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Plasticity and aging of folded elastic sheets
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We investigate the dissipative mechanisms exhibited by creased material sheets when subjected to mechanical
loading, which comes in the form of plasticity and relaxation phenomena within the creases. After demonstrating
that plasticity mostly affects the rest angle of the creases, we devise a mapping between this quantity and the
macroscopic state of the system that allows us to track its reference configuration along an arbitrary loading path,
resulting in a powerful monitoring and design tool for crease-based metamaterials. Furthermore, we show that
complex relaxation phenomena, in particular memory effects, can give rise to a nonmonotonic response at the
crease level, possibly relating to the similar behavior reported for crumpled sheets. We describe our observations
through a classical double-logarithmic time evolution and obtain a constitutive behavior compatible with that of
the underlying material. Thus the lever effect provided by the crease allows magnified access to the material’s
rheology.

DOI: 10.1103/PhysRevE.102.033005

I. INTRODUCTION

Systematically creasing a thin material sheet can produce
a variety of bulk metamaterials, that can be naturally di-
vided into disordered, or crumpled, and ordered, origami-like,
structures. On the origami side, carefully picking among the
infinite number of possible crease patterns allows designing
a wide range of physical properties and shapes [1–5]. An
archetypal example is the negative apparent Poisson ratio
exhibited by the Miura-ori patterns [6–9]. This unnatural be-
havior is explained through the rigid-face model, where each
fold is described as two rigid panels and a hinge setting an
angle between them. This description results in tight kinetic
constraints on extended foldings, and only a small number of
degrees of freedom usually account for all possible geometric
deformations [6]. This simple model is functional regardless
of the scale of the system, from microrobots [10] to space
engineering [11].

In crumpled systems, the situation is more complex, as
single elastic excitations such as developable cones and ridges
[12,13] act as crease precursors. However, once the system
has been prepared, a random network of creaselike, plastified
objects competes with the elasticity of the sheet to produce
a soft elastic solid, though in this case, self-contact plays a
major role [14,15].

Thus, for many material foldings, the modeling must take
into account the properties of the material itself [16]. Indeed,
for origami structures hidden degrees of freedom [17,18] ap-
pear that combine the elastic deformation of the faces and the
mechanical response of the creases. The former is understood
as a classic deformation of thin sheets with boundary condi-
tions imposed by the creases. The latter is usually described
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as an elastic hinge, with a response that is proportional to the
departure of the crease angle from a rest configuration [19,20].
The range of reachable configurations for such a model is
much broader: it allows, for instance, the passage between
stable states in bistable origamis [21–23]. Notably, comparing
the elasticity of the crease and the flexural rigidity of the faces
gives rise to a characteristic length scale [24] that relates to
the spatial extension of the crease [25,26].

While this approach is enough to explain the elastic
behavior of folded structures, it fails to capture the com-
plete quantitative picture. For intermediate deformations, both
origamis [21,27,28] and crumpled sheets [29,30] exhibit hys-
teresis and relaxation. These phenomena drastically limit the
experimental domain of validity for simple elastic models:
they induce a temporal evolution of the system and a change
of reference state during the experiment. Worse, producing
precise and reproducible experiments is severely challenging
due to induced memory effects. Nevertheless, the ability to
produce a crease within a sheet relies on these very effects
[28,31,32], which are, in turn, unavoidable. It is thus of crucial
interest to disentangle the respective roles of elasticity and
dissipative phenomena to understand the macroscopic me-
chanical behavior of real-world foldings.

In this paper, we build on the foundations laid by the purely
elastic description of a single fold [24,25] and extend this
framework to take into account the plasticity of the material
through the modification of its reference state. This approach
produces a mapping of the load-deformation curve to the rest
angle of the crease, allowing one to read the latter from macro-
scopic observations on the fly. The corresponding predictions
are then compared to experimental measurements of single
folds produced from polymeric and steel thin sheets with
remarkable success. Finally, we thoroughly investigate the
temporal evolution of the single polymeric fold under stress.
A constant macroscopic strain imposes a stress relaxation that
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FIG. 1. Schematics of the experimental setup used to probe the
mechanical response F (l ) of a creased sheet. One end of the fold is
clamped to a rigid wall, and the other one is fixed to a loading device.
The instantaneous shape θ (S) along the curvilinear coordinate S is
recovered from direct imaging of the fold [24,25]. Notice the mirror
symmetry of the system with respect to S = 0. The crease here is not
a cusp point but a smooth continuous crease.

is well described by a double logarithm. Such a description,
based on the aging of glassy polymers [33,34] and already
observed in various complex systems [30,35], allows captur-
ing subsequent memory effects under complex loading paths
and their dependence upon various parameters.

II. MAPPING THE INTRINSIC PARAMETERS
OF A CREASE

The experimental system displayed in Fig. 1 is similar to
the one used in Refs. [24,25]. We base our analysis on the
elastic description of a single fold presented in Ref. [25]. For
completeness, we briefly detail this model. Consider a thin
sheet of thickness e and size 2L × W decorated with a single
crease across its width W . The folded sample is clamped at
both ends located at an imposed spacing of l � 2L while the
corresponding external load F (l ) is recorded (or vice versa).
The absolute reference configuration of the free-standing fold
prior to the mechanical testing is described by a tentlike shape
θ0(S) that is well parametrized by

θ0(S) = �0 − π

2
tanh

(
S

S0

)
, (1)

with �0 the crease rest angle and S0 its characteristic size. The
latter two intrinsic parameters determine the internal state of
the fold unambiguously. Recall that the reference configura-
tion of the clamped crease is different from the free-standing
one as it is characterized by a size Sc given by

Sc � S0

2
log

4L

S0
(2)

and a crease rest angle �c = ψ (Sc) � �0. In the deformed
configuration, we assume a local elastic energy density of the
fold given by

Eloc(S) = BW

2
[θ ′(S) − θ ′

0(S)]2
, (3)

where primes denote derivative with respect to S and B is
the bending stiffness of the unfolded sheet. The equilibrium
configuration of the fold is retrieved by minimizing its total
energy elastic energy minus the work of the external force F .
The minimization yields the following prestrained elastica:

θ ′′(s) − θ ′′
0 (s) − α sin θ (s) = 0, (4)

with α = FL2

BW the dimensionless load and s = S
L the dimen-

sionless curvilinear coordinate. In addition, the boundary

(a)

(b)

FIG. 2. (a) Mapping of the load-deformation curve for folds with
intrinsic parameters s0 = 9.2 × 10−3 and �0 ranging from 36◦ to 92◦.
(b) Mapping of the load-displacement curve for folds with intrinsic
rest angle �0 = 90◦ and three different crease sizes. Notice that these
mappings exclude unphysical self-intersecting state of the fold, that
is, the condition ε (c)

x (�0 ) < εx < 1 is always satisfied.

conditions at the clamped edges impose

θ (0) = θ (1) = 0, (5)

where the mirror symmetry of the fold at s = 0 was used (see
Fig. 1).

Now, we exploit the elastic description of the fold to obtain
the force-displacement curve. With that goal in mind, we
solve numerically the differential equation Eq. (4) with the
boundary conditions (5) using a standard shooting method.
Solving for a prescribed range of values of α yields a load-
displacement curve for the clamped fold. To this purpose,
we define the typical deformations in the parallel and normal
directions to the applied load by

εx = l

2L
=

∫ 1

0
cos θ (s) ds, (6)

εy = h

L
= −

∫ 1

0
sin θ (s) ds. (7)

Here ε (c)
x (�0) < εx < 1 and 0 < εy < ε (c)

y (�0), where ε (c)
x

and ε (c)
y are limiting strains for which self-contact between

the two faces of the fold occurs.
Equation (1) shows that the absolute reference state is de-

scribed using two internal parameters �0 and s0 = S0/L only.
Therefore, one can systematically map their respective effects
on the load-displacement curve, as shown in Fig. 2. We notice
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FIG. 3. Mapping of the normalized crease moment with respect
to the macroscopic moment imposed on a fold with a crease size
s0 = 9.2 × 10−3 and a rest angle �0 ranging from 36◦ to 92◦. For
high stretching, the moment of the crease is close to the one estimated
macroscopically.

that for a fixed value of s0, each couple (α, εx) corresponds to
a unique value of �0: the rest angle is thus traceable through
the values of the load α and the corresponding deformation
εx. However, a degeneracy still exists if one considers both
parameters �0 and s0. Nevertheless, there exists a separation
of scales between variations due to each parameter: Fig. 2(b)
shows that a small shift in the curve of the mechanical re-
sponse necessitates an order of magnitude variation in s0 (as
long as s0 � 1). In contrast, a small variation of the angle
�0 induces a substantially larger effect. In the following,
we build on this feature to lift this degeneracy by using a
direct experimental estimation of the characteristic size S0 and
determining �0 from the force-deformation curve.

Interestingly, the computation also allows us to access the
dimensionless moment of the crease [25]

m = θ ′(sc) − θ ′
0(sc) � 1

2sc
(� − �0). (8)

Here sc = Sc/L, � = π + 2θ (sc) and BW/2L is used as the
scaling factor of the moment. In Fig. 3 we compare the mo-
ment m to a macroscopic moment, evaluated by multiplying
the dimensionless load to the normalized height of the fold,
and used as an approximation for the crease mechanical re-
sponse in the case of highly stretched creases in Ref. [24]. Our
model not only confirms that αεy is a good approximation of
the moment at the crease for high strain but also takes into
account both the correction coming from the spatial extension
of the crease and the bending of the faces for low and negative
loads. We argue that the mapping procedure proposed here
from the direct results of the loading test is well suited to
characterize the crease mechanics.

Another relevant property, observed in Fig. 4, is the quasi-
affine relationship between the stress m and the load α when
the strain εx is maintained constant. As a consequence, during
the relaxation of the force both the easy to record force F and
the local stress at the crease follow the same evolution. While
the study in Sec. IV on the temporal evolution of the crease
focuses only on F , our models and conclusions apply also to
its local mechanics.

FIG. 4. Normalized moment m(α) of a crease with a characteris-
tic size s0 = 9.2 × 10−3 and a rest angle �0 ranging from 36◦ to 92◦

for different fixed strains εx .

The present prestrained elastica model was shown to be
relevant for studying the mechanical response of a fold in
the elastic regime, namely, as long as deformations remain
small enough or when the crease was annealed beforehand
[25]. Otherwise, the plastic behavior of the material within
the crease comes into play. In the following, we postulate
that the material’s plasticity consists in modifying the absolute
reference state of the fold through the intrinsic parameters �0

and S0. This hypothesis allows us to extend our model beyond
the elastic regime.

However, the dominant plastic contribution comes from
variations of the rest angle �0 (see Fig. 2) which yields a
powerful tool, the aforementioned mapping, that allows us to
predict the full state of the fold and provide local information
on the system at any time during deformation using the macro-
scopic observables l and F . To test this idea in the plastic
regime, we systematically compare in Sec. III the prediction
of the rest angle to experimental observations of �0.

III. PLASTIC RESPONSE OF A CREASE

For the current experiments, we used rectangular mylar
(PET) sheets of length 159 mm, width 30 mm, and thickness
500 μm. The sheet was manually precreased at its half-length
and put under a heavy weight for 30 min. Then the fold was
freely let to relax for 10 min. Before performing the exper-
iment, we took a high-resolution photo of the free-standing
fold to measure its characteristic size Sinit

0 and rest angle � init
0 .

These parameters were extracted by interpolating the shape of
the fold using Eq. (1). Then a simple stretching test probed
its mechanical response, as presented in Fig. 1 using two
different protocols.

In a first experiment (Protocol A), we clamped the fold
in a compressed state (F < 0) and stretched it at a speed of
50 mm s−1 until the elastic limit was crossed and a given target
force was reached. Here we chose 4 N as a maximum load
to make sure the material was stressed well above its plastic
threshold. Then the fold was unclamped, and a photo of the
final state was taken immediately to extract the rest angle
�final

0 and the characteristic size Sfinal
0 . In a second experiment
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(Protocol B), we followed the same procedure except that
the fold was compressed back to a target negative force, in
our case −1.5 N, before unclamping it and measuring again
�final

0 and Sfinal. For the 500 μm mylar sheets we used, we
found sinit

0 � 9.2 × 10−3 and sfinal
0 � 1.1 × 10−2 amounting

to a 20% variation of the dimensionless characteristic size
throughout the whole experiment. Figure 2(b) shows that
for a fold prepared with s0 � 10−2, the main effect on the
load-displacement curve comes from variations of the rest
angle �0. Guided by this result, we neglect in the following
the measured variations of the characteristic size and assume
s0 = sinit

0 = sfinal
0 � 10−2.

The comparison between the raw output of the experi-
ments, i.e., the load-displacement curves, and the theoretical
results of the prestrained elastica requires a normalization
factor proportional to the bending rigidity of the material, B.
For that purpose, we use the experimental results within the
elastic regime, which corresponds to an applied force F � 0.
Then B is set as a fitting parameter for the load-displacement
curve while the internal parameters of the fold are given by
� init

0 and s0. The experimental load-deformation curve is well
reproduced by the elastic model with B = 44.2mJ , which
corresponds to a Young modulus E ≈ 3.5 GPa and a Poisson
ratio ν = 0.4, consistent with tabulated values. Using the fold
as a “bendometer” for thin sheets is indeed very accurate
compared to other flexural tests. For example, as opposed to
an unfolded sheet submitted to the same experimental test,
the advantage of using the mechanical response of a fold for
measuring B is that it does not experience a buckling threshold
and allows for a broader range of accessible deformations.

During the whole loading test, we assume that our system
is instantaneously in a quasistatic elastic equilibrium state. As
a result, the deformation of the fold always follows Eqs. (4)
and (5). With these considerations, the plasticity of the system
only translates into corrections of the rest angle �0 (recall that
the characteristic length s0 is kept constant). After appropriate
normalization of the applied force using the measured value
of B, we interpolate the crease rest angle �0 for each experi-
mental situation using the mapping of the normalized (εx, α)
phase space shown in Fig. 2(a). The results are shown in Fig. 5
for each experimental protocol. Moreover, the actual angle �

of the crease in the deformed configuration is a direct output
of such mapping.

The interpolation of the experimental mechanical response
using the mapping procedure shows two different regimes
(see Fig. 5). At small deformations where the fold responds
elastically, the rest angle of the fold �0 is constant (≈ � init

0 ).
When the deformation is large enough, local stresses within
the creased region exceed the yield stress inducing a plastic
response of the material. This behavior translates in the ref-
erence configuration of the crease through a variation of the
rest angle �0, which increases with εx. In protocol A, the
measured final rest angle �final

0 differs notably from predic-
tions, which, a posteriori, is an expected result. Indeed, in
addition to plastic behavior, high stresses induce a relaxation
process of the crease whose amplitude is proportional to the
imposed load [27]. The few seconds between unclamping the
fold and image capture are enough to change the rest angle
significantly. Protocol B addresses this issue by bringing back

FIG. 5. Mechanical response from a fold made from a mylar
sheet using two different protocols (see text). The top (bottom) row
shows the experimental results of protocol A (B). Arrows in figures
follow the chronology of the loading test. Black circles in the first
column show the corresponding experimental force-displacement
data. The second column shows the mapping of the folded state
throughout the whole mechanical testing of (solid curve) the rest
angle �0 in the reference state and (dashed curve) the actual angle
of the crease � in the loaded configuration. � init

0 and �final
0 are,

respectively, the measured rest angles of the corresponding freely
standing folds before and after the mechanical test. We use these
angle values in the left column to highlight deviations of the experi-
mental mechanical response from a pure elastic behavior (orange and
blue dashed curves). The legends are common to both rows.

the fold in a compressed state where local stresses within the
creased region are below the yield stress. In this case, our
interpolation procedure correctly recovers the final rest angle
of the crease �final

0 .
To verify the robustness of the mapping procedure with

a different material, we reproduced the second experiment
(protocol B) with a fold created from a thin rolled steel sheet
of length 201 mm, width 12.5 mm, and thickness 100 μm,
with s0 = 1.03 × 10−2. For a Poisson ratio of 0.33, the fit
of the force-displacement curve in the elastic regime gives
a Young modulus of 197 GPa, close to typical values found
for this material. Moreover, the modification of the rest angle
from � init

0 = 102◦ to �final
0 = 115◦ is, once again, enough

to completely describe the change of the force-displacement
curve in the elastic regime due to plastic deformations.

Recall that the predictions of both instantaneous intrinsic
parameters of the fold and the bending rigidity of the sheet
result from only the interpolation of the load-displacement
curve and the initial rest angle � init

0 . As a result, the agreement
between experiments and predictions is comforting regarding
the validity of the prestrained elastica model. For both exper-
iments, the rest angle constantly evolves above the plasticity
threshold, even when the crease is brought back to low-stress
configurations. When the plasticity threshold is crossed, the
viscous-like behavior of the material responsible for the relax-
ation of the fold [27] creates inertia in the system and makes it
difficult to reach a constant rest angle over an amount of time
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comparable to that of the experiment. In Sec. IV we focus
on the complete temporal evolution of the fold. We will, in
particular, use the property of the system displayed in Fig. 4
that allows us to focus only on macroscopically measured
quantities, while the mapping will make the link to the internal
state parameters of the fold.

IV. AGING PROPERTIES OF A CREASE

Previous experiments on a single fold reported temporal
evolution of their shapes characterized by a simple loga-
rithmic aging law. This behavior was observed in freely
standing folds [27,32] and shown to persist when the fold
underwent mechanical solicitation [27]. Recent studies on
crumpled polymeric sheets [30,35] witnessed similar relax-
ation phenomena. By analogy with glassy systems [36–38],
this behavior was modeled by assuming a specific distribution
of microscopic timescales that produces a logarithmic tempo-
ral response of the macroscopic observable [34]. For crumpled
sheets, both crease network [39] and friction [40] induced
by self-contact of the different parts of the sheet participate
in the statistical distribution of timescales, on top of those
present in the material itself. To discriminate the impact of
each contribution, we concentrate in the following on the
temporal behavior of a single mylar fold.

Using the experimental setup of Fig. 1 again, we perform
relaxation experiments under imposed global strain εx. Here
the displacement l is fixed at values above the elastic range,
while the load F is recorded. The main difficulty with such
experiments lies in their reproducibility, as the mechanical
response of this seemingly simple system is history-dependent
while the study of aging properties requires using the same
fold for each series of experiments. To address this problem,
we first laid the fold after each mechanical testings under a
heavy weight for 30 minutes. The procedure aims to “reset”
the initial state of the crease. Then we leave the fold freely
relaxing for a small time lapse. This transition alleviates the
temporal dependence at the beginning of each experiment
[27].

A typical experiment is divided into at least three relaxation
phases, I, II, and I [see Fig. 6(a)]. Each relaxation experiment
follows the same protocol: we monotonically vary the gap
distance l (t ) until the force reaches an extremal value Fi at
a time ti (i = I, II, III). Then the gap distance is kept fixed,
and the temporal evolution of the force F (t ) is recorded. For
each series of experiments on the same fold, the prescribed
l (t ) for relaxation phases I and II is kept identical, while phase
I may change between different experimental runs by varying
the extremal force FIII > 0. This protocol serves two goals:
to check the reproducibility of the results and to prepare the
system in the same state before the last relaxation phase.

The aging behavior of the fold has been characterized
by a single logarithmic time evolution [27]. However, such
a description fails to capture the complete, nonmonotonic
temporal evolution encountered in our experiment. To this
purpose, we interpolate the force signals for the different
relaxation phases using a double-logarithmic function given
by [30]

	F

Fi
= A1 log

(
1 + 	t

τ1

)
+ A2 log

(
1 + 	t

τ2

)
, (9)

FIG. 6. (a) Protocol for studying relaxation of a fold: the dis-
placement l (t ) is prescribed while the instantaneous response F (t )
is recorded. The chosen protocol defines three relaxation phases
starting at t = ti corresponding to applied forces Fi (i = I, II, III).
Here FI = 4 N, FII = −0.6 N, and FIII = 5 N. The corresponding
displacements are lI = l (tI ) = 137.2 mm, lII = 89.8 mm, and lIII =
138.1 mm. (b) Relaxation of the force during the three relaxation
phases compared to the double-logarithmic behavior given by Eq. (9)
(solid lines). Here 	t = t − ti and 	F = F (t ) − Fi.

where 	t = t − ti and 	F = F (t ) − Fi with Fi = F (ti ).
Equation (9) involves two relaxation rates (A1, A2) and
two timescales τ1 < τ2. Figure 6(b) shows that the double-
logarithmic interpolation describes well experimental results
in the different relaxation phases. In phase I, we found A1 =
−0.091 ± 0.002, A2 = 0.048 ± 0.002, τ1 = 0.9 ± 0.07 s, and
τ2 = 83 ± 9 s. In phase II, the force signal exhibits a simple
logarithmic decay with A1 = −0.016 ± 0.0007, A2 = 0, and
τ1 = 4.4 ± 1.6 s. For all experiments, the fitting parameters in
phase I and II are found to be consistently constant. This two-
phase preparation thus achieves both objectives: the sample is
left in a compressed state before phase III with reproducible
response and a controlled short-term history. Since we use the
same sample for all the experiments, our “reset” procedure
of the initial state also succeeds in limiting the impact of the
long-time history.

In phase I, we varied the value of the extremal force FIII

and looked at its effect on the relaxation of the fold. The
results are shown in Fig. 7. For every experiment we found
τ1 � τ2, which is consistent with relaxation in phase I and
indicates that Eq. (9) describes effectively two separate phe-
nomena. Both τ1 and τ2 are found to decrease with FIII , while
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(a)

(b)

FIG. 7. Influence of the extremal force FIII on the parameters
of the double-logarithmic interpolation of phase III relaxation for
the same fold in different experiments. (a) Evolution with FIII of
the relaxation rates A1, A2 and their sum Atot = A1 + A2. The solid
line shows the mean < Atot >= −0.046. (b) Semi-log plot of the
timescales τ1 and τ2 as function of FIII .

the absolute amplitude of each logarithmic term increases
with FIII . These observations point to a repartition of multi-
ple timescales shortened by the increase of the local stress.
Surprisingly, the long-time relaxation rate Atot = A1 + A2 ≈
−0.046 is constant regardless of the imposed macroscopic
stress. This result is consistent with the long time relaxation
behavior reported in Ref. [27].

One notices that the relaxation rates Atot are very similar
for phases I (Atot ≈ −0.043) and I (Atot ≈ −0.046) showing
that while the preparation of the fold is very different, the
qualitative behavior of the long time relaxation is robust. To
test this feature, we performed 405 relaxation experiments
by modifying the experimental system in several ways. The
changes include varying the fabrication process of the crease,
the number of relaxation cycles in a single experiment, the
value of the extremal force Fi for each relaxation, the time
span of the relaxation, the dimensions of the fold (length,
width, and thickness) and the ambient temperature (from
5 ◦C to 45 ◦C) using a controlled bath. The corresponding
amplitudes for all relaxation rates are gathered in Fig. 8. As
expected, the normalized relaxation rate at long times Atot

varies depending on the preparation and on the experimental
conditions. However, some general trends are common to
all relaxations. For instance, the amplitude Atot is always
negative and remains of the same order of magnitude for all

FIG. 8. Effects of the experimental conditions on the relaxation
rate Atot (see text). Each point in the left column corresponds to
different experimental conditions. For convenience, the data are
shown as a function of the extremal force at the beginning of the
relaxation process, and colors label different material thicknesses e.
The mean (black point) and standard deviation of all data points are
also shown. The top (bottom) row corresponds to folds under tension
(compression). The right column shows the histogram of Atot .

experiments, with typically Atot = −0.047 ± 0.018 for
stretched folds and Atot = −0.021 ± 0.015 for compressed
ones. Therefore, if one considers Atot as the main
characteristic relaxation rate, these results are consistent
with previous work on similar material [27,30,35].

To contrast the relaxation behavior obtained for mylar with
another material, we recorded the evolution of the force for
a steel fold in a single phase of relaxation with an extremal
force FI = 8 N. The data we obtained are neatly fitted by a
single logarithm 	F

Fi
= Atot log (1 + 	t

τ
), with τ = 1.8 s and

Atot = 0.008. The significantly lower amplitude of relaxation
observed in steel originates in the different microscopic struc-
tures of these materials.

The double-logarithmic aging hints at the presence of mul-
tiple timescales in a folded structure. This feature was shown

033005-6



PLASTICITY AND AGING OF FOLDED ELASTIC SHEETS PHYSICAL REVIEW E 102, 033005 (2020)

(a)

(b)

FIG. 9. (a) Modified protocol during the relaxation phase I to
obtain nonmonotonic relaxation. After a waiting time tw (here tw =
100 s), a jump in displacement is imposed to lower the force by
an amount δF∗ (here δF∗ = 1 N). (b) Nonmonotonous relaxation of
the force signal for t > t∗. The relative force F (t ) − F (t∗) increases
up to a maximum δFp at a peak time t − t∗ = tp before decreasing
again. The black line is a fit by the double logarithm in Eq. (9) with
A1 = 0.008, A2 = −0.11, τ1 = 1.9 s, and τ2 = 156 s.

in crumpled sheets [30] using a specific experiment devised to
create nonmonotonic relaxation: a crumpled mylar sheet is put
under heavy weight for a given duration, before slightly easing
the compression and measuring the relaxation of the external
load. Drawing inspiration from this work, we modified our
initial protocol by adding a new step during phase I of the
mechanical test. Figure 9(a) shows a fold that is let to relax
during a waiting time tw before instantaneously decreasing
the imposed displacement by δl∗, which in turn lowers the
force by an amount δF∗. Figure 9(b) shows that the following
relaxation indeed displays a nonmonotonic evolution of the
force, similar to the one found in crumpled sheets [30].

A systematic study of the effect of the waiting time tw on
the relaxation is shown in Fig. 10. As expected, the time tp

at the peak of the relaxation increases with tw. However, the
observed weakly nonlinear scaling tp ∝ t1.2

w does not coincide
with the linear behavior tp ∝ tw observed in crumpled sheets
[30] nor with a naive dimensional analysis. This nonlinear
behavior hints at the existence of a characteristic timescale
whose origin is still unclear. However, we expect that this
relationship depends on the specific rheology of the material,
which induces complex long-term memory effects and thus a

(a)

(b)

FIG. 10. (a) The peak time tp as functions of the waiting time tw
for relaxation experiment shown in Fig. 9. The dashed line shows
a scaling behavior tp ∝ t1.2

w . (b) Amplitude of the maximum relative
force δFp as function of the waiting time.

distribution of timescales. Interestingly, Fig. 10(b) shows that
the amplitude of the force anomaly grows with the logarithm
of the waiting time, pointing towards a collection of activated
mechanisms.

V. CONCLUSION

Our study has heavily relied on experiments to identify
and thoroughly characterize the two dominant sources of irre-
versibility that arise during the mechanical solicitation of ma-
terial creased sheets: plasticity and slow relaxation. We have
shown that an elastic model introduced earlier for the fold can
be refined to capture the plastic flow of the system fully: when
the crease is localized, this flow amounts only to a change the
crease reference angle, while the rest of the system remains
elastic. This approach provides a powerful relationship be-
tween macroscopic mechanical observables, that can easily be
measured, and the microscopic state of the crease, in particular
its rest angle. The relevance of this approach is emphasized
by the demonstrated shallowness of the elastic regime in the
fold, and by the fact that it holds for a wide range of materials
including polymers and even some metallic alloys. Further-
more, within our testing configuration and due to the strong
lever effect involved, the fold acts as a “bendometer,” as the
formalism we developed allows for precise measurement of
the bending modulus of the underlying material.
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Despite complex memory effects, we drew inspiration from
glassy systems [38] to rationalize the temporal behavior of
the observed mechanical response, invoking a distribution of
timescales within the material to explain the slow relaxation
and contingent nonmonotonicity of the constraints for a given
deformation path. In this respect, these results are specific to
materials with nontrivial rheology, in particular glassy materi-
als [34]. However, the qualitative agreement between the tem-
poral responses of a single fold we observe and that of a crum-
pled polymeric sheet [30] questions the role of the collective
phenomena in the latter results. The crease itself magnifies
the material response and already introduces at the individ-
ual level the complexity the authors observe in the extended
system. Still, the high number of creases in crumpled sheets
might smoothen the mechanical evolution of the system, lead-
ing to less memory-dependent single-logarithmic relaxations.

Finally, our study demonstrates the predictive power of a
continuous description in the single crease problem, as em-
bodied by our prestrained elastica model, and beyond. Indeed,
it can be generalized to more complex, extended patterns to in-
fer very strong constraints on their equilibrium configuration
and to gain insight into their mechanical response, including
plasticity and aging. Our study thus lays the foundations of a
universal approach to the mechanics of a class of systems en-
compassing structured origamis and crumpled material sheets.
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