside the droplet is also observed via
particle image velocimetry (PIV). The observed flow field
appeared reciprocal. The reciprocal flow cannot convect the
solutes in time average; thus, agitation cannot occur. This
is known as the scallop theorem [20]. Thus, the mixing en-
hancement should not originate from the agitation by the flow.
However, it should originate from the diffusion enhancement
by the reciprocal flow. Since the diffusion enhancement by
reciprocal flow was found heuristically, the clarification of
the mechanism is awaited. The mechanism may contribute to
the development of the mixing technique for designing more
efficient systems.

The diffusion process affected by the reciprocal flow field
is a nontrivial dynamics. To date, the dynamics of agitation by
flow and that of diffusion originating from thermal fluctuation
were separately considered. This is because they have dif-
ferent timescales and spatial scales. The mixing by agitation
proceeds faster on a larger spatial scale, while the diffusion
proceeds faster on a smaller spatial scale. Furthermore, in
the convection-diffusion equation, the terms describing the
convection and diffusion are separately described. It should
be noted that the reciprocal flow does not cause the Stokes
drift [21]; thus, we do not consider it.

In the present paper, we study the effect of the reciprocal
flow field on the diffusion process. In Sec. II, we construct
a solution for the reciprocal flow field. Subsequently, we for-
mulate a diffusion equation per every period of the oscillatory
deformation in Sec. III. We found that the diffusion coefficient
includes not only the classical diffusion coefficient but also a
combination term of diffusion and flow field. The latter term
indicates the diffusion enhancement. The theoretical result is
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confirmed via numerical calculations in Sec. IV. In Sec. V,
the validity of the adopted assumptions is verified. Finally, we
discuss the physical meaning of the diffusion coupled with the
reciprocal flow as the summary.

II. FLOW FIELD IN A DROPLET

First, the model equations for the droplet with an oscil-
latory deformation are introduced. The flow in the droplet
v(r, t) is described by the Navier-Stokes equation [22,23]

v ’
0 5+(v~V)v =—-Vp+nVo (1)

with incompressibility
V-v=0, 2)

where o and 7 denote the density and viscosity of the fluid,
respectively. Furthermore, p(r, t) denotes the pressure inside
the droplet.

To describe the droplet, the following two boundary con-
ditions are imposed. The first condition is with respect to the
balance of pressure at the droplet surface as follows:

17|,-=,-,7 = Pair — 2VH|r:r,, + Pacoustic (3)

where p,i.(= const.) denotes the atmospheric pressure, y de-
notes the surface tension, and H denotes the mean curvature
of the droplet surface. The explicit description of H is denoted
in Appendix A. The vectorr, = f(0, ¢, t)e, represents a point
on the droplet surface in polar coordinates (r, 6, ¢). Here, e,
denotes the unit vector in the r direction. The second term in
the right side of Eq. (3) denotes the Laplace pressure, which
originates from the minimization of the surface energy [24].
The deformation of the droplet affects the flow through this
term.

The second boundary condition is for the flow field. It
states that the normal component of the flow v should be equal
to that of the velocity of the droplet boundary as follows:

dr;,
Vlpey, Rl = T nl,_,, “4)

where n denotes the outward normal unit vector at the droplet
surface.

The variables are non-dimensionalized as follows: ¥ =
r/R,¥, =ry/R, v = (T/R)v,i=1t/T,V =RV, p=p/py =
pTz/(QRz)» A= RH, and Pacoustic = Pacoustic/ Po, Where R de-
notes the radius of the droplet, and 7" denotes the period of the
oscillatory deformation. The tilde signs () indicate the dimen-
sionless variables. The dimensionless forms of equations are
described as follows:

oy +(@-V)d Vp+ L 525 (5)
—+ @ -V)i=— — V9,

o7 PT Re
p~|;~:ib = Par — 20ﬁ|;:;b + Pacoustic (6)

where o = yT?/(¢R?), Re = oR*/(nT), and Pyr = pair/po
denote the dimensionless parameters. Since the order of 1/Re
is 0.01 in the experiments [18], we neglect the viscous term
(momentum diffusion term).

In the experiments [18], the droplet periodically changes its
shape keeping the oscillation amplitude. The energy injection

term Pucousic Should be of the same order as 0.01 because
energy dissipation and injection should be balanced in time
average. Thus, pacousic Should be also neglected because the
viscous term (1/Re)V?® is neglected. Hereafter, we treat the
following equations:

W e
— 4+ {@-V)o =-Vp, @)
ot
Vr=0, ®)
oo = Pac =201, o
- dry,
Vg, - Mlj—p, = ai nli_,. (10)

For simplicity, we omit the tildes in the following descrip-
tions.

By assuming that the flow has no vorticity, the flow field
can be represented by the velocity potential ®(r, t) as

v=Vo. (11)
Subsequently, Eq. (7) is represented as follows:
od 1
— + = |VO* = —p. 12
o+ 2| | 14 (12)
Equations (8) and (11) lead

Vi =0, (13)

which indicates that ® is a harmonic function.

In the experiments, the amplitude of the shape oscillation
AR is small, which is characterized by the dimensionless
parameter ¢ = AR/R. Here, we used the perturbation method;
the solution is expanded with respect to a small parameter ¢
up to the second order as follows:

F=fO4efD 2@ 4O, (14)
O =00 400 4 20 4 O, (15)
p=pV +epV +2pP + O, (16)

By substituting the aforementioned expressions, we obtain the
order-separated equations with respect to . The equations are
shown in Appendix B. It is noted that the pressure p can be
easily eliminated from the equation and boundary conditions,
and thus the deformation f and the velocity potential ¢ are
calculated.

A trivial solution for the equation is as follows:

ro=f%, =e,, (17)

o = o0 = . (18)

This corresponds to the solution for the static state of the
droplet. The corresponding pressure and flow field are de-
scribed as follows:

p=p® = Py + 20, (19)

v=1vy=0. (20)

When the droplet is deformed from the sphere, the droplet
tends to return to the sphere because of the surface tension.
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Since the surface tension works as a restoring force, the
droplet exhibits a harmonic oscillation in the order of ¢. The
generic solution f{) and ®{), for the flow and deformation is
explicitly described using the spherical harmonics as follows:

oo L
fg(elg = |:Z Z ‘BK(};)Pl!ml(COS 0) cos me sin(wet + 8¢)

£=2 m=0

oo ¢
+ Z Z ﬁé},fl)leml(cos 0) sin mg sin(wet + 85):| ,
=2 m=1
(21)
oo ¢ (lc)we
q’éi,i = |:Z Z %VZPL,""‘ (cos @) cos me cos(wet + 8¢)
£=2 m=0
o L g,
+ Z Z %/ZPCJ’”‘ (cos B) sin me cos(wyt + 8¢ ):| ,
=2 m=1
(22)

where P is an associated Legendre polynomial of the degree
¢ and order m. The amplitudes of the oscillation modes ,3,9;1)
and ,32;1) are constants that are chosen arbitrarily. Here, the

characteristic frequency wy is described as follows:

wy = ol —1)L+2). (23)

The result in the order of ¢ is consistent with the results
by Rayleigh [25]. It is important to note that w; = 0 for
the modes of £ =0 and 1. The mode £ = 0O corresponds to
extension and contraction. We consider incompressible fluid;
thus, the mode ¢ = 0 is not a physical solution. The mode
£ =1 does not correspond to a deformation. However, it
corresponds to the oscillation or translation of the center po-
sition. The surface tension can work as a restoring force for
the deformation, but it cannot drift the droplet if y = const.
Additionally, we do not consider the case that the acoustic
pressure field drifts the droplet. Thus, the mode £ = 1 should
not appear. Therefore, we only need to consider the modes for
£2>2.

In the experiments [18], the droplet was observed both
from the top and side. The droplet deformed in the horizontal
direction, but it did not deform in the vertical direction. The
flow at the equatorial plane was also observed via PIV. Based
on the observation of the shape change and PIV, the flow
field appeared to correspond to a singlemode { =m =n (n €
N, n > 2). Thus, hereafter, we adopted a single mode of
£ = m = n. Moreover, only the cosine mode is considered for
simplicity. As for the time evolution, we can arbitrarily choose
8, = 0 owing to the time translational symmetry. Based on the
aforementioned assumptions, we have

£ =sin" @ cos ng sin wyt, (24)
oM =%r" sin" @ cos ng cos wyt . (25)

Here we use
P'(cos0) = [(—1)"(2n — 1)!!]sin" 6, (26)

and set

(le) _ !

T (Sl e — DI 27)

such that the small parameter ¢ denotes the amplitude of the
oscillatory deformation.

Subsequently, we consider the flow field in the order of &2
in the case that the flow field in the order of ¢ is expressed in
Egs. (24) and (25). Based on the equations, Egs. (B4), (BS),
and (B6) in Appendix B, for the order of &2, we obtain

fO = Az(f;,)l sin®" 0 cos 2n¢ cos 2wyt

n
+ far) sin®" 0 cos 2ng + Z F20 Py (cos 0) cos 2wyt
k=0

n
+ Y o Pu(cos0), (28)
k=0

o? = ég‘gl(r sin 0)>" cos 2ng sin 2wyt
n
+ Y DG Py(cos 0) sin 2w, (29)
k=0

. A2 F2m) A2 2.
Here, we introduce the constants fi>75), fizi) fim - g,

®Cn and d0W, whose explicit forms are shown in
Appendix C.

III. DIFFUSION WITH THE RECIPROCAL FLOW

To describe the dynamics of the tracer particle inside an
oscillatory deformed droplet, the overdamped Langevin equa-
tion, which is affected by the thermal noise and advection due
to the reciprocal flow, is adopted as follows:

dx_

i v(x, 1)+ &), (30)

where x denotes the position of the tracer particle and v(x, t)
denotes the flow field obtained in the last section. The flow
field can be expressed as follows:

v =e VWD cosw,t + VWP sin 2w,1 + O(Y).  (31)
Here, we define ¥ and W@ such that

W (x, 1) = U (x) cos wyt, (32)

O@(x, 1) = WP (x)sin 2wy, (33)

where @) and ®® are explicitly provided in Egs. (25) and

(29), respectively. The function &(¢) corresponds to the ther-
mal noise and satisfies the following relations:

(6a(r)) =0, (34)

(5a(1)Ep(5)) = 2D8apd(r — 5), (35)

where 8,4 denotes the Kronecker delta and 6(-) denotes the
Dirac’s delta function, and D is the diffusion coefficient orig-
inating from the thermal noise.

033109-3



YUKI KOYANO et al.

PHYSICAL REVIEW E 102, 033109 (2020)

The Fokker-Planck equation for Eq. (30) is derived as
follows:

dq(r, 1)
ot

where ¢g(r,t) denotes the probability density of the tracer
particle [26,27]. In this Fokker-Planck equation, the effects
of the convection and the diffusion appear separately. Here,
we consider the map of the probability density q(r,t) per
the period of the flow field, instead of the Fokker-Planck
equation. The map for the probability density §;(r) = g(r, j)
[gj(r) = q(r, jT) with the time dimension] is described as
follows:

= =V - [v(r,1)q(r, )] + DV?q(r, 1), (36)

0
g(M;”(r)qj(r))

n 1 92
2 9x40x8

gjr1(r) —g;(r) =—

(M3 ;). (37
|

v (@) 32w (r)

where j € N indicates the index of the period. Equation
(37) is considered as a discrete Fokker-Planck equation. The
higher-order spatial derivatives of § are neglected. It should
be noted that Eq. (37) is valid when the time evolution per the
period §;41(r) — g;(r) is sufficiently small. The first and sec-
ond moments M él)(r) and M ;2; (r) in Eq. (37), respectively, are
defined as the alternatives of the Kramers-Moyal coefficients
as follows:

M () =(Axy), (38)

M) (r) = (Axy Axp), (39)

where Ax, denotes the displacement in the period of the
oscillation. They are calculated as follows:

De? B¥wD@)y 2w

2,2 0Xg 0Xg 0Xer 0Xey OXgpr

MP @) = + O(e?, D?), (40)

82 2w (p)

29 (owD@E) a2e®
Ma)(r)_zD[aﬂ L e < (r) (r)

2w,2 Ox,y Xy 0xq0xp dxg

Here, the terms with the order of &* and D? or higher are
neglected. By substituting Eqs. (40) and (41) into Eq. (37),

we have
o (P ™ )), @)
.x

Gj+1(r) —q;r) =

where fo/g (r) is defined as

Deff (r) IM(Z) (r) (43)

Equation (42) shows that only the diffusion term remains. It
is important to note that the diffusion tensor D" is not only
dependent on the thermal diffusion coefficient D but also on
the flow field. Thus, it exhibits the spatial dependence D*" =
Deff (I’)

Here we consider the mass diffusion on the xy-plane at
7 =10, where the deformation is the largest. The diffusion
tensor in the cylindrical coordinates (p, ¢, z) is considered
by reflecting the system symmetry. The diffusion tensor is
defined in Egs. (D1) to (D5) in Appendix D. The effective
diffusion coefficient D" is defined as follows:

D" = 1(DS) + D5, + D). (44)
Based on the theoretical calculation, it is obtained as follows:
Deff
=1 2 ; 2(n—2) 45
D +e%anp 45)
where
ap = 32(n— 1) (46)

Since a, is positive for n > 2, the diffusion is enhanced for
all the modes of the deformatlon. In the case of n = 2, the
effective diffusion coefficient DT does not have a spatial de-
pendence, reflecting that the averaged shear strain is uniform
at any point in the droplet [16]. Conversely, in the case of

00Xy 0%, B 00Xy

AW () 32w D)
w, 0xy0xp

O(e*, D?).
0%, 05 }L (&% )

(41)

n > 3, the effective diffusion coefficient D" is larger near the
surface of the droplet. This result is reasonable because the
deformation of the fluid element is large near the surface of
the droplet.

Below, each component in the diffusion tensor is given as
follows:

et r ]
2 =1+ &2 by + Y cup™ TV + dyp" D cos(2ng) |,
D
k=2 _
(47)
Dis _j 4 o2 _b +) ewp D —d,p? COS(2n<p)_
D n n n ’
k=2 .
(48)
f
ef 2 2(k— 1)
—=l+te Zh kP (49)
k=1
Deff
# = —&2d,p*" D sin(2ng). (50)

The other components Deff and D;ff are zero. Here, b,, cu,
dy, guk, and hyy are constants which are explicitly described
in Appendix D. The effective diffusion tensor D is not
diagonal. This implies that the diffusion is anisotropic.

IV. NUMERICAL SIMULATION

The numerical calculations were performed to confirm the
theoretical results. The over-damped Langevin equation in
Eq. (30) for a tracer particle was adopted. In the calcula-
tion, we set the parameters to be w, = 1 and D = 1073, The
calculation was executed with the second-order Runge-Kutta
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7r/(2a),, 371'/(260 ) t

xz -plane
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xz -plane

(cyn=4
xy -plane

7r/a),,

FIG. 1. Time series of the droplet shape and flow field. The gray
regions illustrate the cross section of the droplet at xy and xz planes.
The black arrowheads represent the flow fields.

method (explicit midpoint method), and the Gaussian white
noise was generated with the Box-Muller method [28]. The
time step was set as At = 1/400. With respect to the flow
field, v, we used the theoretically obtained flow field. The
examples of the flow field for mode n = 2, 3, and 4 are shown
in Fig. 1.

In Fig. 2, the trajectories of the tracer particles on the xy
and xz planes during a period are shown for n =2, 3, and
4 to illustrate the particle motion and flow field. We set the
oscillation amplitude as ¢ = 0.1. The particles are confined
in the droplet by recalculating the noise till the next particle
position is located inside the droplet.

We prepared the particles at a distance p from the center
on the xy plane with 100 different initial angles, i.e., ¢ =

(ayn=2 ®)yn=3 (cyn=4
xy -plane
xz -plane

FIG. 2. Trajectories of 400 tracer particles for one cycle (from
t =0to T) on xy (top) and xz (bottom) planes. The particles move
back and forth with the reciprocal flow. However, they do not follow
the streamlines due to the thermal noise. As the initial condition,
the particles are randomly located on each plane. The oscillation
amplitude ¢ is set as 0.1. The gray regions indicate the area of the
droplet, where the time-dependent shapes are all superimposed.

2mk/100 for k =0, ..., 99. To obtain the diffusion tensor in
Eq. (43), we calculate each component of the second moment
M®(r) in Eq. (39), by averaging the displacements of 107
particles for each initial location. Then, it was translated into
the diffusion tensor in the cylindrical coordinates by using the
relations in Egs. (D1) to (D5) in Appendix D.

Based on the obtained diffusion tensor, the effective diffu-
sion coefficient in Eq. (44) was calculated. The dependence
of the normalized diffusion coefficient D® /D on the initial
distance from the center p is plotted in the left panel of
Fig. 3. The dependence of the normalized diffusion coefficient
D" /D on the oscillation amplitude & was also calculated for
the initial distance from the center p = 0.5 and 0.9, which
is shown in the right panel of Fig. 3. The effective diffusion
increases as ¢ increases for n = 2,3, and 4. In Fig. 3, the
theoretical result in Eq. (45) is illustrated by black curves. The
effective diffusion coefficient obtained by the numerical cal-
culation is in good agreement with the theoretical prediction.

To obtain the ¢ dependence of the components of the
normalized effective diffusion tensor, DS /D, DS /D, D/ D,

and fo; /D, the numerical calculatlons were performed from
the initial condition p = 0.5. The averaging was performed
for 107 particles from each initial position. The results are also
shown in Fig. 4 for n = 2, 3, and 4. The figure shows that fo/ﬁ

and D;qu, are greater than the thermal equilibrium diffusion
coefficient D, and they depend on ¢ with a wave number of
2n. On the while, DT is smaller than D, and is independent
of ¢. The normalized effective cross diffusion coefficient D;fé
is also periodic with a wave number of 2n. In Fig. 4, the
theoretical results in Egs. (47) to (50) are also illustrated by
black curves. The components of the effective diffusion tensor
obtained via numerical calculation are in good agreement with

the theoretical prediction.
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e el
0.1 0.2

FIG. 3. Numerical results of the normalized effective diffusion
coefficient D°" /D dependent on the initial distance p from the center
(left) and the oscillation amplitude ¢ (right) on the xy plane for n =
2, 3, and 4. The effective diffusion coefficient was estimated from the
mean square displacement of the particles. With respect to the left
panel, ¢ is fixed at ¢ = 0.1, and for the right panel, the initial radius
is fixed at p = 0.5 [red (gray)] and p = 0.9 [blue (light gray)]. The
black thin curves show the theoretical prediction in Eq. (45).

V. DISCUSSION

In our model, the viscous term is omitted from Eq. (5), and
Eq. (7) is adopted. The nonlinear term (v - V)v is assumed to
be smaller than the other terms in Eq. (7) in the theoretical
calculation. In the experiments in Ref. [18], the characteristic
timescale was 6.5 ms, which is the oscillation period of the
droplet deformation. The characteristic velocity of the flow
is estimated by the amplitude over the oscillation period: 0.2
mm/6.5 ms ~ 0.03 m/s. The density, viscosity, and surface
tension of water are 10° kg/m>, 1073 Pa's, 7 x 1072 N/m,
respectively. Based on these values, €, o, and 1/Re are calcu-
lated as follows:

e~2x1071, (51)
o~ 3, (52)

1 -2

=~ 3 x 1072 (53)

Here, the symbol “~” denotes that the terms connected with
the symbol are in the same order.

The order of the terms in Eq. (5) are estimated as fol-
lows: We recall that |v| is the order of &, and assume that
the order of |Vp| is the order of the gradient of the Laplace

(@n=2 D@D DD « DY/ID
1.03 o Theory 0.01 Theory
2 COSOBOA o
E\§ oo %‘;\g
Q7 Q
097t ]l
0 T n 0 n 2n
(b)n=3 ¢ ¢
1.03 0.01
_ O OIOHOGOGOJ Q : A
%\§ Lpmmmmmmmmmmm e E\g O" o i -3 - . -
Q i O
097w o I gl
0 . 2 0 T 2n
(c)n=4 4 2
Q  RR0CeQe0ede0ly X |
%\g 1 ----------------- %\g 0- AN A & _
Q - - Q i
097 ——————— 1 e ——
0 . 2m 0 T 2n
¢ 9

FIG. 4. Numerical results on the components of the normalized
effective diffusion coefficient dependent on ¢ for n =2, 3, and 4.
D /D [red (gray)], D& /D [blue (light gray)], DS/D [green (dark
gray)] are shown in the left panel, while D;{; /D is plotted on the right
panel. The initial distance from the center is p = 0.5, and ¢ = 0.1.
The black thin curves show the theoretical predictions in Eqs. (47)
to (50).

pressure |c VH|. The order of VH is evaluated by the dif-
ference between the maximum and minimum values of H
as follows:

1 1 2¢e
IVH| ~ = ~ZE (54
R+ AR R-— AR R
where we used the form with dimension. Then we have
av
—| ~e, 35
at ¢ (53)
lv- Vol ~ &7, (56)
IVp| ~oe, (57)
1
vy~ (58)
Re Re

that is to say,

ov

1
—V? .V — |~ Vpl. 59
‘Re vl <|v-Vy| < az‘ [Vpl (59

Thus, the adopted assumptions are valid.

It should be noted that our approach is not applicable for
n=>5 and n =10 because cu, gu, and h, in Egs. (47),
(48), and (49) diverge for (n, k) = (5,4) and (10,8). This is
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because of the resonance, wherein the second harmonic of the
considered mode is the same as the other characteristic mode.
Actually, 2ws = wg and 2w;9 = wi6. We confirmed that pairs
of positive integers (n, k) that satisfy 2w, = wy; are (5,4) and
(10,8) in the range of 2 < n < 100.

In actual systems, the aforementioned divergence of oscil-
lation amplitude will not occur due to the following reasons.
First, if the amplitude of the deformation oscillation becomes
larger, then perturbative treatment is not effective. Thus, the
present approach cannot be adopted. Second, energy dissipa-
tion plays an essential role in the case of larger deformations.
As we discussed, the energy dissipation is relatively smaller
than the other effects, such as inertia or pressure. In our model,
we neglected the energy dissipation. However, it cannot be
neglected when the amplitude becomes large. It is known
that when the energy dissipation and injection balance, the
amplitude of the oscillation mode becomes finite. Thus, our
model can be adopted if we extend our model to include en-
ergy dissipation and injection. Third, the droplet deforms to an
ellipsoidal shape due to the gravity effect and anisotropy of the
acoustic field in experiments. In such cases, the characteristic
frequency should be shifted [29], and thus the resonance will
not occur.

VI. SUMMARY

The dynamics of mixing, which involve flow and diffusion
processes, are usually described by the convection-diffusion
equation (36). A method to investigate the cooperative dynam-
ics of flow and diffusion involves tracking the time evolution
of the convection-diffusion equation. However, it is difficult
to determine the position-dependent diffusion coefficient from
the dynamics of the concentration field. In the present study,
we derive the discrete time evolution equation per the pe-
riod of the reciprocal flow, as shown in Eq. (37). Since the
reciprocal flow does not induce net convection in a period,
the convection term disappears, as shown in Eq. (42). Instead,
we can directly observe the effective diffusion coefficient per
the period. Thus, we succeeded in showing that the reciprocal
flow, which cannot agitate a fluid, affects diffusion.

The Brownian motion causes the transition of a tracer
particle between fluid elements. The probability of a single
transition is equal to that of an inverted process, which results
in normal diffusion. When a flow is stimulated, the fluid
elements deform in time. Thus, a sequent transition process

The representation of the effective diffusion tensor in-
dicates that the diffusion process can be affected by any
reciprocal flow. In the present system with a levitated droplet,
the diffusion is enhanced by the reciprocal flow. However,
it is not clear whether any reciprocal flow always en-
hances the diffusion. Hence, this can be explored in a future
study.
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APPENDIX A: EXPLICIT FORM OF MEAN CURVATURE H
If the shape of the droplet is described as
r, = R[1 +€s(0, ¢, 1)le,, (AD

then the mean curvature H up to the order of €? is calculated
as follows:

H— 1 € +182s+
- ST 2502

62|: a%s
— S| S+ =+

cosf ds N 1 9%
2sinf 30  2sin®0 g2
cosf ds 1 3%

-2 O 3’
sin? 0 8g02:| + O

R 302 ' sin6 00
(A2)

where € is a small parameter.

APPENDIX B: EQUATION AND BOUNDARY CONDITIONS
WITH RESPECT TO ¢

We show the equations and boundary conditions with re-
spect to a small parameter ¢. By substituting Egs. (14), (15),
and (16) to Eq. (12) and the boundary conditions (9) and (10),
we obtain the equations for the order of ¢ as follows:

due to thermal fluctuation becomes irreversible and realizes ddW |

an anisotropic Brownian motion. The diffusion enhancement Brvei —p'", (BD)
is induced by such anisotropic Brownian motion.
132D cos@ afM 1 92fm
O =—o| fO0. 0.1) + = : B2
Pl G[f O 0% S T 25ing 00 T 250 092 ] ®2)
g FD

Vol .e = % (B3)
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The equations of the order of &2 are as follows:

ap? 1
P 5|Vc1><1>|2 =—p?, (B4)
apH 2fM  cosg afd 1 92
(2) (1) 9’ ,t — (1) 9 ,t () 9’ ,t
5 e =000 0| 1000 Tt G000 T ante 907
92 @ 2] 3f(2) 1 32f(2)
B ) B AL, B5
a[f ©.9. )+2 962 " 2sin6 00  2sin6 9¢? | (B3)
d afh 1 afm ar®
Vo?| e, —(vo® SV, 0,0)— Vo] . = . B6
et <3r( )| _ el 60 ) R R 99 ¥ ot (B6)
It should be noted that p" and p® are not unique. Hence, any constant value can be added.
APPENDIX C: EXPLICIT FORMS OF THE COEFFICIENTS IN EQS. (28) AND (29)
The explicit forms of the coefficients in Eqs. (28) and (29) are shown as follows:
A2y _ n —2n*—5n+4 )
2n,2n 8(”2 + 1) ’
2 _ n® +3n> -2 ©2)
mM T 402n — DH2n+2)’
N Y(n, k
oy = ©)
’ [(2n— D!
- Z(n, k)
(2,n)
=, C4
K0T (2 — D2 €4
A B3w,(n+ D —1)?
(I)(Z,") — _ s CS
2n.2n 8n(n2 + 1) ©3)
N 8, k
q);iv’é) — _Ln)T (C6)
’ [2n— D!
Here, we set
(—DF 4k + DIk — DN[(4n* — 4K%n + 4kn* — 2k> — k? — kn)(n — 1)(n + 2) + 4kn(n®> +n — 1)]
Y(n, k) = (C7)

2mHn(k — k2 — 2k3 — 2n+n? + n3)(2n+2k+ D!(n — k)lk!

Jink (—D*@k + D[2n)'> 2k — DN[kQK> 4+ k — n)(n — 1)(n + 2) + 4kn(n® +n—1)] s
(n, ) = 214k (2k — Dn(2n + 2k + DN(n — k)!(k + 1)! (€8)
(=D 4k + D222k — D!
20t4n(k — k2 — 2k3 — 2n 4+ n? + n®)(2n + 2k + 1)!!(n — k) k!

x [8k> + 8k* + k(n+ 1)(n — 4) — n(n — )(n + 2)(4n + 5) + 2k*(n> — 3n — 3)). (C9)

E(n, k) =

(
APPENDIX D: EXPLICIT FORMS OF THE DIFFUSION

COEFFICIENT D! = (DT cos ¢ + DY sing), (D4)

The diffusion tensor in the cylindrical coordinates is ob- eff _ [ pyeff o off
tained as D, = ( Dy, sing + DY cos go). (D5)
The coefficients in Egs. (47) to (50) are explicitly described

as follows:
Df)fﬁf) =DM cos? ¢ + D;;f sin® ¢ + 2D§§,f singcosg, (DI) b nn—1) D6)
Deff — Deff 2.2 Deff 2 2Deff : D2 ! 2 ’
op =D ST 9 4 Dy 0087 = 2Dy sinpcose, - (B2 (=DHk = 12k = DIE(n, k)
Cnk = ; (D7)
D‘sz 2(Deff DY) sing cos ¢ 22%=2[(k — D!P[2n — D)2
3n+1)(m—1722n—1)
eff 2 ) _

+ 2D, (cos”™ ¢ —sin” @), (D3) d, = 22T , (D)
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_ (=DMQk— 1D'E(n, k)
Sk = 22%=2[(k — DI2[(2n — D112’
B (=DK1 E(n, k)
222k — DIP[(2n — D2

D9)

Pk (D10)

The explicit forms of the effective diffusion coefficient D°
and the components of the effective diffusion tensor in the xy
plane for modes n = 2,3, and 4 are shown as follows. For
n = 2, we have

Deff 2 )
=14+ 36% (D11)
%ﬁi — 1+ 52[% + %pz + %pz c08(4<p)}, (D12)
%;f‘g =1+ 82[% + %pz - i—gpz COS(4¢)} (D13)
D =14 82[—% - 127—75;)2], (D14)
D = 82[_%,)2 sin(4g0):|. (D15)
For n = 3, we have

Z S (D16)

D%f; =1+ 52[3 + %,02 + %p“ +6p* cos(6¢)},

(D17)

D 2 235 2
2 =1+ 82[5 + sz + ﬁﬁ# —6p* COS(6¢)],
(D18)

D P B R CCRNS g (D19)
— £ —_— — — — )
D 771" T’
eff
% = 2 [—6p” sin(6¢)]. (D20)
For n = 4, we have
Deff
> =14 6¢%p*, (D21)
Dt ,[ 664 3936 , 157 ,
— =14¢&|— =P 5 P
D 2695 ' 5005 22
735 945
122 i 8 D22
5722”" + g " cos( w)} (D22)
Dt 4 1312 2
LA i 3—,02 204
D 2695 ' 5005 22
L 105 o 945 80) (D23)
9724”7 T g8 P |
Deft 1328 5248 15 210
= =l4 | — = p = 0"
p ' te [ 2695 5005”117 " 2431’
(D24)
Def 945
# = g2 [—ap(’ sin(&p)] (D25)
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