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Nonspherical modes nondegeneracy of a tethered bubble
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When excited at sufficiently high acoustic pressures, a wall-attached bubble may exhibit asymmetric nonspher-
ical modes. These vibration modes can be decomposed over the set of spherical harmonics Ynm(θ, φ) for a degree
n and order m. We experimentally capture the time-resolved dynamics of asymmetric bubble oscillations in a
top-view configuration. A spatiotemporal modal analysis is performed and allowed recovering the set of zonal
(m = 0), tesseral (0 < m < n), and sectoral (m = n) spherical harmonics that develop at the bubble interface. The
analysis of the surface instability thresholds reveals that the frequencies of asymmetric modes differ from the
standard Lamb spectrum. In addition, the nondegeneracy of asymmetric modes for a given degree n is evidenced
by noncompletely overlapping resonance bands. Finally, the coexistence between zonal and sectoral modes is
analyzed through their modal interaction, amplitude interplay and relation of phase, as well as their geometric
compatibility.
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I. INTRODUCTION

A volume of gas trapped in a fluid is exposed to mechanical
stresses at the liquid-gas interface, due to unbalanced inward
forces. This so-called surface tension constrains the gas to
minimize its interface area, forcing it to adopt the shape of
a spherical bubble. In a surrounding low-pressure ultrasound
field, this bubble will oscillate radially. Above a critical pres-
sure value, instabilities develop on the bubble interface that
will exhibit nonspherical deformations. It is worth mentioning
that their triggering and the pressure thresholds may shift
in certain circumstances since they are very sensitive to any
asymmetry, which may be induced by an anisotropy in the
surrounding acoustic field [1,2]. This does not work for a
monochromatic low-frequency excitation, where the acoustic
wavelength is much greater than the bubble’s size and the
surrounding field is then locally uniform. The presence of a
nearby wall is another way to break the symmetry and to favor
nonspherical bubble modes [3]. Such interface deformations,
vectors of high mechanical energy, are widely studied and
exploited in the context of therapeutic applications of ultra-
sound, such as localized drug delivery or transfection [4,5],
lithotripsy, or blood-brain barrier opening [6].

The most common approach for investigating the shape
perturbation of an initially spherical bubble is to describe its
interface r(θ, φ, t ) by the equation

S(θ, φ, t ) = r(θ, φ, t ) − R0 −
∑
n,m

anm(t )Ynm(θ, φ) = 0, (1)

where θ and φ are spherical coordinates, R0 is the bubble
equilibrium radius, anm(t ) are the time-varying amplitudes
of the surface modes (including the purely radial one for
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n = m = 0), and Ynm are the spherical harmonics of degree
n and order m. For an arbitrary nonzero n, spherical har-
monics are called zonal when m = 0, sectoral when m = n,
or tesseral when m �= n. Considering an incompressible, in-
viscid, unbounded fluid, Lamb [7] derived the spectrum of
natural angular frequencies for the shape modes

ω2
n = (n − 1)(n + 1)(n + 2)σ/ρR3

0, (2)

where σ is the surface tension and ρ is the density of the
liquid. A further analysis of the nonspherical oscillations has
been performed by Plesset [8], who derived the equations
of shape oscillations for small amplitudes of deformations
|anm(t )/R0| � 1, n �= 0. In this approximation the equations
for both spherical and nonspherical oscillations are uncou-
pled. The former is the Rayleigh-Plesset equation ruling the
evolution of the radial oscillation, while the latter can be
reduced to the Mathieu equation describing the parametric
excitation of shape modes [9]. An important feature of the
equations ruling the nonspherical oscillations is that they do
not contain the index m. This means that, for a given spherical
harmonic of degree n, all associated order-m functions are
described by the same expression given by Eq. (2) and would
have thus the same resonance frequency (which is referred
in literature as degeneracy of spherical harmonics). By con-
ducting a perturbation analysis, Francescutto and Nabergoj
[10,11] obtained the pressure thresholds for the nonspherical
oscillations that are also independent of the index m of the
spherical harmonics. From this analysis, for a given value n,
the set of degree-n spherical harmonic modes for different
orders m appears as degenerate modes. The mathematical
analysis of an initially spherical bubble in an unbounded fluid
is therefore commonly reduced to axisymmetric deformations
invariant to the coordinate φ, for which spherical harmonics
are described by Legendre polynomials (called zonal har-
monics). The axisymmetry property is commonly retained in
theoretical works as simplifying mathematical derivations. In
addition, some experiments based on axisymmetric external
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forcing [12], stereoscopic optical set-up [13] or coalescence-
induced shape mode triggering [14] attest the validity of this
assumption.

While microbubbles are commonly theoretically investi-
gated as being immersed in an infinite liquid, constraints
on bubble dynamics usually appear experimentally through
the poking to neighboring cells [15], when being attached
to a substrate in microfluidic applications [16–19], confined
between walls [20] or restrained nearby a wall [3,21,22]. In
the case of a wall-attached bubble, the interface temporal dy-
namics significantly differs from the free bubble theory. Even
when considering the volume oscillations of a tethered bubble
[23], the truncation of the bubble volume atop a substrate pro-
vides significant modification of the breathing mode pulsation
as a function of the equilibrium contact angle. If the dynamic
feature of the contact line motion is taken into account [24],
then linear coupling between shape and volume oscillations
has been evidenced for hemispherical bubbles. In this partic-
ular case, it is demonstrated that the only shape modes that
may interact with the breathing oscillation are the axisym-
metric ones (arbitrary n, m = 0). However, the triggering of
nonaxisymmetric shape modes has already been demonstrated
experimentally for ultrasound-driven bubbles [25] and vibrat-
ing drops [26,27]. For wall-attached microbubbles, the shape
mode characterization is either performed through a Fourier
mode decomposition of the bubble interface [17] (and hence
restricted to axisymmetric deformations) or only qualitatively
described [19,25]. In case of vibrating sessile drops, image
postprocessing of profiles from a top view allows determining
the modal decomposition on the basis of spherical harmon-
ics [27]. In the above-mentioned studies the investigations
are restricted to the shape mode classification, the temporal
dynamics of the nonaxisymmetric oscillations being usually
disregarded. The mechanism underlying which shape mode
is chosen to grow to a steady state, and selected out, is not
revealed so far. Such mode selection, and the establishment
of a final bubble shape, may be deduced from the symme-
try of the studied geometry [22] or preferential directions of
the ultrasound wave [12]. Theoretically, a three-wave reso-
nant interaction between the Faraday ripples on the bubble
surface has been proposed to describe the selection of an
established standing-wave pattern [28]. Experimentally, the
preferential manifestation of sectoral modes has recently been
described [19].

In this paper, an experimental approach is proposed with
the view of studying the selection and temporal dynam-
ics of nonspherical oscillations of a wall-attached bubble.
In Sec. II, the experimental setup that allows capturing
high-resolved temporal dynamics of an ultrasound-driven
wall-attached bubble is described. In Secs. III, IV, and V,
the identification and detection of asymmetrical shape os-
cillations are discussed. An image postprocessing method is
then validated, enabling the modal analysis of an ultrasound-
driven microbubble as a function of both its size and the
increasing pressure of the acoustic field. Therefrom, the
Sec. VI points out the modal nondegeneracy of spherical
harmonics of a wall-attached bubble. Finally, Sec. VII draws
particular attention to the interaction between zonal and sec-
toral modes and deepens the possible conditions for their
coexistence.
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FIG. 1. (a) Schematic representation of the experimental setup.
(b) Side view of the microbubble tethered at the tank’s bottom,
making a contact angle α with the substrate in absence of ultrasound.

II. METHODOLOGY

A. Experimental setup

A schematic of the experimental setup is given in Fig. 1(a).
Observations of ultrasound-driven microbubbles are per-
formed in a polymethyl methacrylate tank of inner size Lx ×
Ly × Lz = 44 × 260 × 50 mm. Experiments are conducted
in pure (Milli-Q® IQ 7000) water supplemented with saline
solution (NaCl concentration of 24 mg/l ± 1 mg/l). A dihy-
drogen microbubble is created, resulting from a reduction
reaction and occurring at the cathode of an electrolysis actua-
tor. The electrolysis is actuated by a signal generator (Agilent
33210A, squared signal, peak-to-peak amplitude 4Vpp, offset
2Vpp, 50% duty cycle). When both cathode and anode, con-
nected to the generator output, are dipped in water, bubbles
made of dihydrogen are getting nucleated on the cathode
tip. The cathode connector is tied to a three-axis hydraulic
micromanipulator (Narishige MMO-203), which allows the
positioning and tethering of the bubble at the tank’s bottom.
In this way, single bubbles of equilibrium radius ranging from
60 to 230 μm may be nucleated for the purpose of this study.

The driving acoustic field is induced by a Langevin trans-
ducer (Reson, 30-kHz nominal frequency, high-voltage gain
amplifier Trek50/750) located at one edge of the water tank.
Acoustic coupling between the transducer and the water tank
was ensured with ultrasound transmission gel (Aquasonic,
Fisher ThermoScientific). Similarly to previous works investi-
gating bubble shape deformations [29], bubbles are insonified
by a sinusoidal signal modulated by a slowly varying enve-
lope in order to generate the shape modes periodically: A
triangle shape envelope of modulation frequency fm = 25Hz
is superimposed to a sine wave of frequency fa = 30.5kHz.
The visualization of the bubble’s activity is performed us-
ing an inverted Nikon Eclipse-Ti microscope equipped with
a 10× magnification optical lens. The bubble dynamics is
captured by means of an high-speed camera (Vision Research,
Phantom V12.1). The spatial resolution has been measured
to be 2 μm/pixel, thence a numerical inaccuracy of 2 μm.
Movies are performed with acquisition parameters (frame
size, sampling frequency, and exposure time) that are bubble
size dependent, as described in Table I. Such adjustment is
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TABLE I. Acquisition parameters (frame size, sampling fre-
quency, and exposure time) as set in the software Phantom Camera
Control (PCC).

Bubble radius Frame size Sampl. frequency Exp. time

R0 < 124 μm 128 × 128 pixels 180064 Hz 4 μs
R0 > 124 μm 256 × 256 pixels 67065 Hz 7 μs

necessary to optimize the field of view for a broad range of
bubble radii.

B. Acoustic field characterization.

The procedure to assess the acoustic pressure driving the
bubble is the following. Considering that the modulation en-
velope is slowly varying, i.e., fm � fa, the ultrasound field
may be assumed to be a constant-amplitude sinusoidal signal
during a few acoustic periods. At the beginning of the triangle
modulation waveform, the acoustic pressure is low enough
to induce relatively weak radial oscillations of the bubble.
By capturing this radial dynamics and rearranging it on a
single acoustic period, the obtained waveform can be nu-
merically compared to a linearized Rayleigh-Plesset equation
ruling the bubble spherical oscillations at low pressure. As
all other parameters are known or can be measured directly
(fluid viscosity and density, bubble equilibrium radius), the
acoustic pressure can then be deduced from this modeling.
This technique is reproduced for increasing driving voltage as
far as the bubble interface remains spherical. Then acoustic
pressures associated to bubble nonspherical oscillations are
extrapolated linearly along the whole experimental data set.
The applied pressures go to 40 kPa.

C. Equilibrium bubble shape

Figure 1(b) shows a side view of a bubble attached to the
substrate. The contact angle α is defined by the angle between
the tangent to the bubble surface at the contact point and
the substrate plane. The value of this angle results from the
wetting properties of water with the substrate and is ruled by
the interface tensions that exist between the different media
(gas, liquid, and solid). Therefore, the contact angle of the
bubble at rest is independent of the bubble equilibrium ra-
dius. Measurements have been performed for a large number
of single attached bubbles in a side-view configuration. The
equilibrium contact angle was measured before ultrasound
activation and equals 54◦ ± 6◦.

III. SHAPE MODES OBSERVATION

Applying an amplitude-modulated ultrasonic field results
in a beating behavior of the spherical oscillations of the
bubble, with a period f −1

m = 40 ms, and the variations of
the radial mode a00(t ) alternate between low-amplitude and
high-amplitude phases. During one modulation period, if the
applied pressure exceeds the threshold of nonspherical os-
cillations, then the bubble interface deviates from sphericity.
Typical examples of the recorded series of pictures are shown
in Fig. 2 where the onset of nonspherical oscillations has
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FIG. 2. Snapshot series of an experimental (camera top-view)
bubble, with its associated theoretical spherical harmonics (top and
side views), oscillating on a sectoral mode Y66 (a), on a zonal mode
Y60 (b) and on a tesseral mode Y64 (c). The elapsed time between two
consecutive snapshots is 14.9 μs.

been reached. The bubble interface is captured from a top-
view configuration. The snapshot series is plotted on two
acoustic periods, revealing the subharmonic behavior of the
nonspherical oscillation. We recall that, at first glance, no
axisymmetry hypothesis can be made on the obtained bubble
interface, and the bubble contour should consequently be de-
composed over the set of spherical harmonics. The spherical
harmonics are function of the spherical angle coordinates,
the colatitude θ ∈ [0 π ] and the longitude φ ∈ [0 2π ], and
are written Ynm(θ, φ) = fnm Pnm(cosθ ) eimφ , where Pnm is the
associated Legendre polynomial of degree n and order m, and

fnm =
√

(2n+1)
4π

(n−|m|)!
(n+|m|)! is a normalization coefficient. A set of

bubbles exhibiting nonspherical oscillations on a spherical
harmonic of degree n = 6 is illustrated in Fig. 2. For each
experimental snapshot series, the observed nonspherical mode
is compared to top and side views of the corresponding theo-
retical spherical harmonic.

In Fig. 2(a) a bubble of equilibrium radius R0 = 133.7 μm
exhibits an easily recognizable contour with a six-lobe shape.
This case illustrates the shape deformation along a sectoral
harmonic Y66 for which the top view corresponds to a n-lobe
deformation. From the side view, a sectoral harmonic is close
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FIG. 3. Instability thresholds of sectoral harmonics (m = n) as a function of the bubble equilibrium radius. Experimental wall-attached
bubbles (geometric markers) are compared with free bubble theory (continuous lines), according to Refs. [10,11]. Depending on the bubble
size, the frame dimension varies following Table I.

to a spherical shape as the associated Legendre polynomial
can be reduced to Pnn(cosθ ) ∼ sinn(θ ), that is a bell-shape
function with zero values at the poles. In Fig. 2(b) a bubble of
equilibrium radius R0 = 131.5 μm exhibits spherical oscilla-
tions from the top view, with some additional interface motion
along the elevation visible due to optical effects. This case
illustrates the shape deformation along a zonal harmonic Y60.
Zonal harmonics are axisymmetric functions: Their contour
looks spherical from a top view and their shape deformation
from the side view is a Legendre polynomial (m = 0). At
first, identifying this axisymmetric shape uniquely from the
top view is not straightforward. Finally Fig. 2(c) illustrates
the shape deformation along a tesseral spherical harmonic
Y64 for a bubble with equilibrium radius R0 = 131.3 μm. In
this case the shape deformation becomes more complex with
angular deviations from the sphere along the elevation and
azimuthal directions. It is worth noting that a Ynm spherical
harmonic possesses n − m nodal lines along the elevation.
Between each nodal lines the azimuthal shape is governed by
a cos(mφ) function, and due to the phase interplay from two
successive nodal lines the azimuthal shape is out of phase with
the previous one. The top-view integration of a Ynm tesseral
harmonic provides a seemingly 2m-lobe bubble contour. In
the case illustrated in Fig. 2(c), the nonspherical mode Y64

shows indeed an eight-lobe top-viewed contour. Among the
possible nonspherical oscillations decomposed over the zonal,
tesseral, or sectoral harmonics, bubbles oscillating along a
sectoral harmonic (m = n) are the ones easily recognizable in
a top-view configuration. By decomposing the bubble contour
on a cos(nφ) function, the onset of a sectoral harmonic may
be deduced during the amplitude-modulated pressure driving,
leading to the instability threshold for this particular asym-
metric oscillation.

IV. DEGREE n DIFFERENTIATION

The detection of the emergence of sectoral harmonics has
been performed for approximately two hundred bubbles of
radius in the range [60 230] μm. Note that because our

experiments are conducted at a fixed driving frequency, the
excited shape mode mainly depends on the bubble size and
driving pressure amplitude. All results are presented in a
radius-pressure map in Fig. 3. Bubbles showed nonspherical
oscillations on sectoral harmonics with degree ranging from
n = 3 to n = 11. The analysis of their temporal evolution
revealed that they oscillate at half the driving frequency and,
consequently, are all triggered on their first parametric reso-
nance. Figure 3 highlights the fact that each degree-n sectoral
oscillation is exclusively associated to a specific range of
bubble size. This nonoverlapping feature is similar to the
partitioning of axisymmetric modes related to their bubble
radii [14]. We therefore compare the experimental instabil-
ity threshold for sectoral harmonics to the theoretical ones
obtained in case of axisymmetric shape oscillations of free
bubbles. The degree-n free bubble instability threshold Pn

th
can be obtained from asymptotic approximation of the set
of equations ruling the oscillations of axisymmetric deforma-
tions [10,11], and is expressed as:

Pn
th = ρR2

0 Cn

√(
ω2

B − ω2
0

)2 + ω2
0δ

2, (3)

where

Cn =
√√√√√

(a − 1)2 + 4p[
−3

2
a + 2p + 2

(
n + 1

2

)]2

+ q2

,

and

a = 4(n − 1)(n + 1)(n + 2)σ

ρω2
0R3

0

,

p =
[

2(n + 2)(2n + 1)μ

ρω0R2
0

]2

,

q = 6(n + 2)μ

ρω0R2
0

,

and μ is the viscosity of the medium, ω0 is the driving pulsa-
tion, ωB is the resonance frequency of the bubble volumetric
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mode, δ = 4μ

ρR2
0

is the damping constant applied by the medium
on the bubble, and n is the modal degree.

As shown in Fig. 3, the theoretical instability thresholds
for zonal harmonics Yn0 of free bubbles allow recovering the
splitting of the onset of sectoral harmonics Ynn of tethered
bubbles, with the bubble radius, for the same n values. In addi-
tion, all experimental results are located close to or above the
respective Yn0 theoretical curve of free bubble. This behavior
respects the theoretical assumption that proposes that, for a set
of degree-n spherical harmonics, every order-m nonspherical
modes are triggered above the same instability threshold [10].

V. ORDER m DIFFERENTIATION

A. Identification process

Due to the partitioning of the degree-n spherical harmonics
with the bubble equilibrium radius, we may postulate that
the index n is known once the bubble radius is measured.
Therefore specific strategies can be designed to extract the
value m of a given spherical harmonic, paving the way to
the differentiation of the set of zonal, sectoral, and tesseral
harmonics. We recall that, from a top view, the appearance of
zonal harmonics Yn0 results in a circular contour. The differen-
tiation of this nonspherical oscillation from a purely radial one
is performed through the analysis of its subharmonic behavior.
It is worth noting that this feature differs from the very similar
case of a vertically vibrated sessile drop, for which the zonal
mode must synchronize with the driving base and oscillate at
the fundamental [27]. In the same way, the appearance of a
sectoral harmonic Ynn results in a n-lobe contour in top view.
This shape oscillates at half the driving frequency due to para-
metric excitation. The combination of the spatial (contour)
and temporal (subharmonic) information on a cos(nφ) pro-
jection confirms the existence of a sectoral mode. The main
difficulty lies in the identification of a tesseral (0 < m < n)
mode. As discussed in Sec. III and Fig. 2, a spherical harmonic
possesses n − m azimuthal nodal lines due to the property of
the associated Legendre polynomial Pnm. When n − m �= 0,
the phase interplay between successive nodal lines induces the
top-view contour to have a seemingly 2m-lobe shape. More
exactly it consists of two sets of m-lobe disposed in a stag-
gered arrangement, whose amplitude may differ according to
the parity of n − m. This property is illustrated in Fig. 4 and
discussed here with two exemplary cases.

When n − m is even, the bubble interface is symmetric
with respect to the equatorial plane θ = π/2. The top-view
contour exhibits a 2m-lobe shape, consisting of two sets of
m-lobe shape with different amplitudes. This behavior results
in two spatial harmonic components (referred as φ compo-
nents in what follows) of the azimuthal contour r(φ, t ) at
the frequencies m and 2m. This is highlighted in Fig. 4(a)
for a Y64 tesseral harmonic. In addition it can be shown that
the φ-component m oscillates temporally at the subharmonic
frequency f0/2, while its spatial harmonic 2m oscillates at the
driving frequency. This temporal characteristic allows espe-
cially the differentiation of an order-m tesseral harmonic from
a sectoral harmonic in the special case n = 2m, for which the
spatial φ-component n oscillates at f0/2.

When n − m is odd, the bubble interface exhibits a nodal
line along the equatorial plane. The top-view contour exhibits

(a) n − m even

(b) n − m odd
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FIG. 4. Change in spectral signature due to nodal lines parity.
Spatiotemporal Fourier decomposition of the bubble contour r(φ, t )
(normalized amplitude), processed for numerical (in red) and exper-
imental (in black) cases of spherical harmonics Y64 (a) and Y74 (b).
The discrepancy between numerical and experimental cases comes
from the ombroscopic-induced artefact that affects the optical image
but not the numerical projection. This is amplified in the n − m odd
situation due to the existence of a nodal line along the equatorial
plane.

then a 2m-lobe shape, consisting of two sets of m-lobe with
equal amplitudes. The spatial projection of the azimuthal con-
tour r(φ, t ) mainly contains the φ-component 2m, oscillating
at the driving frequency. This is shown in Fig. 4(b) for a Y74

tesseral harmonic. In this case the numerical projection of
the bubble interface is reduced to the φ-component 2m = 8.
The identification of the order m = 4 is thus not straight-
forward. Fortunately, experimental conditions always contain
the φ-component m due to the ombroscopic image sharpness,
which naturally induces some difference in lobe amplitudes
depending on their position in elevation, as shown in Fig. 4.

In conclusion, the combined spectral analysis along both
space and time allows the differentiation of the order m of
any spherical harmonics and is particularly convenient for the
detection of tesseral harmonics, for which the geometric iden-
tification is not straightforward. This process is implemented
through a spatial Fourier transform of the top-view bubble
contour r(φ, t ) along the angular coordinate φ:

cnk (t ) =
∫ 2π

0
r(φ, t ) e−ikφdφ, with 0 � k � 2n, (4)

where cnk (t ) is the modal coefficient associated to the φ-
component k of degree n. According to the above-mentioned
identification process of the order-m tesseral harmonics,
each cnk (t ) coefficient is further filtered around the driv-
ing frequency f0 = 30.5 kHz and the subharmonic f0/2 =
15.25 kHz. For each mode Ynm, the spatial harmonic k = 2m is
used for the identification of its order m, while the k = m coef-
ficient cnm(t ), oscillating at f0/2, is presented in the following
as its modal amplitude. It is worth noting that this modal
coefficient differs from the theoretical one anm, as defined in
Eq. (1), due to a bias in the projection’s decomposition.

B. Numerical validation

A validating example of the proposed identification process
is performed through the numerical analysis of the bubble
nonspherical dynamics and its top-view contour. A virtual
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FIG. 5. Modal decomposition of a top-view bubble contour in-
cluding the Y60, Y64, and Y66 modes triggered at time (t0, t4, t6)
superimposed to a breathing mode Y00. Comparison of the co-
efficients c∗

nm(t ) with the theoretical ones anm(t ) in case of (a)
(t0, t4, t6) = (4, 8, 10) ms and (b) (t0, t4, t6) = (8, 10, 4) ms. (c) Ev-
idence of amplitude transfer between the subharmonic c∗

64( f0
2 , t ) and

fundamental c∗
64( f0, t ) coefficients of the Y64 tesseral mode.

bubble of arbitrary equilibrium radius R0 is submitted to a sine
wave modulated by a ramp envelope. The bubble interface is
implemented as follows:

r(θ, φ, t ) = R0 + t

τ
a00(t )Y00 +

∑
n �=0,m

anm(t )YnmHT (t − tm),

(5)

where anm(t ) = anmcos(π f0t ) and a00(t ) = a00cos(2π f0t ) are
the time-varying amplitudes of, respectively, the subharmonic
nonspherical modes and the radial mode, τ = 20 ms is the
signal duration and HT is the Hanning operator of dura-
tion T = 6 ms centered at time tm + T/2. Figures 5(a) and
5(b) presents two modal decomposition of a bubble interface
exhibiting a breathing mode a00, as well as zonal Y60, sectoral
Y66 and tesseral Y64 harmonics. The case in Fig. 5(a) [respec-
tively, Fig. 5(b)] corresponds to the onset times (t0, t4, t6) =
(4, 8, 10) ms [respectively, (8, 10, 4) ms]. Numerical top-view

FIG. 6. Evolution of the modal coefficients c∗
nm(t ) resulting from

a top-view contour in the case of a bubble (a) with equilibrium radius
R0 = 133 μm oscillating on the set of n = 6 spherical harmonics
and (b) with equilibrium radius R0 = 83 μm oscillating on the set
of n = 4 spherical harmonics. Only the predominant nonspherical
modes are displayed. Snapshot series illustrate significant changes in
bubble shape.

snapshots of the bubble contour allow illustrating the shape
deformation induced by these nonspherical oscillations. The
result of the spatiotemporal analysis of the bubble contour is
provided by the envelopes cnm(t )∗ of the modal coefficients
cnm(t ) oscillating at the subharmonic of the driving frequency.
For both cases the onset times of the implemented nonspheri-
cal modes appear correctly tracked and defined. The maximal
amplitudes of the oscillations is in good agreement with the
theoretical ones, except in two circumstances. The first one
concerns the quantification of the radial oscillation when a
zonal harmonic appears, leading to a slight overestimation
of the breathing mode amplitude. The second one concerns
the amplitude of the tesseral harmonic Y64 when combined to
another nonspherical mode [Figs. 5(a) and 5(b)]. In this case a
part of the modal amplitude is contained into the 2m frequency
component oscillating at the driving frequency, in accordance
to the proposed spatiotemporal analysis and filtering. This
amplitude transfer between c64( f0, t )∗ and c64( f0

2 , t )∗ for the
second exemplary case is illustrated in Fig. 5(c).

C. Bubble vibration sequence

The spatiotemporal analysis is applied to an experimental
case. This allows characterizing the bubble vibration sequence
consisting of the set of successively triggered nonspherical
modes. Figure 6 presents two experimental wall-attached bub-
bles of equilibrium radii 133 and 83 μm that deviate from
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spherical shape in the set of n = 6 and n = 4 spherical har-
monics, respectively. In addition to snapshot series of the
top-view contour, the envelopes c∗

nm(t ) of the modal coef-
ficients that are dominantly excited are shown. The bubble
interface presented in Fig. 6(a) follows the successive vibra-
tion sequence Y60 − Y64 − Y66 once nonspherical oscillations
appear. The existence of these modes is clearly visible on
the top-view snapshots, giving confidence into the proposed
analysis. When the zonal mode emerges, the amplitude of the
radial oscillation decreases. This phenomenon can be associ-
ated to a possible energy transfer between modes [29] but also
to a bias in the determination of the amplitude of the modal
coefficient cnm(t ). Therefore the analysis of mode coupling is
not straightforward at this stage. It is worth noting that the
existence of the Y64 tesseral harmonic is short and precedes
the onset of the sectoral oscillation.

The bubble interface presented in Fig. 6(b) follows the suc-
cessive vibration sequence Y41 − Y44 − Y40 once nonspherical
oscillations appear. The fact that the Y41 tesseral harmonic is
the first mode to be triggered is clearly visible on the snapshot
series. Once more, the existence of the tesseral harmonic
is short and precedes the onset of both sectoral and zonal
modes. By the way, Fig. 6(b) shows that both sectoral and
zonal modes follow similar trends and reach a plateau value
of oscillation amplitude.

VI. MODAL NONDEGENERACY

A. Instability thresholds

The analysis of the bubble vibration sequence has been per-
formed over the whole data set of experimental wall-attached
bubbles, leading to the determination of the onset of the first
triggered nonspherical oscillation. These pressure thresholds
are displayed in a pressure-radius map, for subresonant radii
(degree n = 3 and n = 4) in Figs. 7(a) and 7(b) and for
overresonant radii (degree n = 7) in Fig. 7(c), respectively.
In Fig. 7 each geometrical marker is associated to a particular
vibration sequence and indicates the pressure value at which
the bubble interface diverges from the purely radial mode. In
addition, the color range points out which nonspherical mode
is firstly triggered.

In order to help in the figure readability, parabolic-like
graphical fits have been drawn for each order-m mode, for
m = 0 to n, and allow identifying their respective zones of
bubble shape instability or resonance bands. For low degrees
(n = 3 or 4), these resonance bands only slightly overlap.
For higher degree (n = 7), despite a strong overlap, some
orders m appear completely distinct. More precisely, for each
investigated degree n, three distinct modal regions are found.
In the vicinity of the nonspherical resonant radius of the
equivalent free bubble [given by the radius at which a degree
n is parametrically excited, see Eq. (1)], zonal and sectoral
modes emerge preferentially. Far from this resonant radius,
tesseral modes are most likely to show up first. We therefore
distinguish the degree-n modal regions as a three-band zone,
the tesseral-mode bands surrounding the zonal and sectoral
ones. We can be confident in this result, since the frequency
of the sectoral mode, compared to other nonspherical mode of
a same modal subset of spherical harmonics, is the less likely
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FIG. 7. Instability pressure thresholds of the first triggered non-
spherical shape modes of degree n = 3 (a), n = 4 (b), and n = 7 (c).
Parabolic-like graphical fits (dashed lines) give an overview of the
nondegenerate instability threshold curves. The continuous gray lines
are the theoretical instability curves of free axisymmetric bubbles
[10,11], centered on the respective modal resonances.

to differ as a function of the equilibrium contact angle [30].
Contrariwise to the Lamb spectrum where every modes m of a
same degree n have the same resonance frequency, the exper-
imental instability curves of Fig. 7 unveil resonant radius that
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are order dependent. This evidences a modal nondegeneracy
over the set of zonal, tesseral, and sectoral modes. Such modal
nondegeneracy has already been observed experimentally for
vibrating sessile drops [27] and demonstrated theoretically for
levitating drops with the appearance of n + 1 modal regions
for a given degree n of the parametrically excited nonspherical
mode [31]. To our knowledge the modal nondegeneracy of
bubble asymmetrical oscillations has not been demonstrated
so far.

B. Occurrence of specific orders m

It is worth mentioning that asymmetric bubble shapes only
arise from a break into the problem symmetry, usually caused
by a geometrical singularity [22] or by asymmetry in the
external forcing [12]. Moreover, which nonspherical mode
is selected under external forcing for a given bubble radius
has not been explained theoretically. In the present investi-
gation, because of the pinning of the bubble on a substrate,
specific nonspherical oscillations may encounter difficulties to
be triggered, while other modes would experience the pinning
as less inhibiting. At first glance, it is reasonable to suppose
that a zonal mode, with a circular contact line shape and a
possible nodal line matching the contact, is more inclined to
emerge at low acoustic pressure. Concerning sectoral modes,
the conditions of their emergence are less obvious as the
contact line or angle are necessarily changing, if conform with
the free bubble modal shapes. Nevertheless, the sectoral shape
of a superhemispherical wall-attached bubble would always
encounter weak variations of contact line and angle with re-
spect to the equilibrium state. On the contrary, tesseral modes
should encounter much greater variations of contact line and
angle, while, for a given contact angle, some of them can
have a nodal line matching the contact, which would strongly
condition their respective emergence. This might explain why
certain tesseral modes have never been observed in the present
experimental setup, while others never miss to show up.

Substantial literature exists for the modal analysis of sessile
drops [24,26,27,30,32]. It has been demonstrated that, for ses-
sile drops, the modal content of the nonspherical drop shape
relies on the equilibrium contact angle and the contact line
mobility [30]. At very high mobility, the contact line motion
is facilitated while the instantaneous contact angle barely
varies. The substrate-induced stress is less constraining. The
dynamics of the system approaches the one of a free drop,
displaying degenerate Lamb natural frequencies, as defined
by Eq. (2). At low mobility, the contact line moves hardly
and its dynamics is ensured by more extreme contact angles.
Therefore this mobility limitation leads to stronger interface
deformations, facilitating the onset of nonspherical shapes
[33]. As a consequence, a modal splitting is expected and
has been experimentally observed [30]. Modal nondegener-
acy is shown to occur when the equilibrium contact angle
α differs significantly from 90 ◦, in other words when the
undisturbed drop shape is no longer hemispherical [32]. The
degeneracy break yields to frequency reordering and modal
crossing, responsible for coexistence between modes [30],
and eventually for coupling between resonant modes. When
regarding the investigated bubble with measured contact an-
gle about 54 ◦ ± 6 ◦, the undisturbed shape is far from being

hemispherical. Similarly to the case of sessile drops, it favors
the mode coupling (Sec. V), modal nondegeneracy (Sec. VI
and Fig. 7) and coexistence (Sec. VII and Fig. 8).

In addition, it is shown that the resonance frequency of
sectoral modes does not differ significantly from the one of
zonal modes. Accordingly sectoral modes have been often
reported because of their ease to emerge at low pressure
amplitude. Recently, the contact line dynamics and mobility,
and their impact on the onset of nonspherical modes have
been modelled numerically for the case of a tethered bubble
submitted to increasing acoustic pressure [19]. Preferential
triggering of the sectoral mode over the other nonspherical
oscillations have been shown, but only in a qualitative way.
From a theoretical point of view, Maksimov [28] derived the
conditions of the emergence of specific shape mode patterns
in order to clarify experimental observations of nonspherical
bubble interface [34]. The theoretical model relies on the Fara-
day wave analysis over the bubble interface, based on a triad
resonant interaction between the radial mode and two shape
modes. The preferential triggering of peculiar patterns called
rolls (sectoral shape) and squares (combination of sectoral and
zonal modes) is highlighted but is limited to the case of high
modal degree (n > 9).

VII. COEXISTENCE OF ZONAL AND SECTORAL MODES

It is worth noting that the theoretical derivations of Maksi-
mov [28] concern the emergence of specific patterns that are
either the combination of zonal and sectoral harmonics, either
a lone sectoral harmonic. In the present study, for bubble radii
near the nonspherical resonant radius of a given degree n,
we take advantage of the previously described spatiotempo-
ral image processing method for mode differentiation in the
aim of analyzing the dynamics of zonal and sectoral modes.
The modal amplitudes and nonspherical deformations of the
radial, zonal and sectoral modes are exposed for odd degree
modes in Figs. 8(a) and 8(b) and for even degree modes in
Figs. 8(c) and 8(d). The normalized modal coefficients c∗

nm(t )
and cnm(t ) are depicted respectively during a complete mod-
ulation period and during two acoustic periods. In addition,
schematics of the bubble interface for each considered shape
mode is provided.

Literature about a vibrating sessile drop reports two kinds
of modal interaction: “mode mixing” and “mode competition”
[32]. It is demonstrated that two modes are more inclined to
hysteretically compete when their resonance bands intersect
or when they are oscillating at the same harmonic frequency.
Otherwise, they both display an unconstrained linear superpo-
sition of their respective dynamics. Contrarily to the present
experiment, it should be pointed out that sessile drops are
usually excited by a substrate-normal driving. This leads to
the triggering of zonal modes oscillating at the fundamental
frequency and to nonzonal modes exhibiting a subharmonic
response. On the contrary the nonspherical modes developing
on the interface of wall-attached bubbles are all parametri-
cally excited, hence oscillating at half the driving frequency.
In addition to the recurrent overlapping of the resonance
frequency bands of zonal and sectoral modes (cf. Fig. 7),
this suggests that “mode competition” would be more likely
to occur if we refer to Ref. [32]. However, Fig. 8 unveils
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FIG. 8. Coexistence of sectoral and zonal modes is exposed relying on their modal interplay, phase relation and symmetry compatibility
for the cases of modes of odd degree n = 3 (a) and n = 5 (b) and even degree n = 4 (c) and n = 6 (d). For each case (x), the information is
structured as follows. (x1) Evolution of the coefficients c∗

nm(t ) for the radial, zonal and sectoral modes along a complete modulation period; (x2)
evolution of the oscillatory behavior of the coefficients cnm(t ) for the same modes, taken at particular times corresponding to coloured areas in
(x1) and refolded over two acoustic periods. vertical purple lines correspond to the instants where occur the minima of radial oscillation; and
(x3) side-view schematics of the extrema of bubble deformations for the selected shape modes.

dissimilarities in the modal interaction depending on the de-
gree n, as described in the next two paragraphs through an
original approach highlighting their modal dynamics, am-
plitude interplay and phase relation, and their geometric
compatibility.

In Figs. 8(c) and 8(d) where even degrees n = 4 and
n = 6 are detailed, sectoral and zonal modes exhibit sta-
ble coexistence: Their modal oscillation amplitudes reach
a plateau value without inhibiting each other. This corre-
sponds to “mode mixing,” as their modal envelopes c∗

nk (t )
display an unconstrained linear superposition. This aspect is
illustrated in Figs. 8(c1) and 8(d1). In addition, the observa-
tion of their dynamics reinforces this interpretation. Indeed,

very interestingly, Figs. 8(c2) and 8(d2) reveals the obvi-
ous synchronization of the zero crossing of their respective
nonspherical deformations with the minimum of the radial
oscillation (graphically marked with vertical purple lines).
This probably happens as a way to minimize the magnitude
of bending energy. As a consequence, it is also worth not-
ing that zonal and sectoral modes oscillate then in-phase.
As a matter of fact, both zonal and sectoral modes seem to
synchronize independently with the radial mode, given that
this occurs similarly when one of them is lonely triggered.
Last, Figs. 8(c3) and 8(d3) depict side-view schematics of
the corresponding bubble deformations. From a geometrical
point of view, both zonal and sectoral deformations of even
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degree possess a vibration anti-node at the equatorial plane of
the bubble, which could explain their propensity to coexist.

In contrast, in Figs. 8(a1) and 8(b1), it appears that zonal
and sectoral modes of odd degree n = 3 and n = 5 do not
emerge simultaneously. The onset of the secondly triggered
mode seems to coincide with the fading of the first one, as
it is clearly visible in the case n = 5. This corresponds to
“mode competition,” as their modal interaction is character-
ized by the domination of some mode and by a challenging
coexistence. The first triggered nonspherical shape modes,
zonal (3,0) coded in orange in Fig. 8(a) and sectoral (5,5)
coded in black in Fig. 8(b), are spontaneously privileged
and show similar behavior, namely the synchronization of
the zero crossing of their nonspherical deformations with the
minimum of the radial oscillation (graphically marked with
vertical purple lines). The secondly triggered nonspherical
shape modes, sectoral (3,3) coded in black in Fig. 8(a) and
zonal (5,0) coded in orange in Fig. 8(b), arrive later. They
never encounter a possibility to oscillate in-phase with the
first triggered modes and favor a synchronization of their zero
crossing of nonspherical deformations with a zero crossing
of the radial oscillation. Still from a geometrical point of
view, as schematized in Figs. 8(a3) and 8(b3) for this odd
degree case, the equatorial plane corresponds to a vibration
antinode of the sectoral mode but to a vibration node of the
zonal shape. Hence both sectoral and zonal modes undergo
conflicting shapes. This could explain why modal competition
occurs and why they never exhibit an in-phase behavior.

However, this does not explain their specific and recurrent
phase-locking relation, determine how coupling operates, or
even justify the legitimacy for one mode to dominate another.
Explaining the modal coexistence would most likely involve
a multiparameter study and not just an investigation of the
shape compatibility, the contact line, or the phase relation. In
definitive, it would be worth investigating whether the phase
relation is rather governed by a minimization of the energy
cost occurring at the contact. Such an analysis would require
access to the contact line dynamics and mobility, as well as
to both the macroscopic and the microscopic behaviors near
the contact of a wall-attached bubble excited on nonspherical

shape modes. So far, these remain experimentally very diffi-
cult to obtain. Nevertheless, we are confident in saying that the
phase relation between zonal and sectoral modes is essential
for their coexistence as a means of minimizing in some way
their energy cost.

VIII. CONCLUSION

In the absence of any consistent theoretical model for
the dynamics of an ultrasound-excited wall-attached bubble
and the triggering of its surface instability, we proposed an
experimental study with the aim of investigating the modal
behavior of such a bubble under acoustic excitation. The vi-
bration sequence of a bubble oscillating on nonspherical shape
deformations is obtained from a spatiotemporal analysis of
its top-view contour. The differentiation of any nonspherical
shape modes led to the mapping of their pressure instability
threshold as a function of the bubble size. This revealed for
the first time, as far as we know, the nondegeneracy of the
set of nonspherical shape modes of a wall-attached bubble as
a three-band zone of modal resonances, with a preferential
triggering of sectoral and zonal modes around the free bubble
resonant radius and a triggering of tesseral modes further than
this resonant radius. Finally, an original investigation of the
coexistence between zonal and sectoral modes explores their
modal interaction in terms of their amplitude interplay, phase
relation, degree parity, and symmetry compatibility. Similarly
to sessile drops but, in the present study, observed for the case
of a wall-attached bubble, two kinds of modal interaction be-
havior are reported: Sectoral and zonal modes of even degree
n = 4 and n = 6 show ease of coexistence and preferential
“mode mixing,” while sectoral and zonal modes of odd degree
n = 3 and n = 5 present greater difficulties to exist simultane-
ously, given that important “mode competition” occurs.
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