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Microscale modeling of nondilute flow and transport in porous medium systems
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Nondilute transport occurs routinely in porous medium systems. Experimental observations have revealed
effects that seemingly depend upon density, viscosity, velocity, and chemical activity. Macroscale models based
upon averaged behavior over many pores have been relied upon to describe such systems to date, which require
parametrization of important physical phenomena in material coefficients. To advance fundamental understand-
ing of these complex systems, we examine nondilute transport from a fundamental microscale, or pore-scale,
continuum modeling perspective. We approximate the solution of a model based upon the variable-density
Navier-Stokes equations and a nondilute species transport equation. Known dependencies of the densities,
viscosities, chemical activity, and diffusion for a salt solution on chemical composition are included in the model.
Microscale model solutions are averaged to the macroscale and compared with extant experimental observations.
Investigation of the effects of various physical phenomena on the microscale velocity distribution and the ob-
served macroscale dispersion are considered using dimensional analysis and constrained simulations. Simulation
results are used to explain observed experimental results in light of underlying mechanisms. Conditions under
which the various physicochemical effects investigated are important are revealed.
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I. INTRODUCTION

Nondilute solutions occur in a variety of porous medium
physics applications, such as salt water intrusion, leachate
transport, and density-motivated remediation [1–3]. Species
transport in such systems differs markedly from common
dilute systems. Macroscale mathematical models are used to
represent the behavior of such systems in an averaged sense
over a representative regions of the porous structure.

Laboratory experiments for nondilute flow and transport
in porous media are complicated and time consuming. Ex-
perimental work has consisted of column experiments where
various fluids and salts are used to adjust density, viscosity,
chemical activity, fluid velocities, and pore morphology and
topology characteristics [4–7]. While these experiments pro-
vide insight related to observed displacement patterns and
solute profiles, it is difficult to extract a mechanistic under-
standing from the results due to the scale of the experiments
and the complex and competing physical phenomena that are
operative in such systems. An additional downside to such
experimental work is the inability to isolate different physical
phenomena, since such systems are constrained by the prop-
erties of the solutions investigated.

Attempts to model gravitationally stable, nondilute flow
and transport in porous media have represented limited sets of
laboratory data [6,7]. However, these models are dependent on
fitting parameters that are not firmly tied to underlying physi-
cal phenomena that impact the transport phenomena observed
[7,8]. Because our mechanistic understanding is lacking, ex-
tant modeling approaches are not predictive.
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The use of highly resolved microscale, or pore-scale, com-
putational simulations is one approach at overcoming the
drawbacks of traditional laboratory experiments and obtaining
mechanistic insight [9]. Microscale modeling can be used
to simulate complex systems at a scale at which continuum
mechanical models can be formulated rigorously and consis-
tently with well-understood physics. The results from such
simulations can in turn be used to gain fundamental insight
needed to advance, evaluate, and validate macroscale models
that are needed for the size of typical applications of concern.
Additionally, microscale computational approaches enable a
fuller exploration of potential physical phenomena because
individual model parameters can be isolated and controlled.
Despite the apparent benefits of microscale modeling to ad-
vance understanding of nondilute species transport in porous
medium systems, such approaches have not been reported
in the literature. A fundamental understanding of nondilute
flow and transport in porous media at all spatial scales is
lacking, and the predictive capabilities of macroscale models
for nondilute transport are limited as a result.

II. OBJECTIVES

The goal of this to work is to advance mechanistic under-
standing of nondilute flow and transport in porous medium
systems. The specific objectives are: (1) to formulate and ap-
proximate a microscale nondilute flow and transport model for
porous media; (2) to examine microscale simulation results
qualitatively and quantitatively to aid mechanistic understand-
ing; (3) to upscale microscale simulation results and compare
to extant experimental observations; and (4) to describe the
effect of a set of physical phenomena on observed macroscale
solute dispersion.
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III. BACKGROUND

The spatial scale of a mechanistic model is one of its defin-
ing features and determines the phenomena that need to be
considered [9]. For a porous medium system, the microscale
(also known as the pore scale) is where the boundaries of all
phases and interfaces are known in both space and time. The
macroscale is defined as the scale at which a point is repre-
sented by an average over a region of the system that contains
all phases present. The minimum size of such an averaging re-
gion, such that averaged quantities are insensitive with respect
to changes in the size of the region, is termed a representative
elementary volume (REV) [10]. At the macroscale, variables
such as porosity and volume fraction exist, both of which
are ill-defined at the microscale. As a macroscale point is
an average of the microscale behavior, the distribution of the
underlying variable is lost. Due to the loss of information,
underlying microscale transport phenomena may need to be
parameterized in larger scale models. An example of this is
the inclusion of mechanical dispersion in macroscale species
transport models to account for the varied movement of the
species due to the microscale fluid phase velocity distribution
[10].

Dilute microscale and macroscale fluid flow and species
transport in porous media has been studied extensively and
the use of microscale computational simulations is common-
place [11–17]. Microscale simulations are frequently used to
evaluate existing macroscale relationships for species trans-
port [11,13], to investigate non-Fickian transport for various
types of porous media [14,16], or to improve understanding
of subscale effects on observed macroscale behavior [18].
Microscale simulations are preferred over laboratory experi-
ments because the microscale flow field can be analyzed to
better understand macroscale behavior. For example, the work
of Aramideh et al. [14] found flow conditions needed for the
existence of recirculation zones for media comprised of over-
lapping spheres. These zones resulted in regions of negative
velocities relative to the mean direction of flow and explained
the observed non-Fickian behavior. Much of the research for
microscale dilute flow and transport has focused on examining
microscale velocity distributions and correlations to describe
macroscale behavior [14,16,19].

As compared to dilute flow and transport, microscale
nondilute flow and transport studies have been limited to the
membrane literature [20,21]. Gruber et al. [21] implemented
a microscale model to assess impacts of concentration polar-
ization on reverse osmosis and forward osmosis performance.
The slightly compressible version of the Navier-Stokes equa-
tion were used to solve for the velocity field and the
microscale transport equation was used to model the salt
species. The impacts of nondilute behavior, including the
resulting velocity field distribution, were not discussed or
analyzed.

The thermodynamically constrained averaging theory
(TCAT) is a continuum mechanical approach for deriv-
ing mechanistic macroscale models by directly averaging
microscale conservation and thermodynamic equations and
closing the macroscale models using an entropy inequality
[9,22]. All variables, conservation equations, and thermody-
namic laws are first written at the microscale and formal

averaging approaches are used to derive the macroscale
equations and variables. A constrained entropy inequality is
formulated and used to guide model closure and ensure the
resulting model obeys the second law of thermodynamics.
TCAT models for single phase flow and transport in porous
media [23,24], nondilute flow and transport in porous media
[6,22] and two phase flow and transport in porous media have
been developed [25,26]. The TCAT approach also uses spe-
cific notation to discern between scales and types of averages.
For this work, we follow the TCAT notation and note only that
variables adorned with subscripts are microscale variables and
macroscale variables are adorned with superscripts.

With the TCAT approach, variables across all possible
scales are consistent, well-defined, and connected. Due to this,
microscale simulations can be performed and the results may
be averaged to examine larger scale variables and phenomena.
This is known as subscale modeling and is an approach to val-
idate models where experiments at the scale of the model are
not required. The benefit of this approach is that the physics at
the microscale are typically well-defined and understood and
variables that can be difficult to analyze and isolate experi-
mentally are more easily quantified. This approach has seen
success in other application including two-fluid-phase flow in
porous media [27–30].

The most successful attempts at modeling macroscale
nondilute flow and transport have extended Fick’s law such
that dispersion is a function of the composition [6–8,22,31–
33]. Hassanizadeh [31] first developed the nonlinear Fickian
model, which is a Taylor expansion of Fick’s law and includes
a fitting parameter to account for nondilute behavior. Weigand
et al. [6] expanded on the nonlinear Fickian model by includ-
ing activity impacts as well as an additional fitting parameter.
This model was formulated with TCAT and outperformed
the nonlinear Fickian model for the one dataset considered.
However, the major drawback with these models is the lack of
understanding of the mechanistic factors affecting the fitting
parameters. The parameter in the nonlinear Fickian model has
an exponential relation to the Darcy velocity but no funda-
mental mechanistic basis has been advanced to support the
empirical form [7,8,34]. Applying the TCAT model to the
same dataset used by Watson et al. [7] found a similar re-
lationship where the fitting parameters were functions of the
Darcy velocity [35].

Mechanistic insight into macroscale nondilute flow and
transport is limited and has been provided solely from lab-
oratory experiments with a limited number of salt species
considered. Computational simulations have been performed
but are fundamentally flawed as they assume traditional
density-dependent macroscale flow and transport equations,
which have been shown to be incorrect, can be applied at an
already averaged scale (Darcy scale) to gain insight at an even
larger scale (macroscale) [36,37]. Furthermore, to simulate
transport, the dilute form of Fick’s law has been used despite
attempting to gain insight on nondilute flow and transport at
the macroscale, where Fick’s law has been shown to be invalid
[6,7,38–40]. From laboratory experiments, we know that the
salt species front tends to sharpen as compared to a dilute
tracer under the same operating conditions. The sharpness of
the salt mass fraction front, in response to a step change in
salt mass fraction at the inflow boundary, has been shown
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to increase as the incoming mass fraction of the salt species
increases. However, if a salt species is initially present in the
porous medium, then the difference between the displacing
and displaced mass fraction affects the sharpness of the front
[6]. For a laboratory data set that used CaBr2, chemical activ-
ity effects were found to be significant for constant density
difference experiments [6]. Additionally, laboratory exper-
iments show that nondilute displacements produce skewed
breakthrough curves and they become more asymmetric as
the mass fraction difference between the resident and displac-
ing fluids increases [6]. Mechanistic understanding of these
macroscale experimental observations is lacking.

IV. MODEL FORMULATION, APPROXIMATION,
AND APPLICATION

A. Microscale model

Fluid flow was modeled at the microscale using the
variable-density Navier-Stokes equations [9]. These equations
consist of a conservation of mass equation and conservation of
momentum equations both of which are written for the fluid
phase. The conservation of mass equation is

∂ρw

∂t
+ ∇ · (ρwvw ) = 0, (1)

where ρw is the density, t is time, and vw is the fluid-phase
velocity vector. The conservation of momentum equations for
a fluid with variable density and dynamic viscosity are

∂

∂t
(ρwvw ) + ∇·(ρwvwvw )

− ∇·
{
μ̂w

[
∇vw + ∇vT

w − 2

3
(∇·vw )I

]}

+∇pw,rgh + gw · h∇ρw = 0, (2)

where pw,rgh = pw − ρwgw · h, pw is the pressure of the fluid
phase, h is a position vector of the water surface oriented
opposite to the direction of the gravitational vector, gw is the
gravitational acceleration vector, μ̂w is the dynamic viscosity
of the fluid phase, and the superscript T is the transpose opera-
tor. Both ρw and μ̂w are functions of the solution composition
for the nondilute case considered. The system is assumed to
be isothermal, and the solid phase is immobile.

The microscale species conservation of mass equation is

∂

∂t
(ρwωAw ) + ∇·(ρwvwωAw ) − ∇·(ρwDAw∇ωAw ) = 0, (3)

where the qualifier A refers the the salt species, ωAw is the
mass fraction, and DAw is the diffusion coefficient of species
A in the fluid phase. The nondilute diffusion coefficient is
approximated as [41,42]

DAw = D0
μ̂0

μ̂w

1

ρwVBw

[
1 + mAw

d (ln γ̂Aw )

dmAw

]
, (4)

where D0 is the dilute diffusion coefficient, μ̂0 is the viscosity
of pure water, VBw is the partial mass volume of the water
(species B), mAw is the molality, and γ̂Aw is the activity coef-
ficient. For a binary system, the Maxwell-Stefan equation and
Fick’s law are identical [43]. This form of the diffusion co-
efficient accounts for the concentration dependence that is not

accounted for in the standard Maxwell-Stefan binary diffusion
coefficients [44]. Additionally, the activity coefficient appears
in the parametrization of the diffusion coefficient to account
for that fact that the mass fraction gradient is used as opposed
to the chemical potential gradient. At a molecular level, the
activity accounts for ionic effects, such as Coulombic interac-
tions and charge balance, as the salt species dissociates into
the water phase [45]. The dependence of ρw, μ̂w, and γ̂Aw on
composition for CaBr2-water solutions were taken from the
literature [6].

B. Nondimensional microscale model

The nondimensional form of the governing microscale
equations can provide additional insight on the relative im-
portance of each term. Defining the following nondimensional
variables:

t∗ = vw
in

d50
t, x∗ = x

d50
, v∗

w = vw

vw
in

,

g∗
w = gw

G
, h∗ = h

d50
, ∇∗ = d50∇, (5)

μ̂∗
w = μ̂w

μ̂0
, ρ∗

w = ρw

ρ0
, p∗

w,rgh = pw,rgh

d50ρ0G
, D∗

Aw = DAw

D0
,

where the ∗ superscript refers to a nondimensional quantity,
vw

in is the macroscale inlet velocity, d50 is the mean grain
diameter, and G is the magnitude of the gravity vector. The
nondimensional conservation of mass equation for the phase
is

∂ρ∗
w

∂t∗ + ∇∗ · (ρ∗
wv∗

w ) = 0, (6)

the nondimensional phase momentum equation is

∂

∂t∗ (ρ∗
wv∗

w ) + ∇∗ · (ρ∗
wv∗

wv∗
w )

− 1

Re0
∇∗ ·

{
μ̂∗

[
∇∗v∗

w + ∇∗v∗T
w − 2

3
(∇∗ · v∗

w )I
]}

+ 1

Fr2 (∇∗ p∗
w,rgh + g∗ · h∗∇∗ρ∗

w ) = 0, (7)

where

Re0 = ρ0d50v
w
in

μ̂0
and Fr = vw

in√
d50G

. (8)

The nondimensional species mass conservation equation is

∂

∂t∗ (ρ∗
wωAw ) + ∇∗ · (ρ∗

wv∗
wωAw )

− 1

Pe0
∇∗ · (ρ∗

wD∗
Aw∇∗ωAw ) = 0, (9)

where

Pe0 = d50v
w
in

D0
. (10)

C. Macroscale model

In this work, we are using microscale simulations to in-
vestigate dilute and nondilute flow and transport at both the
micro- and macroscale. For dilute flow and transport at the
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macroscale, well-established models have been developed and
consist of macroscale conservation of mass and momentum
equations. We assume that the dilute microscale simulations
can be modeled as macroscopically one-dimensional systems.
All macroscale variables are calculated using their TCAT def-
initions [9,22].

We summarize the Fickian solute transport model for an
immobile and incompressible solid phase for macroscale flow
and transport in one spatial dimension, which we denote as
z. The macroscale conservation of mass equation for the fluid
phase is

∂ (εwρw )

∂t
= − ∂

∂z
(εwρwvw ), (11)

an approximate momentum conservation in the form of
Darcy’s law is

εwvw = − k̂

μ̂w

(
∂ pw

∂z
+ ρwgw

)
, (12)

and a species conservation of mass equation for the fluid phase
is

∂ (εwρwωA w )

∂t
= − ∂

∂z
(εwρwωA wvw ) − ∂

∂z
(εwρwωA wuAω ),

(13)
where z is positive upwards, εw is the porosity, vw is the
density averaged macroscale fluid velocity in the z direction,
k̂ is the intrinsic permeability, pw is the macroscale pressure
of the water phase, ρw is the macroscale density, which for
our work is constant as we are only applying these equations
to the dilute simulations, gw is the magnitude of the gravi-
tational acceleration, ωA w is the macroscale mass fraction of
species A (salt in this work) in the water phase, and uAw is
the macroscale deviation velocity for species A in the water
phase.

The deviation velocity for dilute transport is generally
parametrized by using a Fickian approximation for the mass
flux which can be written as [46]

JAw = εwρwωA wuAω = −εwρwD̂
∂ωA w

∂z
, (14)

where JAw is defined as the mass flux of species A and D̂ is
the hydrodynamic dispersion coefficient for porous medium
systems. The most commonly used form, in one-dimension,
is

D̂ = D̂Aw

τ̂
+ α̂Lvw, (15)

where τ̂ is the tortuosity of the porous medium, which is de-
fined as the average microscale distance traveled by a species
per unit macroscale length of the medium and is greater than
or equal to one; and α̂L is the longitudinal dispersivity [46].
It should be noted that this macroscale model is only valid
for and applied to the dilute, homogeneous systems at scales
above an REV.

D. Model approximations

To solve the microscale model for nondilute flow and trans-
port, a solver was created within the OpenFOAM framework

(v1712) [47]. OpenFOAM is an open-source, finite-volume
method, computational fluid dynamics software package
that allows for easy parallelization and is packaged with
mesh generation software [48]. The existing variable-density
Navier-Stokes solvers were not suitable for solving our model
as they either couple the density and viscosity through an
energy equation as opposed to a species transport equation,
lack the necessary gravitational terms, and/or assume constant
viscosity.

The governing equations were solved using an implemen-
tation of the PIMPLE algorithm [49]. This algorithm is a
combination of the semi-implicit method for pressure-linked
equations (SIMPLE) algorithm [50] used for steady-state sim-
ulations and the pressure implicit with splitting of operators
(PISO) algorithm [51,52]. The PIMPLE implementation al-
lows for larger time steps than generally allowed by the CFL
condition by iteratively solving the equations and applying
under-relaxation. The OpenFOAM solver rhoPimpleFoam
was used as a template for our model, where we replaced the
energy equation with the species transport equation, included
the gravitational terms and allowed the density and viscosity
to be functions of the salt species mass fraction. To isolate the
impacts that the density, viscosity, and activity have on nondi-
lute transport, solvers were also created for models where
each of the three functions were forced to equal their dilute
value.

To solve the macroscale dilute flow and transport equa-
tions, a cell-centered finite-difference code was used [6]. To
determine the permeability and longitudinal dispersivity, the
method of moving asymptotes algorithm in the software pack-
age NLopt (version 2.4.2) [53] was used to minimize the 	2

error norm between the solution to the macroscale equations
results and the averaged microscale simulation results.

E. Microscale domain generation

For the microscale simulations, 12/20 Accusand was used
as a reference medium to be consistent with the experimen-
tal work of Weigand et al. [6]. The sphere packing code of
Baranau and Tallarek [54] was used to generate sphere pack
realizations consistent with the size distribution of the refer-
ence medium. With this code, the mean grain diameter (d50 =
0.11cm), the standard deviation (σd50 = 0.02 cm) of the grain
diameter, both presented as normal distribution parameters,
and the porosity (εw = 0.35) were matched to the literature
values by sampling from a lognormal distribution [55]. The
parameters used for the 12/20 Accusand are in agreement
with other studies [56].

We examined both a representative elementary volume
(REV) scale and a sub-REV-scale. To determine the required
domain size for an REV, the intrinsic permeability (k̂) and lon-
gitudinal dispersivity (α̂L ) were calculated for various domain
sizes. For each cubic domain, five random sphere packings
were generated. When the standard deviation of k̂ and α̂L were
less than 5%, we assumed an REV. We found that a domain
with a length scale of 9.91 mean grain diameters was sufficient
for an REV.

The sub-REV-scale was examined to allow for storage
and visualization of the microscale results. Only macroscale
variables could be saved for the REV-scale simulations due
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(a) (b)

FIG. 1. REV scale domain: (a) sphere pack; and (b) grain diameter distribution with a sample mean of 0.11 cm and standard deviation of
0.02 cm. The direction of flow for all simulations was upwards and the blue box represents the domain that was simulated.

to memory limitations. For the sub-REV simulations, 180
spheres were packed in a cube, with each side equal to
0.514 cm (4.67 mean grain diameters). For the REV simu-
lations, more than 7 400 spheres were packed in a rectangular
column, where the height to cross-sectional area had a ra-
tio of 6:1 and the dimensions were 6.54 cm × 1.09 cm ×
1.09 cm (59.5 × 9.91 × 9.91 mean grain diameters). This as-
pect ratio was used to allow for more averaging regions along
the direction of flow while still having a large enough cross
section to ensure a REV.

The distributions and packed media are shown in Figs. 1
and 2 for the REV-scale and sub-REV-scale, respectively. The
porosity for both of the domains was 0.35. The tortuosity was
calculated for the sub-REV domain using [57,58]

τ =
∫ |vw|dx∫

vzdx
, (16)

where vz is the velocity in the main direction of flow.

F. Model implementation

The sphere-packing code provided sphere centroids
and radii that were discretized in OpenFOAM using

snappyHexMesh. snappyHexMesh is a mesh generation soft-
ware package that takes a structured Cartesian grid and
generates an unstructured mesh that approximately conforms
to the specified surface geometries. The user has the ability
to control the reconstruction of the geometry through the
integer-valued refinement parameter, which specifies how to
split the cells of the structured grid near a specified surface.
For example, a surface refinement level of one splits one struc-
tured grid cell near the refinement surface into four new cells.
The work of Icardi et al. [13] found a refinement level of 2 in
snappyHexMesh was sufficient to produce a solution that was
grid independent; however, only the flow field was examined
and not species transport. To confirm their conclusions and
ensure the salt species was also independent of the grid for
our simulations, a grid independence study was performed
on the sub-REV domains. We found a strong dependency on
the structured grid that must be supplied before the mesh is
refined around the solid grains but a refinement level of 2 was
sufficient. The final mesh for the sub-REV domains consisted
of 9.28 × 105 cells.

For the microscale simulations, wall boundary conditions
were assumed for the sides of the packed column, where
the sides are specified as the direction orthogonal to gravity.
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(a) (b)

FIG. 2. Sub-REV domain: (a) sphere pack; and (b) grain diameter distribution with a sample mean of 0.12 cm and standard deviation of
0.019 cm. The blue box represents the domain that was simulated.

At the top of the column, outflow boundary conditions were
specified, which fixed the pressure to atmospheric pressure
and forced a zero gradient for the velocity and salt mass
fraction. For the inlet boundary condition, a fixed mass flow
rate was enforced for all simulations, and the incoming salt
mass fraction was constant. By using a fixed mass flow rate,
the volumetric flow rate, and in turn the macroscale velocity,
varied because the density of the incoming fluid depended
upon salt mass fraction.

The simulations performed consisted of varying the incom-
ing salt mass fraction (ωin), the salt mass fraction initially
present in the column (ωres), and the incoming mass flow rate.
For the initial conditions, the steady-state incompressible and
constant density Navier-Stokes equations were solved based
on the resident fluid properties and the resulting pressure
and velocity fields were used as the initial conditions for the
transient simulations. This was done so that the system began
with a fully developed flow field.

Macroscale averages were calculated on the fly for the
REV-scale simulations as the microscale data could not be
stored due to memory limitations. The macroscale averages
were calculated according to Refs. [9,22]. The domain was
split into seven different overlapping REVs and macroscale
average values were calculated in each volume. Each REV
contained the entire cross-section of the domain and had
a height in the direction of flow of 3.27 cm. The REVs
overlapped by 0.545 cm. Additionally, averaged microscale
values were calculated at seven different cross sections
along the height of the column separated by a distance
of 1.09 cm. For the sub-REV simulations, all data could

be stored however microscale averages were also calcu-
lated for five different volumes and at eight different cross
sections.

For the salt species, calcium bromide (CaBr2) was selected
due to the complex nature of its activity coefficient and its
use in previous studies. The density, viscosity, and activity
coefficients from Weigand et al. [6] were used. The dilute
diffusion coefficient (D0) was set to 1.05 × 10−5 cm/s2.

The REV scale simulations were run with OpenFoam
v1712 on UNC Research Computings Dogwood cluster with
2 107 processors. OpenFOAM’s implementation of Scotch
was used for domain decomposition [59]. For the sub-REV-
scale simulations, the number of processors changed to four.

V. RESULTS AND DISCUSSION

A. Dilute simulations

1. Dilute REV-scale simulations

Dilute simulations at three different mass flow rates (ṁw
in)

were first performed so that a baseline could be established
to allow for comparisons between dilute and nondilute flow
and transport. The dilute simulations also allowed us to char-
acterize the porous media to ensure that the model produced
expected behavior for the media being simulated.

The microscale simulation results were averaged and
the resulting macroscale breakthrough curve was used to
determine the longitudinal dispersivity (α̂L). This was ac-
complished by performing a parameter estimation where the
dilute macroscale flow and transport equation was fit to the
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(a) (b) (c)

FIG. 3. Results of fitting the dilute macroscale model (lines) to REV-scale cross-section averaged microscale data (points) for Pe = 0.026
(a), 2.6 (b), and 260 (c).

averaged microscale results at a cross-section by optimizing
the longitudinal dispersivity, as shown in Fig. 3. The first two
averaging regions were excluded from the fits to avoid any
entrance effects. To determine the intrinsic permeability of
the porous media (k̂), Eq. (12) was used with the averaged
microscale results for fluid pressure at the inlet and outlet
of the domain. The sub-REV-scale domain dilute simulation
results were used with Eq. (16) to estimate a value of the
tortuosity of 1.22, which agrees with the literature [13,14].
This value was used for the dilute macroscale transport
equation.

The conditions and resulting estimated parameters for three
dilute simulations performed at an REV-scale are reported
in Table I. The α̂L reported by Weigand et al. [6] for a
similar medium ranged from 0.098–0.16 cm and were based
on laboratory experiments. The increase of the dispersiv-
ity for the highest Pe0 agrees with the literature [13]; the
Re0 also increases and offers a mechanistic rationale for
this observation. Schroth et al. [56] report an intrinsic per-
meability of 4.6 × 10−6 cm2 for 12/20 Accusand, which is
slightly lower than our estimated value, however they also
report different mean grain diameters and porosities than
used in this work, and spheres are an idealized representation
of Accusand.

2. Dilute Sub-REV-scale simulations

To assess how the microscale velocity distribution impacts
macroscale dispersion, sub-REV-scale dilute simulations were
performed for a set of Re0 that matched the REV-scale

TABLE I. Experimental values and optimized macroscale pa-
rameters for the REV-scale dilute simulations.

ṁw
in (g/s) Re0 Pe0 α̂L (cm) k̂ (cm2)

10−6 3.1 × 10−5 0.026 0.049 7.4 × 10−6

10−4 3.1 × 10−3 2.6 0.035 7.4 × 10−6

10−2 3.1 × 10−1 260 0.15 7.4 × 10−6

simulations. Complete microscale simulation details were
stored and analyzed for the sub-REV-scale simulations.

The sub-REV-scale velocities were sampled along cross-
sections orthogonal to the direction of flow near the outflow
boundary (z = 0.513). Figure 4 shows the distribution of the
microscale velocity components for the lowest and highest
Re0 for the sub-REV domain. For all three simulations, the
means of the velocities in direction orthogonal to the flow
(vx and vy) are approximately zero. For the velocity in the
direction of flow, the mean is equal to the superficial face
velocity. This agrees with Aramideh et al. [14]; however,
Icardi et al. [13] stated that the bin with the highest frequency
corresponded to their superficial velocity. This suggests an er-
ror in their results as the density weighted mean of the velocity
in the direction of flow must equal the superficial velocity. Ad-
ditionally, the mean and standard deviation for the velocity in
the z direction are equal. Aramideh et al. [14] showed that the
microscale velocity distribution at low porosities are nearly
exponentially distributed. To test this, the velocity in the z di-
rection was fit to an exponential distribution but failed both the
Kolmogorov-Smirnov and Andersen-Darling goodness-of-fit
tests [60].

The microscale velocities in the mean direction of flow are
all positive for every flow rate considered. Icardi et al. [13]
observed negative velocities at similar Re0 but their porous
media consisted of irregular and polydisperse objects that con-
tained local blockages that resulted in the negative velocities
in the mean direction of flow. The work of Aramideh et al.
[14] examined mono- and polydisperse spheres and while they
observed negative velocities at similar Re0, they considered it
to be negligible. For nondilute flow and transport, negative
velocities in the mean direction of flow can develop due to
gravity stabilization; however, for dilute flow and transport
they represent recirculation zones. Since we did not observe
any negative velocities in our dilute simulations, if we ob-
serve negative velocities in the mean direction of flow in our
nondilute simulations, then they can be attributed to gravity
stabilization effects. The velocity distributions and ranges for
the three simulations are nearly identical but scaled. This
shows that, with the Re0 considered, no new flow pathways
are forming [61].
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(a)

(b)

FIG. 4. Dilute microscale sub-REV velocity distributions for Re0 = 3.1 × 10−5 (a) and Re0 = 0.31 (b). The means and standard deviations
of the velocity are included. The distributions were sampled at a cross-section orthogonal to the mean direction of flow.

B. Nondilute

1. Nondilute REV-scale simulations

The laboratory work by Weigand et al. [6] consisted of a
single incoming flow rate that had a Re0 of 0.07. While we
did not directly match that Reynolds number, Fig. 5 shows the
macroscale mass fraction breakthrough curves for our most
similar set of simulations (Re0 ≈ 10−1). The length of the
column in the laboratory experiments was more than 10 times
longer than the REV-size domains for the microscale simula-
tions. We observe that the averaged microscale results follow
the same trend as the experimental data. The dilute model pro-
duces the most disperse solution and the breakthrough curve
sharpens as the incoming mass fraction increases, while the

resident initial condition fluid mass fraction remains zero. For
the simulation with a nonzero resident initial condition salt
mass fraction, the averaged microscale simulation results also
show breakthrough curve profiles similar to those previously
reported based upon laboratory studies despite the slightly
different mass fractions used.

The REV-scale nondilute simulations were performed at
the same three mass flow rates that were used with the dilute
microscale simulations and five different combinations of ini-
tial mass fractions and displacing mass fractions for the salt
species were examined for each flow rate. For the nondilute
simulations, the Re and Pe vary throughout the domain as the
densities, viscosities, and diffusion coefficient are functions
of the mass fraction. We define these numbers, as well as
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(a) (b)

FIG. 5. Nondilute species breakthrough curves: (a) laboratory experiments from [6]; and (b) averaged REV-scale microscale simulations.

a nondimensional gravity number (Ng) and a viscosity ratio
(Mμ̂) to aid interpretation of the simulated results as

Re = ρind50v
w
in

μ̂in
, (17)

Pe = d50v
w
in

DAw,in
, (18)

Ng = (ρin − ρres)k̂G

μ̂inv
w
in

, and (19)

Mμ̂ = μ̂res

μ̂in
. (20)

Ng is a measure of the ratio of gravitational forces to advective
forces. For large Ng, gravity stabilization becomes dominant
compared to advective transport. Mμ̂ in this work will always
be �1 as we only consider viscous-stable displacements. For
small viscosity ratios, viscous stabilization effects may be-
come important. Table II shows the Re, Pe, Ng, and Mμ̂ for
the two highest mass flow rate simulations. The decrease in
the Re and Pe as the incoming mass fractions increase is due
to a decrease in the inlet velocity.

The breakthrough curves for Re ≈ 10−3 simulations are
shown in Fig. 6. The breakthrough curves for Re ≈ 10−5 (not

TABLE II. Nondilute REV-scale simulation parameters for the
two highest mass flow rates considered. The two highest flow rate
simulations have Re ≈ 10−3 and Re ≈ 10−1, respectively.

ṁw
in = 10−4 g/s ṁw

in = 10−2 g/s

ωin ωres Re (10−3) Pe Ng Mμ̂ Re Pe Ng Mμ̂

Dilute 0 3.1 2.6 0 1.00 0.31 260 0 1.00
0.01 0 3.0 3.1 81 0.99 0.30 310 0.81 0.99
0.1 0 2.7 2.3 840 0.89 0.27 239 8.4 0.89
0.2 0 2.4 1.6 1800 0.78 0.24 160 18 0.78
0.4 0 1.3 0.99 2900 0.43 0.17 99 29 0.43
0.5 0.4 0.73 0.99 2500 0.55 0.073 99 25 0.55

shown) only differ from the Re ≈ 10−3 curves in that the
solutions are more diffuse, and the displacement simulation
where ωin = 0.1 is more diffuse than the dilute displacement
at the lowest flow rate. These simulations depict behavior that
is in contrast to the current understanding of macroscopic
nondilute transport. The front is thought to sharpen as the
incoming mass fraction increases but we observe the oppo-
site behavior at these Pe [7,8,37,39,40,62–64]. The molecular
diffusion coefficient as a function of mass fraction is shown
in Fig. 7. The sharpness of the nondilute fronts is corre-
lated to the diffusion coefficient with one exception. For the
case where ωin = 0.1, the diffusion coefficient is slightly
larger (2%) than the dilute diffusion coefficient and the Pe
is slightly lower than the dilute displacement, however, the
nondilute displacement breakthrough is sharper than the dilute
breakthrough curve. This demonstrates that we are observing
nondilute behavior for these displacement simulations as a
higher diffusion coefficient and lower Pe should produce a

FIG. 6. Averaged REV-scale nondilute breakthrough curves for
Re ≈10−3.
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FIG. 7. Molecular diffusion sensitivity to density, viscosity, and
activity [see Eq. (4)].

more diffuse breakthrough curve for a dilute displacement
simulation.

The macroscale breakthrough curves for Re ≈ 10−1 are
shown in Fig. 5(b). This set of simulations is in good
agreement with existing experimental work and the current
understanding of nondilute behavior [6–8,65]. The curves
sharpen as the incoming mass fraction increases and when the
resident fluid has a nonzero salt concentration, the difference
between the fluid properties controls behavior. At this high of
a Pe number, the nondilute behavior is a result of the nondi-
lute effects on the flow field. While molecular diffusion will

still impact the solution, it becomes a higher order effect as
can be seen with the ωin = 0.4 simulation having the highest
molecular diffusion coefficient but also having the sharpest
breakthrough curve at this flow rate.

2. Nondilute sub-REV simulations

As was done with the dilute simulations, sub-REV sim-
ulations were performed to examine microscale behavior.
Figure 8 shows the normalized microscale mass fractions
at a cross-section along the mean flow direction for the di-
lute tracer and for the ωin = 0.4 displacement simulation at
Re ≈ 10−3, where flow is moving upwards. The ωin = 0.4
displacement simulation was more disperse than the dilute
simulation at this Re due to diffusion coefficient that was 1.79
times larger than the dilute diffusion coefficient.

The mixing zone was determined by computing the density
weighted average of the salt mass fraction computed over the
area normal to the mean direction of flow and defined as the
bounds on z for which the normalized salt mass fraction was in
[0.001,0.999]. The upper bound defined the trailing edge and
the lower bound the leading edge (Fig. 9). The mixing zone
thickness was found by subtracting the leading edge location
from the trailing edge location.

By examining the microscale mass fractions, we can see
the effects of gravity stabilization. For the dilute case, the salt
concentration varies significantly in any given cross-section
in the mixing zone orthogonal to the direction of flow. This
is due to mechanical dispersion. For the nondilute simulation,
there is less variation in the mass fraction. Figure 10 shows
the variance of the normalized mass fraction over time at
a cross-section orthogonal to the direction of flow near the

(a) (b)

FIG. 8. Normalized microscale mass fraction simulations at Re ≈ 10−3 for an upward flow displacement pattern: (a) dilute case; and
(b) ωin = 0.4 and ωres = 0.
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FIG. 9. Leading edge (dotted line) and trailing edge (dashed line)
of the mixing zone, and the mixing zone thickness (solid line) for
the dilute (blue) and ωin = 0.4 and ωres = 0 (yellow) simulations at
Re ≈ 10−3.

outlet. When a denser fluid is above a less dense fluid, which
can be caused by the tortuous path of a porous media, gravity
will force the denser fluid downwards. This results is a more
uniform mass fraction distribution in the direction of flow and
counteracts mechanical dispersion. However, as seen in Fig. 9,
the nondilute (ωin = 0.4) mixing zone is larger than the dilute
mixing zone at this Re. The macroscale breakthrough curves
for the dilute simulation and ωin = 0.1 and ωres = 0 simula-
tion are similar (Fig. 6) and have nearly identical diffusion
coefficients, however the variance is greatly reduced for the
nondilute simulation. This shows that gravity stabilization is
impacting the microscale mass fraction distribution but the
macroscale breakthrough curves are relatively insensitive to
gravity stabilization at this Pe and are governed by the variable
diffusion coefficient.

By examining the nondimensional form of the variable-
density Navier-Stokes equation [Eq. (7)], the relative im-
portance of each term can be observed. For the nondilute

FIG. 10. Normalized mass fraction variance averaged over a
plane located at z = 0.513 for dilute and nondilute simulations at
Re ≈ 10−3.

displacement with ωin = 0.4, Re−1 is 7.6 × 102 and Fr−2 is
4.2 × 108; therefore, the dominant term in Eq. (7) is the term
with the Fr. Ignoring all other terms, the gradient of the pres-
surelike term (p∗

w,rgh) and the density must be approximately
equal, as gravity is assumed constant in this work, but have
opposite signs. When a more dense fluid is above a less
dense fluid, the gradients of the pressure and density have the
same sign. This can produce either negative velocities in the
direction of gravity or slow down the velocities in the mean
direction of flow. This stabilization restricts the movement
of the salt species and produces a more uniform microscale
mass fraction field along a given cross-section orthogonal to
gravity.

To further examine the effects of gravity stabilization, the
microscale velocities and mass fractions were sampled at a
cross-section orthogonal to the gravitational vector (Fig. 11).
For our dilute microscale simulations, no negative velocities
in the direction of gravity were observed at the Reynolds num-
bers considered. For our nondilute simulations, we observe
negative velocities that are a result of gravity stabilization. The
velocity distribution in the mean direction of flow becomes
increasingly more skewed to the left as the incoming salt mass
fraction increases, resulting in larger negative velocities. The
variance of the velocity components orthogonal to gravity (vx

and vy) increases as the salt front passes through as compared
to the dilute simulations. Gravity stabilization not only im-
pacts the velocities in the direction of gravity but also the
velocities orthogonal to gravity as gravity acts to stabilize the
front.

The same sub-REV analysis was performed for the simu-
lations with Re ≈ 10−1 and the normalized microscale mass
fractions for the dilute and ωin = 0.4 displacement simulation
are shown in Fig. 12 and the leading and trailing edges of the
mixing zone and mixing zone thickness are shown in Fig. 13.
As with the lower Re simulations, the nondilute displacements
result in a lower variance of the normalized mass fraction at
a given cross-section orthogonal to flow as compared to the
dilute simulation (Fig. 14). Mechanical dispersion increases
with fluid velocity, and at this Re we observed increased
mechanical dispersion and increased variance in the mass
fractions for the dilute and nondilute simulations as compared
to the lower Re simulations. However, the length of the mixing
zone is shorter for the nondilute simulations as compared to
the dilute tracer, which produces a sharper macroscale break-
through curve for the nondilute system.

At this larger Re, however, we observe locations where
a higher density fluid is above a lower density fluid, which
was not observed for the lower Re simulations. Comparing
the gravity numbers for the ωin = 0.4 displacement simu-
lations at the two different Re shows that at the larger Re
simulation, gravitational to viscous forces are reduced by
two orders of magnitude at the larger Re compared to the
small Re, which results in regions in which instabilities re-
main for the larger Re case. This results in an increase
in the mass fraction variation at a cross-section aligned
with the mixing zone. Comparing Figs. 10 and 14 shows
the increase of the mass fraction variance at the higher
Re number simulations for both the dilute and nondilute
simulations. For the ωin = 0.4 simulation, Re−1 = 7.6 and
Fr−2 = 4.2 × 105, which means the Fr term is still dominating
behavior.
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(a)

(b)

FIG. 11. Distribution of velocity components and mass fraction sampled for a cross-section at z = 0.513 for simulations at Re ≈ 10−3:
(a) ωin = 0.1; and (b) ωin = 0.4.

To confirm these observations, the nondilute microscale
velocity distributions at a cross-section near the outlet (z =
0.513) at the largest Re are shown in Fig. 15. No negative
velocities are observed in the direction of gravity for the
nondilute displacements at this Re. However, the variance in
the velocity decreases as compared to the dilute simulation at
this Re [Fig. 4(b)], and the relatively large positive velocities
in the direction of flow no longer occur. For the nondilute
displacement with ωin = 0.4, the standard deviation of the
velocity in the z direction has a minimum value of 0.043 cm/s
and occurs when the front is approximately halfway through
the domain. For the lower Re simulations, the standard devi-
ation of vz increased as the front moved through the domain.
For the lower Re simulations, where the gravity numbers are
two orders of magnitude larger, uniformly stable distributions
were observed, which was not the case at higher Re.

The distribution of the mass fraction at the higher Re sim-
ulations is also skewed (Fig. 15), which from a macroscale
perspective produces a breakthrough curve that is asymmet-
ric. This macroscale behavior has been observed by Weigand
et al. [6] and was attributed to activity effects but this does
not seem to be true as the lower Re simulations would also
have a skewed or asymmetric distribution at the microscale.
We attribute the asymmetry to the nonlinear density function.
As the mass fraction increases so does the density gradient.

Therefore, gravitational stabilization affects higher mass frac-
tions more than lower mass fractions, which can be seen from
the gravity number. This explains the skewness in the mass
fraction histogram as well as the observed increase in size of
negative velocities as the mass fraction increases at lower Re.

C. Isolation of phenomena

One of the benefits of computational simulations over
laboratory experiments is the ability to isolate different phe-
nomena. Figures 16 and 17 show the REV-scale macroscale
breakthrough curves for Re ≈ 10−3 and Re ≈ 10−1, respec-
tively, where we independently set the activity, density, and
viscosity such that they are no longer functions of the salt
species and are equal to their dilute values. For the simulations
where the resident fluid had a nonzero salt mass fraction, we
fixed the density and viscosity to the values that correspond to
the resident salt mass fraction.

1. Activity

Activity only appears in the molecular diffusion coefficient
and when we neglect activity effects, the molecular diffusion
coefficient monotonically decreases as the mass fraction in-
creases (Fig. 7). For the nondilute simulations with Re ≈
10−3, the macroscale breakthrough curves were correlated to
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(a) (b)

FIG. 12. Normalized microscale mass fraction simulations at Re ≈ 10−1 for an upward flow displacement pattern: (a) dilute case; and
(b) ωin = 0.4 and ωres = 0.

the diffusion coefficient with the exception of the simulation
with ωin = 0.1, which was sharper than could be described by
just examining the diffusion coefficient and Pe. Additionally,
by examining the microscale flow field, we observed gravi-
tational stabilization effects that produced negative velocities
for the nondilute simulations at this flow rate.

When the activity is turned off for the simulations with
Re ≈ 10−3, every breakthrough curve sharpens with the ex-
ception of the ωin = 0.01 because the diffusion coefficient
increases when activity is turned off. The changes in the

FIG. 13. Leading edge (dotted line) and trailing edge (dashed
line) of the mixing zone, and the mixing zone thickness (solid line)
for the dilute (blue) and ωin = 0.4 and ωres = 0 (yellow) simulations
at Re ≈ 10−1.

macroscale curves are more significant for the higher mass
fraction displacements where the variable diffusion coefficient
is more sensitive to activity. For the higher Re simulations
(Fig. 17), the macroscale behavior is insensitive to activity
effects, which results in the breakthrough curves being essen-
tially identical for the simulations with all effects included and
those in which activity was ignored.

At higher Re and Pe numbers, activity is a higher-order
phenomena for macroscale nondilute transport. At the lower
Re and Pe, activity only becomes important at high mass frac-
tions. The activity coefficient for CaBr2 is highly nonlinear

FIG. 14. Normalized mass fraction variance averaged over a
plane located at z = 0.513 for dilute and nondilute simulations at
Re ≈10−1.
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FIG. 15. Distribution of velocity components and mass fraction sampled for a cross-section at z = 0.513 for simulations at Re ≈ 10−1 and
ωin = 0.4.

and increases exponentially at high mass fractions. For other
salt species such as NaCl, the activity coefficient does not
increase as significantly and is likely to be unimportant for
essentially all conditions.

2. Viscosity

Not only does the viscosity appear in the microscale con-
servation of momentum equation, but it also appears in the
molecular diffusion coefficient. With the viscosity turned
off, the molecular diffusion coefficient increases as the mass
fraction increases (Fig. 7). Additionally, with no viscos-
ity gradient, viscous stabilization that sharpens macroscale
breakthrough curves cannot occur [62]. However, if we exam-
ine the nondimensional form of the Navier-Stokes equation,
then we see that the viscosity appears in a term that is mul-
tiplied by the Re−1. From our previous analysis, we expect
viscosity to be a higher order effect as the term associated with
Fr−2 is dominant. The viscosity is also in the denominator
in the gravity number. A decrease in the viscosity, increases

the gravity number—increasing the ratio of gravitational to
viscous forces.

As stated, at the lower Re and Pe, the nondilute simulations
are controlled by the molecular diffusion coefficient. Every
breakthrough curve at the lower Re is more disperse when
viscous effects are neglected and the higher the incoming
mass fraction, the more disperse the breakthrough curve. The
viscosity function for CaBr2 is an exponential function so it is
expected to see the most dramatic impacts at the higher mass
fractions.

For the highest Re simulations, the viscosity impacts on the
macroscale breakthrough curve are negligible. The microscale
velocity distribution with a fixed viscosity is nearly identical
to the microscale velocity distribution with a variable viscos-
ity. The flow profile is relatively insensitive to the viscosity
due to the choice of a fixed incoming mass flow rate boundary
condition. The pressure does increase when the viscosity is
variable and minor changes in the velocities are observed in
the pore throats but they do not change enough to impact
significantly macroscale transport.

(a) (b)

FIG. 16. Sub-REV-scale breakthrough curve sensitivity at Re ≈ 10−3: (a) ωin = 0.4 and ωres = 0; and (b) ωin = 0.5 and ωres = 0.4.
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(a) (b)

FIG. 17. Sub-REV-scale breakthrough curve sensitivity at Re ≈ 10−1: (a) ωin = 0.4 and ωres = 0; and (b) ωin = 0.5 and ωres = 0.4.

The Pe number for these simulations are large enough
that diffusion is small compared to mechanical dispersion—
resulting in negligible effects of viscosity on the shape of the
mass fraction breakthrough curve. We conclude that at the
lower Re and Pe numbers, the changes in the breakthrough
curves are a result of the increased diffusion coefficient and
not the neglect of viscous stabilization.

The work of Landman et al. [37] agree with these obser-
vations, and they concluded that viscosity impacts are only
important at lower gravity numbers and larger flow rates. In
their work, they found viscosity to be important at a gravity
number of 0.2 but unimportant at a number of 1.64. In this
work, the lowest gravity number for a nondilute displacement
is 0.81. The smallest viscosity ratio (Mμ̂) for our simulations
is 0.43 and according to the work of Jiao and Hötzl [62]
the macroscale dispersion decreases as the viscosity ratio de-
creases. Our simulations agree with their work that no viscous
stabilization effects may be noticed at this high of a viscosity
ratio. To check this, the 1st-order parameter in the viscosity
function was increased by a factor of 10 and viscous stabiliza-
tion effects were observed.

3. Density

As with the viscosity, the density appears in the con-
servation of momentum equation and diffusion coefficient.
When the density is fixed, the governing microscale equa-
tions reduce to the incompressible, constant-density form of
the Navier-Stokes equations and gravity stabilization cannot
occur. There is only a slight dependency of the diffusion
coefficient on density (Fig. 7).

At the lower Re and Pe, the breakthrough curves are all
more disperse than when density is variable (Fig. 16). As the
diffusion coefficient is nearly identical with and without a
variable density, these simulations are a direct measurement
of gravity stabilization. As expected, the amount of gravity
stabilization is a function of the incoming and resident mass
fractions and more gravitational stabilization is observed as

the mass fractions increase. Since viscous stabilization is rel-
atively unimportant at this low Re and Pe, these solutions are
dominated by changes in the diffusion coefficient.

The same conclusions can be drawn from the breakthrough
curves for the higher Re simulations (Fig. 17). With a con-
stant density, we no longer have gravity stabilization and the
macroscale breakthrough curves approach the dilute break-
through curve. This shows that density impacts are the most
important phenomena for macroscale nondilute transport.

D. Macroscale models

Recent attempts at modeling macroscale nondilute flow
and transport have used a Taylor series expansion of Fick’s
law to include at least one new parameter to account for
nondilute behavior [6,7]. For both of these macroscale mod-
els, the new parameters have been shown to be functions
of the macroscale velocity, where the parameter decreases
exponentially as the velocity increases [7,35]. From this work,
we observed that as the flow rate increases for the nondi-
lute displacements, the microscale flow field in the direction
opposite to the gravity vector transitions from a distribution
with negative velocities and a large variance to an exponen-
tial like distribution with a reduced variance as compared to
dilute simulations. This is in agreement with the findings that
dispersion decreases as the macroscale velocity increases and
explains why the nondilute model parameters are functions of
the macroscale velocity.

Macroscale dispersion is, however, not solely a function
of the macroscale velocity and a fitting parameter. The gravity
number should also be included in macroscale models because
it quantifies the amount of gravity stabilization that occurs for
a given macroscale velocity and includes the density differ-
ences. Egorov [32,37] developed a model that was parameter
free and included the gravity number but the model was
unable to correctly describe macroscale nondilute transport.
The continued use of microscale simulations to increase our
understanding of nondilute behavior will be necessary for the
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development of high-fidelity macroscale models where the
parameters are tied to the microscale physics.

VI. CONCLUSIONS

This work is the first step in obtaining a fundamental un-
derstanding of microscale nondilute flow and transport that
can lead to improved and parameterized closure relations for
macroscale models. From this work, we reach the following
conclusions.

(1) Microscale modeling is an efficient and effective
tool for advancing a fundamental understanding of complex
nondilute behavior. Microscale modeling approaches are the
preferred route for obtaining a mechanistic understanding as
compared to macroscale laboratory experiments.

(2) Nondilute behavior can produce macroscale break-
through curves that can be more or less disperse than dilute
breakthrough curves at the same operating conditions. Addi-
tionally, an increase in the incoming salt mass fraction does

not necessarily result in a sharper macroscale breakthrough
curve.

(3) Density gradients are of leading order importance for
nondilute flow and transport. At low Re and Pe, the chemical
activity and viscosity can also affect macroscale breakthrough
curves through the diffusion coefficient. At higher Re and Pe,
activity impacts are unimportant and viscosity stabilization
will only appear at low viscosity ratios.

(4) Gravity stabilization can result in negative microscale
velocities in the mean direction of flow or a reduced variance
in the mean direction of flow dependent on operating condi-
tions.

(5) Asymmetric nondilute macroscale breakthrough
curves are due to nonlinear density functions and not a result
of chemical activity.
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