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Pinning-depinning of the contact line during drop evaporation on textured surfaces:
A lattice Boltzmann study
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The evaporation of the liquid droplet on a structured surface is numerically investigated using the lattice
Boltzmann method. Simulations are carried out for different contact angles and pillar widths. From the simulation
for the Cassie state, it is found that the evaporation starts in a pinned contact line mode. Then, when the droplet
reaches the receding state, the contact line jumps to the neighboring pillar. Also, the depinning force decreases
with increasing the contact angle or the pillar width. In the Wenzel state, the droplet contact line remains on the
initial pillar for all of its lifetime.
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I. INTRODUCTION

Evaporation of the liquid droplets is an important fun-
damental topic in a wide range of applications, such as
surface patterning [1], biosensing [2], inkjet printing [3],
DNA mapping [4], and droplet-based microfluidics [5]. All
of these applications involve microscale droplets. At such
small scales, surface phenomena are the dominant factors and
the dynamics of droplets are governed by inertial-capillary
forces, rather than the action of gravity [6]. The study of the
already complex droplet evaporation process becomes even
more challenging in the presence of solid substrates. It has
been shown that the dynamics of sessile droplet evaporation
is directly linked to substrate characteristics, such as sur-
face wettability [7], contact angle hysteresis [8], and surface
roughness [9]. Understanding the evaporation characteristics
of sessile droplets plays an invaluable role in the field of sur-
face engineering and development of synthetic low-adhesion
surfaces.

Roughness is a key parameter on textured surfaces [10].
The presence of surface structures on nano- and microcales
alters the dynamics of droplets during evaporation. Picknett
and Bexon [11] suggested two different modes of evaporation
for sessile droplets: (1) constant contact radius (CCR) mode,
in which the contact angle decreases with time and the contact
area is fixed; (2) constant contact angle (CCA) mode, in which
the contact angle is fixed and the contact area decreases during
evaporation.

During droplet evaporation on textured surfaces, due to
the pinning of the triple line (the liquid-vapor-solid line), a
stick-slip (SS) pattern starts to emerge. Usually, there is one
or several sticky state(s) in which the contact line is pinned
(CCR mode), and one or several slippery state(s) in which
the contact line is depinned (CCA mode) [12]. McHale et al.
[6] experimentally showed that on superhydrophobic surfaces,
the evaporation starts at the CCR mode and then a transition

*rahimyan@ut.ac.ir

to the SS mode takes place. In some cases, when the droplet
was initially in the Cassie state, they reported a collapse into
the pillars during evaporation, where the liquid penetrates into
the interpillar cavities. For the collapsed droplets, evaporation
continues in the CCR mode.

By microscopic and macroscopic observations, Chen et al.
[13] showed that the contact line dynamics has a strong de-
pendence on pillar structure. They developed a model that
can predict the depinning onset time and critical base size for
the collapsing droplets. Dash and Garimella [14] investigated
the evaporation of the water droplet on hydrophobic and su-
perhydrophobic surfaces. Their results showed that the rate
of evaporation is 20% smaller than the rate predicted by the
vapor-diffusion-based model for superhydrophobic surfaces.

Xu and Choi [15] explored the effects of the patterned
surface on the contact line and its pinning-depinning behavior
for an evaporating droplet. For determining the depinning
force, their results showed that a liquid-solid contact area and
an apparent contact line is not a critical parameter. Choi and
Kim [16] explored the evaporation process on a nanostruc-
tured surface for water droplets and a protein solution. They
reported a different evaporation process for a water droplet
and protein solution.

Popov [17] proposed a model for evaporating sessile drops
on a horizontal flat surface. He found that the elapsed time
from the start of the evaporation process, the initial concen-
tration of the solute, and the initial geometry are the variables
that determine the geometrical aspects of the deposition pat-
terns. The model was solved analytically and numerically. The
results were in good agreement with the experimental data.

Vapor-diffusion-based evaporation models have been
widely employed to predict the droplet evaporation character-
istics [8,12,17–22]. In these models, systems are assumed to
be at a constant temperature. The natural result of this assump-
tion is neglecting the evaporation rate due to the temperature
gradient at the interface.

The lattice Boltzmann method has become a popular tool
for simulating multiphase flow systems in recent decades. The
original multiphase models in the LBM framework are limited
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to low density and viscosity ratios and suffer from parasitic
currents [23]. These purely numerical currents, which are
caused by minor imbalances in the fluid-fluid interface, limit
the range of parameters that can be achieved in the numerical
model. Lee and Fischer [24], with the use of the potential
form of the intermolecular force and compact isotropic differ-
ence of the forcing term, presented a method for simulating
two-phase flow in the LBM framework that overcomes these
limitations. In their model, parasitic currents could be reduced
to the machine accuracy while the density ratio is up to 1000.
Later on, Safari et al. [25] extended this model for simulation
of thermal phase change in two-phase fluid flows.

The objective of this work is performing a lattice Boltz-
mann simulation to explore the effects of surface topology
and contact angle on the dynamics of the drop contact line
during evaporation caused by the temperature gradient at the
interface. The LBM is implemented with the use of the model
of Safari et al. that is capable of modeling thermal phase
change at high density and viscosity ratios.

In the rest of the paper, the following sections will be
presented. In Sec. II, the governing equations, including the
Cahn-Hilliard in the presence of phase change, hydrodynamic,
and energy equations are presented. Numerical validation and
results are presented in Secs. III and IV, respectively. Finally,
the paper is concluded in Sec. V.

II. GOVERNING EQUATIONS

A. Extension of Cahn-Hilliard equation

The continuity equation for a system of two incompressible
and immiscible fluids, with different bulk density and viscos-
ity, can be written as

∂ρ̃i

∂t
+ ∇ · ni = +

−ṁ′′′, (1)

where ρ̃i is the bulk density and ni is the mass flow rate of the
species i (l for the liquid phase and g for the gas phase), and
+
−ṁ′′′ is the volumetric source due to phase change. The mass
flow rate of component i can be written as

ni = uρ̃i − ρi ji. (2)

The first term in the above equation is due to the advection
in the bulk region and the second term is due to the diffusive
mass flow in the interfacial region. u is the velocity, j is the
volume diffusive flow rate, and ρ is the local density.

The continuity equation in terms of the phase composition
can be written as

∂C

∂t
+ ∇ · (uC) − ∇ · jl = − ṁ′′′

ρl
, (3)

∂ (1 − C)

∂t
+ ∇ · [u(1 − C)] − ∇ · jg = − ṁ′′′

ρg
, (4)

where

ρ̃l = Cρl , (5)

ρ̃g = (1 − C)ρg, (6)

and

ρ = Cρl + (1 − C)ρg. (7)

The composition C takes a value 1 in the liquid phase and
0 in the gas phase.

If the diffusive flow rate is only related to phase compo-
sitions, then jl = − jg = j. Thus, from Eqs. (3) and (4) the
divergence of the velocity field can be written as

∇ · u = ṁ′′′
(

1

ρg
− 1

ρl

)
. (8)

Cahn and Hilliard assumed that the diffusive flow rate is
proportional to the gradient of the chemical potential:

j = −M∇μ, (9)

where M is the mobility of the Cahn-Hilliard equation. Ac-
cording to [26], the chemical potential for binary fluids is

μ = β(2C − 6C2 + 4C3) − κ∇2C, (10)

where β and κ related to the surface tension σ by κ = 1.5σD
and β = 12σ/D. D is the interface thickness.

Finally, the transport equation that governs the behavior of
the binary-fluids system is

∂C

∂t
+ ∇ · (uC) = ∇ · (M∇μ) − ṁ′′′

ρl
. (11)

The volumetric mass source of evaporation can be obtained
by applying the energy balance on the interface. After some
mathematical operations, volumetric mass source is

ṁ′′′ = K∇T

h f g
· ∇C, (12)

where K is the thermal conductivity, h f g is the latent heat of
vaporization, and T is the temperature. More details can be
found in [25].

B. LBE for hydrodynamics

In this paper, the method that was proposed in [24], based
on the Lee method, is used for simulating the flow field.
The discrete Boltzmann equation (DBE) with intermolecular
interaction force can be written as

D fα
Dt

= ∂ fα
∂t

+ eα · ∇ fα

= −1

λ

(
fα − f eq

α

) + 1

ρc2
s

(eα − u) · F f eq
α . (13)

In the above equation, fα is the particle distribution
function, λ is the relaxation time, f eq

α is the equilibrium distri-
bution function, eα is the microscopic lattice velocity, c2

s is the
sound speed, and F is the intermolecular interaction force.

Equilibrium distribution function f eq
α is

f eq
α = ωαρ

[
1 + eα · u

c2
s

+ (eα · u)2

2c4
s

− (u · u)

2c2
s

]
. (14)

ωα is the weight factor of the D2Q9 lattice structure. The inter-
molecular interaction force for binary fluids, that is presented
by [24] is

F = ∇ ρc2
s − ∇ ph − C∇μ, (15)

where ph is the hydrodynamic pressure.
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By introducing a new distribution function as follows, the
DBE for the hydrodynamic pressure can evolve pressure in-
stead of density:

gα = fαc2
s + (

ph − ρc2
s

)

α (0), (16)

where 
α (u) = f eq
α /ρ. By taking the total derivative of

Eq. (15), the DBE for the new distribution function becomes

Dgα

Dt
= c2

s

D fα
Dt

+
(

Dph

Dt
− c2

s

Dρ

Dt

)

α (0). (17)

By assuming that the phase change has no effect on the
incompressibility of two phases and does not affect the hy-
drodynamic pressure, the total derivative of hydrodynamic
pressure and density becomes [25]

Dρ

Dt
= (eα − u) · ∇ρ − ṁ′′′ρ

(
1

ρg
− 1

ρl

)
, (18)

Dph

Dt
= (eα − u) · ∇ph. (19)

By substituting these derivatives into Eq. (17), the DBE for
the hydrodynamic pressure and momentum is as follows:

∂gα

∂t
+ eα · ∇gα = −1

λ

(
gα − geq

α

) + (eα − u) · {∇ρc2
s [
α − 
α (0)] − C∇μ
α

} + ρc2
s ṁ

′′′
ρ

(
1

ρg
− 1

ρl

)

α (0), (20)

and the new equilibrium distribution function is

geq
α = ωα

{
ph + ρc2

s

[
eα · u

c2
s

+ (eα · u)2

2c4
s

− (u · u)

2c2
s

]}
. (21)

By applying the trapezoidal rule over time step δt , the LBE of Eq. (20) can be derived as

ḡα (x + eαδt, t + δt ) − ḡα (x, t ) = − 1

τ + 0.5

(
ḡα − ḡeq

α

)∣∣
(x,t ) + δt (eα − u) · {∇ρc2

s [
α − 
α (0)] − C∇μ
α

}
(x,t )

+ δt

2
ρc2

s ṁ′′′ρ
(

1

ρg
− 1

ρl

)

α (0)

∣∣∣∣
(x,t )

+ δt

2
ρc2

s ṁ′′′ρ
(

1

ρg
− 1

ρl

)

α (0)

∣∣∣∣
(x+eαδt,t+δt )

, (22)

where τ is related to the kinematic viscosity by υ = τc2
s . ḡα and ḡeq

α are defined to retain the scheme explicit.

ḡα = gα +
(
gα − geq

α

)
2τ

− δt

2
(eα − u) · {∇ρc2

s [
α − 
α (0)] − C∇μ
α

}
, (23)

ḡeq
α = geq

α − δt

2
(eα − u) · {∇ρc2

s [
α − 
α (0)] − C∇μ
α

}
. (24)

Hydrodynamic variables can be calculated by the first and second moment of the distribution function.

ρu = 1

c2
s

∑
α

eα ḡα − δt

2
C∇μ, (25)

ph =
∑

α

ḡα + δt

2
u · ∇ρc2

s . (26)

C. LBE for interface tracking

A new distribution function should be considered for calculating the composition. This distribution function should recover
the extended Cahn-Hilliard equation for phase change phenomenon. It is convenient to choose this distribution function to have a
simple form of hα = (C/ρ ) fα and heq

α = (C/ρ ) f eq
α ; then the DBE can be derived by taking the total derivative of this expression.

The total derivative of the composition from [25] can be written as

DC

Dt
= (eα − u) · ∇C − C∇ · u + ∇ · (M∇μ) − ṁ

′′′

ρ
. (27)

Then the DBE for h can be written as

∂hα

∂t
+ eα · ∇hα = −1

λ

(
hα − heq

α

) + (eα − u) ·
[
∇C − C

ρc2
s

(∇ph + C∇μ)

]

α +

(
M∇2μ − ṁ

′′′

ρl

)

α (28)

By applying a trapezoidal rule over time step δt , the LBE can be written as

h̄α (x + eαδt, t + δt ) − h̄α (x, t ) = − 1

τ + 0.5

(
h̄α − h̄eq

α

)∣∣
(x,t ) + δt (eα − u) ·

[
∇C − C

ρc2
s

(∇ph + C∇μ)

]

α

∣∣∣∣
(x,t )

+ δt

2

(
M∇2μ − ṁ′′′

ρl

)

α

∣∣∣∣
(x,t )

+ δt

2

(
M∇2μ − ṁ′′′

ρl

)

α

∣∣∣∣
(x+eαδt,t+δt )

(29)
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where h̄α and h̄eq
α are

h̄α = hα +
(
hα − heq

α

)
2τ

− δt

2
(eα − u)

·
[
∇C − C

ρc2
s

(∇ph + C∇μ)

]

α, (30)

h̄eq
α = heq

α − δt

2
(eα − u) ·

[
∇C − C

ρc2
s

(∇ph + C∇μ)

]

α.

(31)

For avoiding implicitness in the scheme, the last terms
in Eqs. (22) and (29) are approximated at x + eαδt, t and
according to [25], this approximation does not disturb the
second-order accuracy of the equations.

The composition is equal to the zero-order moment of the
distribution function.

C =
∑

α

h̄α. (32)

The relaxation time of the phases is calculated as follows:

τ = Cτl + (1 − C)τg, (33)

where τl and τg are the relaxion times of liquid and gas,
respectively.

D. LBE for temperature field

Because of the low Mach number (Ma) and the incom-
pressible flow assumption, in the hydrodynamic simulation,
we can neglect the effects of the pressure work and heat
dissipation in evaluating the temperature field. With this as-
sumption, a simple passive convection-diffusion equation can
be solved for temperature in the LB framework and tempera-
ture advected in the domain with macroscopic velocity u. The
DBE for the temperature convection-diffusion equation can be
written as

∂sα

∂t
+ eα · ∇sα = − 1

λT

(
sα − seq

α

)
, (34)

and the equilibrium distribution function is

seq
α = ωαT

[
1 + eα · u

c2
s

]
. (35)

Again, by applying the trapezoidal rule over time step δt ,
the LBE can be derived as follows:

sα (x + eαδt, t + δt ) − sα (x, t )

= −
(
sα − seq

α

)
2τT

∣∣∣∣∣
(x+eαδt,t+δt )

−
(
sα − seq

α

)
2τT

∣∣∣∣∣
(x,t )

. (36)

In Eq. (36) τT is the nondimensional relaxation time that
relates to the thermal diffusion coefficient by α = c2

s τT δt .
To maintain the scheme explicit, the modified distribution
function is introduced as follows:

s̄α (x, t ) = sα (x, t ) +
(
sα − seq

α

)
2τT

. (37)

FIG. 1. Boundary conditions and pillar properties.

Then the LBE for the modified distribution function be-
comes

s̄α (x + eαδt, t + δt ) − s̄α (x, t ) = −
(
s̄α − s̄eq

α

)
τT + 0.5

∣∣∣∣∣
(x,t )

. (38)

Temperature can be calculated by taking the zero-order
moment of the distribution function.

T =
∑

α

s̄α. (39)

It should be noted that this LBE for the temperature
convection-diffusion equation recovers the unwanted term at
the macroscopic level in the form α

c2
s

∂
∂t ∇ · (uT ). According to

[25], this term is of the order Ma2 and can be neglected.

E. Boundary conditions

In this work, bounce back on the node scheme is applied
on the solid boundaries. The upper boundary is considered
to be an open boundary in the form of ∂ ph

∂n = 0. Left and
right boundaries are considered to be periodic. On the solid
boundaries, n · ∇μ|s = 0 is applied to ensure no mass flux
normal to the boundaries. To impose a specific equilibrium
contact angle, the cubic boundary condition is used:

n · ∇C|s = − cos θ

√
2β

κ

(
Cs − C2

s

)
, (40)

where θ is the contact angle. Details of the implementation of
these boundary conditions (B.C.) on the pillars for distribution
functions and macroscopic variables can be found in [26].
A constant temperature, Tg, is imposed on the boundaries as
the B.C. for the temperature field. Also, during evaporation
the temperature of the droplet is set equal to the saturation
temperature Ts by Eq. (35). See Fig. 1.
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FIG. 2. Variation of the droplet height with contact angle. Solid
line is given by Eq. (41) and triangular symbol shows the numerical
result.

III. NUMERICAL VALIDATION

Validation of the numerical scheme is presented here. The
first two tests validate the hydrodynamic behavior of the
droplet, and the third one is to validate the evaporation of the
droplet.

A. Contact angle on a flat surface

First test for validation of the numerical codeis simulating
the wetting phenomenon on the flat surface. Different static
contact angles are successfully achieved by setting the de-
sired contact angle in Eq. (40). In the simulation no body
force is applied to the phases, and a droplet with R = 35
lattice unit (lu) is initially placed on the bottom surface in
a 5R×4R computational domain. These parameters are fixed
in the simulation: ρl = 1, ρg = 0.1, τl = 0.5, τg = 0.5, σ =
0.005, and D = 4 lu. The numerical contact angle measured
by calculating the slope of the composition contour at the
triple line in the level C = 0.5. Note that the steady state
solution is independent of fluid properties, such as viscosity
and density ratios. Therefore, the solution applies to any set of
fluid properties, so long as the surface wettability remains the
same. Figure 2 shows the analytical and numerical value of the
dimensionless height of the droplet, which can be calculated
using the following equation [27]:

h

R
= 2 sin θ

√
π

2θ − sin 2θ
. (41)

As we can see in Fig. 2, there is good agreement between
the analytical and numerical results.

B. Contact angle on pillars

Because of the presence of pillars on the bottom surface,
the apparent contact angle is greater than the equilibrium one

FIG. 3. Equilibrium shape of the droplet, (a) in Wenzel state and
(b) in Cassie state.

in Eq. (40). The apparent contact angle is related to the state
of the droplet on the pillars. If the droplet is in the Cassie
state, the apparent contact angle can be calculated using the
Cassie-Baxter equation [28]:

cos θa = −1 + ϕs(cos θ + 1), (42)

where θa is the apparent contact angle due to the presence of
pillars and ϕs is the solid fraction. Also, for a droplet in the
Wenzel state, the Wenzel equation determines the value of θa

[29],

cos θa = r cos θ, (43)

where r is the ratio of the true surface area to the hori-
zontal projection of the surface area. Numerical simulations
are carried out for droplets in the Cassie and Wenzel states.
The following parameters are set during simulations: ρl = 1,

ρg = 0.1, τl = 0.5, τg = 0.5, σ = 0.005, D = 4, θ = 100◦,
g = 4 lu, w = 4 lu, and h = 15 lu.

Figure 3 shows the equilibrium state of the droplet. In
Fig. 3(a), when the droplet is in the Wenzel state with θ =
100◦, the numerical apparent contact angle is 120.57, and
Eq. (43) predicts θa = 118.52◦, which is consistent with the
numerical value of θa. Also, when the droplet is in the Cassie
state [Fig. 3(b)], the numerical apparent contact angle is
142.1◦, and Eq. (42) predicts θa = 142.5◦, which is consistent
with the numerical value of θa, too.

C. Droplet evaporation

For validation of the droplet evaporation, numerical results
are first compared to the D2 law for the evaporation of a static
droplet suspended in vapor. The D2 law states that the area
of the droplet during evaporation decreases linearly with time
[30]:

D∗2 = 1 − kt∗, (44)

where D∗ = D/D0, k = 2μl ṁ
πσD0

2ρl
, and t∗ = 2tσ

μl D0
. D0 is the

initial diameter, μl is the droplet viscosity, and ṁ is the mass
depletion rate due to evaporation which is calculated from the
numerical results.

Figure 4 shows the results for a droplet with initial di-
ameter D0 = 30 lu, ρl = 1, ρg = 0.1, τl = 0.5, τg = 0.5, and
σ = 0.005. It can be seen in Fig. 4 that the area of the droplet
decreases linearly with time and has good agreement with the
one predicted by Eq. (44).
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FIG. 4. Comparison of the numerical results with D2 law.

IV. NUMERICAL RESULTS

In this section, pinning-depinning of the contact line due to
the evaporation of the droplet in the presence of the pillars is
investigated. Evaporation is modeled by the model of Safari
et al. [25]. By applying the constant temperature Tg on the
boundaries, the gas phase is held in this constant temperature,
and it is assumed that the droplet remains in the saturation
temperature Ts. Then, due to the temperature gradient and heat
transfer at the interface, evaporation occurs. The Important
dimensionless number that governs the evaporation of the
droplet is the Stefan number, which is defined as the ratio of
the sensible heat to the latent heat:

St = Cp(Tg − Tsat )

h f g
. (45)

h f g and (Tg − Tsat ), are selected to realize a definite Stefan
number. The following parameters are set during simulation:
Tg = 510, Tsat = 500, St = 0.4, ρl = 1, ρg = 0.1, τl = 0.5,
τg = 0.5, σ = 0.005, D = 4 lu, and R = 40 lu.

First, by measuring the value of the numerical apparent
contact angle on different grid resolutions for the droplet in
the Cassie state with θ = 100◦ and ϕs = 0.25, the grid inde-
pendency of the solution is tested. According to Eq. (42), θa

should be 142.5°.
Table I shows the numerical value of θa on different grids.

With doubling the grid from 200×220 to 400×440, θa does
not change significantly. So, a 200×220 mesh is selected to
carry out the simulations.

TABLE I. Numerical apparent contact angle on different meshes.

Mesh Numerical apparent contact angle Error

100×110 141.34° 0.8%
200×220 142.1° 0.28%
400×440 142.23° 0.18%

FIG. 5. Evaporation of the droplet on the pillars with θ = 100,
St = 0.4 on a surface with h = 15 lu, w = 4 lu, and g = 4 lu.

A. Evaporation in the Cassie state

Figure 5 shows the contour of the phase composition dur-
ing evaporation at different time steps. Evaporation starts
when the contact line is pinned and after t = 2×105, the
contact line moves to the neighboring pillar.

Figure 6 shows the streamlines during evaporation in the
Cassie state. The vapor from the interface moves upward and
exits the domain from the open boundary.

1. Effect of contact angle

In Fig. 7(a), we can see that the evaporation starts in the
CCR mode and for most of the droplet’s lifetime, the droplet
stays pinned at the initial pillar. In this case θ = 100◦ and the
apparent contact angle on the textured surface that is measured
after the droplet is deposited on the surface is θa = 140.2◦.
This contact angle decreases continually until t = 1.8×105.
At this time when the contact angle reaches the receding
contact angle, θr = 104.5◦, the depinning force due to the
unbalanced surface tension causes the droplet contact line to
move. Due to this depinning force, the contact line moves to
the next pillar until this depinning force is balanced with the
pinning force of the pillar. This stick-slip pattern is continued
until the end of the droplet lifetime. During this time, from the
initial state until t = 1.8×105, the contact radius is approxi-
mately constant (CCR mode). After that, until t = 2.2×105,

the contact radius decreases (due to the depinning effect). This
situation, in which there is a variation in both contact angle
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FIG. 6. Streamlines during evaporation of the droplet on the pil-
lars with θ = 100, St = 0.4 on a surface with h = 15 lu, w = 4 lu,
and g = 4 lu.

and radius, is called the “mixed” mode. Figures 7(b)–7(e)
show the phase field contour during CCR and the mixed mode.
In (b), the droplet initially sits on the pillars with a contact
angle of 140.2° and then the contact angle decreases in the
CCR mode until (c), when t = 1.8×105 goes into the mixed
mode and depinning starts.

In the case of θ = 120◦ (Fig. 8), the apparent contact angle
is θa = 153◦; this contact angle decreases in the CCR mode
until t = 1.7×105. After that until the time t = 2.18×105, the
mixed mode occurs and the contact radius decreases. When

the contact angle reaches the receding state, θr = 127.5◦, at
t = 1.7×105, the depinning force is large enough to move
the contact line forward and start the stick-slip pattern.
Figures 8(b)–8(e) clearly show the pinning-depinning mech-
anisms for this droplet. In (b), the droplet with θa = 153◦
is sitting on top of the pillars. In (d) when 1.7×105, the
droplet reaches the receding contact angle, θr = 127.5◦, and
the mixed mode starts to occur and subsequently the contact
line moves to the next pillar. In comparison to the case of
θ = 100◦, the droplet has a greater receding contact angle and
a smaller contact radius, and also depins slightly faster.

As mentioned above, pinning lasts until the contact an-
gle reaches the receding contact angle. Then the unbalanced
surface tension creates the driving force for the contact line
movement. This out-of-balance surface tension force can be
written as [31]

Fd = σ (cosθr − cosθa). (46)

Figure 9 shows θr , θa, and FD for three different values of θ .
As we can see, by increasing the contact angle while keeping
the solid fraction constant, θa becomes larger, which is the
natural result of Eq. (42). On the other hand, θr also shows
an increase in value. Furthermore, by increasing θ , the gap
between θr and θa reduces and the depinning force decreases
dramatically.

Figure 10 shows the nondimensional mass of the droplet
versus time. The non-dimensional mass is defined as M/M0

where M0 is the initial mass before evaporation. As we can
see in this figure, variation of mass against time is nonlinear
and its slope decreases over time, which is consistent with the
previously reported experimental results [20]. In the case of
θ = 100◦, the droplet stays pinned at the initial location for
approximately 50% of its lifetime. Results for θ = 120◦ are
roughly the same.

FIG. 7. Evaporation of the droplet initially in the Cassie state on substrate with h = 15 lu, w = 4 lu, g = 4 lu and θ = 100◦. (a) Variation
of contact angle and contact radius. (b) Initial position of the droplet. Contact line is pinned on the pillar. (c) Evaporation causes change in
contact angle, but contact line is still stuck to the pillar. (d) Slipping starts and depinning occurs. (e) Change in the contact line position is clear.
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FIG. 8. Evaporation for the droplet initially in the Cassie state on substrate with h = 15 lu, w = 4 lu, g = 4 lu, and θ = 120◦.

2. Effect of surface topology

Figure 11 shows the variation of contact angle and contact
radius with time for the droplet initially in the Cassie state on
a substrate with h = 15 lu, w = 8 lu, g = 4 lu.

For θ = 100◦, by doubling the pillar width, the solid frac-
tion increases, which according to Eq. (42) causes a decrease
in θa. In this case θa = 125◦, which is 18° smaller than the sur-
face with w = 4 lu. Also, the receding contact angle changes
slightly with increasing the solid fraction. As we can see in
Fig. 11(a), evaporation starts in the CCR mode. Subsequently,
the CCA mode takes place, in which the contact angle is
approximately constant. Then, a transition to the mixed mode,
followed by variations in both the contact angle and radius,
is observed. In fact, generally there is a CCA mode period

FIG. 9. Variation in θr , θa, and FD with contact angle.

after the initial CCR mode period during droplet evapora-
tion on the textured surface. However, from the numerical
simulation standpoint, there is an inherent limitation due to
the application of the diffuse interface model. To accurately
simulate the problem, the interface thickness needs to be as
small as possible compared to the smallest length scale of the
problem. The smallest length scale in our problem is the pillar
width w. In the case of w = 4 lu, D

w
= 1, as we can see in the

previous section, after the CCR mode, the droplet goes into
the mixed mode, and the CCA mode is not captured on this
surface. However, in the surface with w = 8 lu, D

w
= 0.5, a

nearly constant contact angle exists between the CCR and the
mixed modes.

FIG. 10. Nondimensional mass versus time in two different con-
tact angles.

033106-8



PINNING-DEPINNING OF THE CONTACT LINE DURING … PHYSICAL REVIEW E 102, 033106 (2020)

FIG. 11. Evaporation for the droplet initially in the Cassie state on substrate with h = 15 lu, w = 8 lu, g = 4 lu, and θ = 100◦. (a) Variation
of contact angle and contact radius. (b) Initial position of the droplet. Contact line is pinned on pillar. (c) Slipping starts and depinning occurs.
Droplet goes to the CCA mode. (d) Droplet slips on the pillar in CCA mode.

As we can see in Fig. 12, by increasing the pillar width,
the quasiequilibrium contact angle of the droplet decreases
nonlinearly, but the receding contact angle is approximately
constant. Decreasing θr causes a decrease in the depinning
force. Then, on a surface with larger pillar width, the droplet
needs a smaller depinning force. These results are consistent
with the reported experimental results in [13,15].

B. Evaporation in the Wenzel state

Figure 13 shows the streamlines during evaporation in the
Wenzel. Like the Cassie state, vapor from the interface moves
upward and exits the domain from the open boundary.

FIG. 12. Variation in θr , θa, and FD with pillar width.

Figure 14 shows the evaporation in the Wenzel state on a
surface with θ = 120◦. The apparent contact angle is 129◦.
When evaporation takes place, the contact angle starts to
decrease slowly over time. From the initial moment of the
evaporation, until t = 1.9×105, the contact line moves on the
top of the pillar and then becomes pinned in the corner. Sub-
sequently, the contact radius remains constant and the contact
angle starts to decrease faster. This decrease in contact angle
is continued until the end of the droplet lifetime.

Figure 15 shows the evaporation on a surface with
θ = 100◦. On this surface, with h = 15 lu, w = 4 lu, g = 4 lu,

FIG. 13. Streamlines during evaporation of the droplet in the
Wenzel state, with θ = 120, St = 0.4 on a surface with h = 15 lu,
w = 4 lu, and g = 4 lu.
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FIG. 14. Evaporation for the droplet initially in the Wenzel state on substrate with h = 15 lu, w = 4 lu, g = 4 lu, and θ = 120◦. (a)
Variation of contact angle and contact radius. (b) Initial position of the droplet. Contact line is pinned on pillar. (c) Contact line slips very
slightly toward the inner corner of the pillar. (d) Droplet slips on the pillar. (e) Contact line is stuck and contact angle decreases over time.

the apparent contact angle is 117◦. Behavior of the contact
line during evaporation is nearly the same as the surface with
θ = 120◦.

V. CONCLUSION

In this work, we studied the pinning-depinning mecha-
nisms of a liquid droplet during evaporation on a patterned
surface using the lattice Boltzmann method. When the droplet
was initially in the Cassie state, the stick-slip behavior of
the contact line was observed on the surfaces with different
pillar widths and different equilibrium contact angles. The

results obtained from the numerical simulations on the pat-
terned surface demonstrated that the receding contact angle
increases by increasing the equilibrium contact angle, but does
not change significantly by increasing the pillar width. Also,
the depinning force per unit length decreases dramatically by
increasing the pillar width or contact angle, but during evapo-
ration, the CCA mode is not accurately captured. The reason
is most likely due to the diffuse interface model. For handling
this problem, the interface thickness needs to be as small
as possible compared to the pillar width. For evaporation in
the Wenzel state, it is observed that the contact line remains
approximately in its initial location for the entirety of the
droplet lifetime and the contact angle decreases over time. The

FIG. 15. Evaporation for the droplet initially in the Wenzel state on substrate with h = 15 lu, w = 4 lu, g = 4 lu, and θ = 100◦.
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current two-dimensional model is not capable of modeling the
Cassie-Wenzel transition and extending the model to three

dimensions could be an interesting topic for further future
studies.
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