
PHYSICAL REVIEW E 102, 033002 (2020)
Editors’ Suggestion

Buckling and metastability in membranes with dilation arrays
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We study periodic arrays of impurities that create localized regions of expansion, embedded in two-
dimensional crystalline membranes. These arrays provide a simple elastic model of shape memory. As the
size of each dilational impurity increases (or the relative cost of bending to stretching decreases), it becomes
energetically favorable for each of the M impurities to buckle up or down into the third dimension, thus allowing
for of order 2M metastable surface configurations corresponding to different impurity “spin” configurations. With
both discrete simulations and the nonlinear continuum theory of elastic plates, we explore the buckling of both
isolated dilations and dilation arrays at zero temperature, guided by analogies with Ising antiferromagnets. We
conjecture ground states for systems with triangular and square impurity superlattices, and comment briefly on
the possible behaviors at finite temperatures.
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I. INTRODUCTION

In this work, we study a periodic array of dilational impu-
rities, placed within a deformable network that approximates
a thin elastic sheet. Each impurity locally expands the surface
and, past a buckling threshold, becomes a site of bistability.
The impurities can then relieve in-plane stresses by escaping
up or down into the third dimension, with the preferred
direction influenced by interactions with nearby impurities.
A complete understanding of such a system would address
several important questions in soft matter physics.

First, this elastic system can undergo transformations that
mimic out-of-plane plastic deformation. The buckled impurity
arrays can be deformed into metastable states indexed by the
up and down puckers of M impurities, somewhat analogous to
how two-dimensional (2D) crystals in flat space are remodeled
by pointlike dislocations pinned at discrete positions deter-
mined by a periodic Peierls potential [1]. Beautiful elastic
models exist for visualizing in-plane “plastic” deformations—
notably, the classic movies and paper by Bragg and Nye
using bubbles in a soap solution that are drawn together by
capillary forces to form a triangular lattice [2]. Developing
a simple discrete model for microscopic features that mediate
out-of-plane shape changes may suggest productive directions
for further understanding plastic deformation into the third
dimension.

Second, a special case of the model studied here was
introduced as an elastic model for a shape memory material
in the recent work of Oppenheimer and Witten [3]. Inspired
by memory effects in crumpled paper, these authors focused
on surfaces without preprogrammed target structures that
deform in response to sufficiently strong external forces and
remain in a deformed state when forces are removed. These
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shapeable surfaces are of both theoretical and practical inter-
est, with potential applications to soft robotics and deployable
structures [4,5]. Oppenheimer and Witten [3] suggested the
model we are interested in, a lattice of adjacent bistable
nodes, to illustrate that simple, ordered systems can display
shapeability. Ultimately, they found that more complex lat-
tices with additional sources of frustration resulted in superior
shape memory capabilities, and focused their analysis on
these more intricate systems. We return here to their simplest
model, and its generalizations, in order to work with a system
that is easier to treat theoretically. We extend previous work
both by characterizing more precisely the buckling transition
of individual impurities [6] and also by considering larger
arrays with a variety of ordered initial conditions and varying
impurity spacing.

More generally, our model is relevant to efforts to under-
stand how thin sheets can be programed to assume specific
configurations, such as in the context of metamaterials and
plant growth [7–10]. A number of interesting models with
similarities to the one we investigate here have recently been
introduced as methods for shaping thin sheets in three dimen-
sions [4,11–14]. In particular, our system has many features in
common with origami-inspired systems that allow mechanical
properties to be tuned by selectively inverting bistable vertices
[5,15,16].

Finally, the model studied here may be of interest to those
examining atomically thin materials [17,18]. Experimentally,
large impurity atoms such as silicon and germanium in 2D
materials such as graphene have been observed to buckle
out of plane in a manner qualitatively similar to our model
[19,20]. Theoretically, interest in impurity disorder embedded
in tethered surfaces (2D generalizations of linear polymer
chains) dates back to at least the early 1990s [6,21]. Specif-
ically, Nelson and Radzihovsky [22] introduced a model
similar to the one studied here, with dilational impurities
embedded at random positions in an elastic sheet. However,
as shown in this work, ordered arrays of impurities highlight
new effects that do not appear for the disordered case.
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We begin our study by investigating the buckling behavior
of a single dilational impurity with simulations (Sec. II). We
then note that the use of periodic boundaries (with stress
relaxation) in a single impurity simulation in fact creates an
array of image impurities, identically buckled in a same-side
“ferromagnetic” configuration, and develop a general analytic
framework in Fourier space to predict the buckling transition
point (Sec. III). We use this framework together with an
analogy with Ising models to explore candidate ground states
in more general buckled configurations (Sec. IV). Finally, we
introduce and characterize a discrete model with a square host
lattice, which lacks the geometric frustration of an underlying
triangular mesh, and revisit each of the above topics in this
system (Sec. V). We conclude by discussing prospects for
future work, including speculations about the behavior of
periodic arrays of dilations at finite temperatures (Sec. VI).

We briefly summarize the main results of this report: For
the small dilational impurities that we study, buckling occurs
at a critical value of a dimensionless parameter γ that factors
in the cost of bending versus stretching and the size mismatch
between the impurity and the host lattice. Interactions between
buckled impurities can be long range close to the buckling
transition and are strongest at intermediate values of γ . We
present evidence that the ground state of a buckled array of
impurities is a zigzag pattern on a triangular lattice (Fig. 10),
with geometric frustration playing an important role, and an
“antiferromagnetic” checkerboard pattern on a square lattice
(Fig. 20).

II. SINGLE IMPURITY

In this section, we first provide some qualitative under-
standing of the buckling transition for an isolated dilation
by looking at the energy of possible real space deformation
fields. We then introduce a discrete model that can incorporate
multiple dilations and discuss boundary effects and corre-
spondence to continuum elasticity theory. Finally, using the
discrete model for a single impurity, we observe that buckling
is controlled by a dimensionless parameter, as suggested by
our real space argument, and find that we expect buckled
impurities to interact with one another, especially close to the
buckling transition.

A back-of-the-envelope calculation suggests that a thresh-
old exists at which buckling becomes energetically favorable.
This calculation requires many approximations, and thus is
only presented to build our intuition for the system, rather
than to make a precise prediction for the buckling threshold.
We will introduce a quantitative Fourier space calculation for
buckling in Sec. III.

Consider the in-plane displacement field surrounding a
dilational impurity in an isotropic solid initially confined to
a 2D plane (a discrete version of a dilation is shown in the
inset of Fig. 1) [23,24],

u(r) = �0r
2πr2

, (1)

where �0 measures the extra area added to the surface,
discussed in more detail in Sec. II A. We integrate the in-plane
stretching energy from r = δ, a microscopic cutoff of order a

FIG. 1. A schematic defining relevant quantities for our discrete
model of dilation arrays. Large nodes with colors mark the impurity
sites, here arranged in a (2,2) tiling. Impurities that have buckled
up are shown in red, and those that buckled down are in blue.
Two normals corresponding to neighboring faces that contribute to
the bending energy are shown in green. Inset: A top-down view
of a single impurity. Bonds with rest lengths a0 and a0(1 + ε) are
highlighted in teal and purple, respectively.

lattice constant or surface thickness, to r = ∞ to get [24]

Es = 1

2

∫
d2r
(
2μu2

i j + λu2
kk

) = μ�2
0

2πδ2
= Y �2

0

4(1 + ν)πδ2
,

(2)

where μ and λ are Lamé coefficients, and Y and ν are the 2D
Young’s modulus and Poisson’s ratio respectively. Since the
surface is flat, this state has zero bending energy.

On the other hand, we can consider a buckled impurity
with negligible stretching energy. We assume for simplicity
a Gaussian height profile, f (r) = H0e−r2/2σ 2

. This Gaussian
ansatz provides an upper bound on the bending energy (an
exponentially decaying height profile gives similar results,
as shown in Appendix A). Since we would like this state
to have approximately zero stretching energy, the buckling
length scale σ must be comparable to the inclusion width,
which is of order a few lattice constants. With this profile, both
bending and stretching energies are negligible except within
the inclusion core region.

The bending energy of this height profile is

Eb = κ

2

∫
d2r(∇2 f )2 = πκH2

0

σ 2
. (3)

If we assume that the buckled state relaxes the stretching
due to the impurity completely, we can relate �0 to H0 through
the extra surface area generated by the dilation in the Monge
representation:

�0 =
∫

d2r

⎡
⎣
√

1 +
(

df

dr

)2

− 1

⎤
⎦

≈ π

∫
drr

(
df

dr

)2

= πH2
0

2
, (4)
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which leads to Eb ≈ 2�0κ/σ 2. Note that in contrast to the
stretching energy in Eq. (2), the bending energy is linear in the
extra area �0. If we now ask when the energy of the buckled
state is lower than the energy of the flat state, we find that it
occurs above a critical value of the dimensionless Föppl–von
Kármán number γ , constructed with the impurity size �0,

γc ≡ Y �0

κ
∼ δ2

σ 2
, (5)

which is of order unity.
Although this argument simplifies the system considerably

(we assume the only two possible states are an inflexible sheet
and an approximately inextensible sheet), the finding that the
transition is controlled by γ will be confirmed by a more
detailed analysis presented in Sec. III. For further discussion
of the limitations of comparing zero bending energy and zero
stretching energy states to understand buckling transitions, see
Efrati et al. [25].

Note that, unlike classic defect problems, such as the buck-
ling of dislocations and disclinations, γ does not diverge with
system size [6,26]. We note in passing that dilations can also
cause buckling in a one-dimensional semiflexible polymer
embedded in two dimensions if the endpoints are held fixed.
In this case, the transition is controlled by a dimensionless
parameter that depends on system size, and the buckled state
is a smooth, global deformation, similar to a classic Euler
buckling transition [24].

A. Discrete model design: Triangular host lattice

Following Refs. [26,27] we build our model from a 2D
triangular lattice. An alternative square lattice model with
diagonal bonds will be discussed in Sec. V. Neighboring
nodes at positions ri and r j are connected by harmonic springs
and neighboring triangular faces are penalized when their
normals, nα and nβ , are not aligned. The energy of the system
is then the sum of stretching and bending energies,

E = k

2

∑
〈i, j〉

(|ri − r j | − ai j )
2 + κ̃

∑
〈α,β〉

(1 − nα · nβ ), (6)

where the first sum is over neighboring nodes, and the second
is over neighboring faces. The rest length of the springs
connecting nodes i and j, ai j , is varied to insert dilational
impurities. With all ai j equal to a0, this energy approximates
the bending and stretching energies used in the previous
section in the continuum limit with k =

√
3

2 Y , κ̃ = 2√
3
κ , and a

Poisson ratio ν = 1/3 [26].
Next, we insert a dilational impurity at node i by setting

ai j = a0(1 + ε) for all neighboring nodes j, thus making the
rest length of the springs connecting i to the rest of the lattice
an amount a0ε longer (see inset of Fig. 1). We restrict our
simulations to small positive values of ε in order to minimize
anisotropic lattice effects and to work in the same limit as our
continuum theory, which will neglect terms of order ε2.

We describe a periodic array of impurities by a pair of
integers (n, m), such that one moves between isolated dila-
tions by taking n steps along one lattice direction, turning
counterclockwise by 60◦, and taking m more steps, as shown
for (n, m) = (2, 2) in Fig. 1. The energy minimizations used

(b)

(a)

a0

FIG. 2. (a) A caplike structure with free boundary conditions
found with a simulated annealing protocol, somewhat reminiscent
of the chainmail structures of Refs. [30,31]. (b) Periodic boundary
conditions on a hexagonal simulation cell with a single impurity at
the center and radius R = na0 produce image impurities arranged in
an (n, n) array. Here four identical simulation cells of radius R = 3a0

are shown separated by thick black lines.

to explore the metastable configurations in this paper were
performed using FIRE [28], with key results verified with
BFGS [29]. All distances are measured in units of a0, the
spacing of the background triangular lattice.

Boundary effects can be strong, especially close to the
buckling transition. Impurities can more easily buckle near
free edges and often buckle on the same side of the host sur-
face and then curl beneath it. We observe a dramatic example
of this effect if we place the impurities close to one another in
a (1,1) array. As shown in Fig. 2(a), smooth caplike structures
are then preferred, even for membranes that would be too stiff
to buckle with the relaxed periodic boundaries used in the
remainder of this paper. The formation of a spherical cap due
to the insertion of identical isotropic dilational impurities is
intriguing enough to merit its own investigation, but we limit
our discussion to two brief remarks.

First, this behavior bears some resemblance to recently
observed hemispherical configurations of kinetoplasts, which
are “chainmail” structures composed of rings of DNA [30,31].
It would be interesting if the “maxicircles” of DNA woven
into the chainmail structure composed of DNA “minicircles”
could be related to the dilations studied in this paper. Second,
we note similarities to three recent papers that study how
isotropic defects with ε < 0 (corresponding to vacancies or
small subsitutional impurities) can be used to design surfaces
with a given distribution of curvature [11,13,32].

To avoid these (very interesting) boundary effects, we
implement tension-free periodic boundaries on a hexagonal
domain. Domain size is quoted in terms of the radius R, which
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FIG. 3. Comparison between theory and simulation for the
macroscopic increase in area due to an impurity vs the parameter
ε for various values of the Young’s modulus. The gray line shows
A = 3.46a2

0ε from Eq. (7). Data are for a hexagonal periodic
cell with radius R = 30a0. Inset: Local lattice deformations near an
impurity site obtained by energy minimization in the discrete model.
Dotted lines show hexagons used to calculate the preferred metric.

is defined as the distance from the hexagon center to its corner
when all bond lengths are equal to a0 [Fig. 2(b)]. We alter-
nately perform local minimizations and global minimizations.
Local minimizations move all nodes according to the gradient
of Eq. (6) with respect to vertex positions, with the nodes on
the top right edge of the periodic hexagon identified with the
nodes on the bottom left edge, etc. Global minimizations take
place over all possible affine deformations of the background
hexagonal simulation cell. Optimization to a local minimum
energy configuration is complete when the magnitude of all
components of both the 3N-dimensional local deformation
gradient, where N is the number of nodes that can move
independently from one another, and the three-dimensional
(3D) global affine deformation gradient are below a threshold
value.

In Sec. III we will use continuum theory to make quanti-
tative predictions about buckling in a discrete flexible mem-
brane with an array of pointlike dilations. In order to ver-
ify these predictions with simulations, we must be able to
translate between the continuum limit parameters and corre-
sponding microscopic simulation parameters. As mentioned,
the mapping of the continuum parameters Y and κ to k and κ̃ ,
respectively, has been described for this model [26]. However,
we still must find an expression for continuum parameter
�0, the extra area added to the surface in flat space due
to the dilation [as in Eq. (1)], in terms of the dilational
parameter ε. We will show that we can relate these parameters
by considering a coarse-grained description of the surface’s
preferred metric and verify this relation with simulations.

Consider our discrete lattice with a single impurity at the
center of the simulation cell, as in Fig. 2(b). We divide the
mesh into hexagons composed of six triangular faces such that
the impurity is at the center of one of the hexagons as in the
inset of Fig. 3. Each of these hexagons in isolation has an
unambiguously defined preferred surface area that minimizes
the stretching associated with the nearest-neighbor springs.
The hexagons without the impurity at the center prefer an

area 3a2
0

√
3/2, composed of six equilateral triangles with side

length a0, and the hexagon with the impurity prefers a sur-
face area of 3a2

0

√
(1 + ε)2 − 1/4, composed of six isosceles

triangles with side length a0(1 + ε) and base length a0 (thus
forming a 3D prismatic structure). We then define the extra
preferred surface area of the impurity hexagon

�0 = 3a2
0

√
(1 + ε)2 − 1/4 − 3a2

0

√
3/2

≈ 3.464a2
0ε − 0.577a2

0ε
2 + O(ε3). (7)

Note that the extra area �0 scales linearly with the dilation
parameter ε for small ε. Upon placing the impurity at the
origin, we can summarize this description in the continuum
limit in terms of a preferred metric for the surface, gαβ [21]:

gαβ = δαβ[1 + �0δ
2(r)]. (8)

Note that we find the correct excess surface area by integrating√
det gαβ when the actual surface metric is equal to the

preferred metric (a zero stretching energy state). If we now
confine that lattice to flat space, we can use the preferred
metric to determine the strain, leading to the elastic energy
(to linear order in �0) [21],

E = 1

2

∫
d2r
[
2μu2

αβ + λu2
γ γ − 2(μ + λ)�0uγ γ δ2(r)

]
. (9)

We can now use this expression to establish a correspondence
with continuum (linear) elasticity, since Eq. (9) is also the
elastic energy for an impurity modeled as a source of stress
σ

imp.
i j in an infinite 2D medium [33,34]:

σ
imp.
i j = (μ + λ)�0δi jδ

2(r). (10)

This form of σ
imp.
i j indicates that �0 is the change in area

due to the impurity when the surface is embedded in two
dimensions (neglecting boundary effects):

A = �0 =
∫

d2ruγ γ . (11)

Therefore, a coarse-grained metric description allows us to
write down an expression for �0 in terms of the microscopic
model geometry, which we check by measuring the macro-
scopic expansion of the periodic unit cell in two dimensions.

Figure 3 confirms the approximately linear relationship
between the extra area A and ε with the predicted slope.
At large values of ε, the data are slightly lower than the
theory. Since we neglected terms of order �2

0 in our analysis,
some deviation at large ε is not surprising. This relation
is independent of the Young’s modulus, as expected from
Eq. (7).

Note that the energy in Eq. (9) has a term directly coupling
the impurity stress to the membrane, in contrast to the en-
ergy functional used in our back-of-the-envelope calculation,
Eq. (2). We were nevertheless able to estimate the energy of
the flat dilation with Eq. (2) because we assumed we knew the
form of the displacement field and integrated only over the
area outside the impurity core, where the reference metric is
simply gαβ = δαβ .
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(a) (b) (c)

FIG. 4. Height of a single impurity in units of the lattice constant a0, rescaled by the height in the prismatic limit of small κ and large Y ,
as a function of the dilation Föppl–von Kármán number γ . Panels (a)–(c) show the height profile defined in Fig. 6(a) at specific values of γ ,
for R = 15a0.

B. Results from the discrete model

Now that we have fully specified our discrete model, we
survey parameter space for a single dilation embedded in a
large patch of a triangular host lattice and present key features
of the buckling transition. As anticipated by the simple argu-
ment in the beginning of Sec. II, the buckling transition occurs
at a critical value of the dilation Föppl–von Kármán number
γ , which we can define in terms of both macroscopic elastic
parameters and microscopic simulation parameters as

γ ≡ Y �0

κ
≈ 4

(
3.46a2

0ε
)
k

3κ̃
. (12)

Important parameter regimes appear in Fig. 4, where we
plot the rescaled height f0 of the impurity at the center of our
periodic cell as a function of γ , for fixed system size R. The
height of the impurity is measured relative to the boundary
points, as shown in the panels of Fig. 4. The rescaling of the
height by a function of ε is chosen to match the expected
height in the inextensible limit (γ → ∞). In this prismatic
limit, only the impurity is displaced in the z direction, and all
other nodes are undisturbed [Fig. 4(c)]. This is the discrete
version of the pure bending state we introduced in our back-
of-the-envelope calculation. The ease with which we can
identify the inextensible limit is a nice feature of the discrete
model.

For small γ < γc ≈ 14, the flat state is energetically fa-
vorable. At a critical value of γc ≈ 14, the buckled state
becomes preferred, with the height of the impurity rising
continuously as a function of γ from 0 until it reaches a
maximum value at γ ≈ 40. In this regime, the height profile of
the buckled surface drops off smoothly from the center of the
dilation, with vertical displacements slowly going to zero at
the boundaries of our periodic hexagonal domain [Fig. 4(a)].
As γ continues to increase, the height of the impurity drops
[Fig. 4(b)], slowly approaching the prismatic γ → ∞ limit
[Fig. 4(c)] where the lowest energy configuration is an isolated
pyramid centered on the impurity with zero stretching energy.

We could have anticipated this nonmonotonic behavior by
considering an impurity in the prismatic state (γ → ∞) as
we decrease γ . The finite cost of bending smooths the sharp
corners in the height profile, lifting the impurity in the z direc-
tion. On the other hand, we can consider an impurity at γ just
above γc as we increase γ . It is plausible that the amplitude
of the unstable mode grows continuously as bending becomes
less costly (and we will show that this has to be the case in
Sec. III). Since the height of the impurity increases as we
move away from either γ +

c or the γ → ∞ limit, the height
must reach a maximum value at some intermediate γ .

Figure 4 shows results only for a dilation that has buckled
in the positive z direction. We note that states with the same
vertical displacements in the negative z direction are energet-
ically equivalent. The buckling direction is selected by the
initial condition used in our energy minimization procedure—
for each value of γ , we displace the impurity node at the
origin a fixed amount z > 0 (all other nodes remain at z = 0)
and then minimize the energy over all nodes as previously
described to find the configuration corresponding to a local
energy minimum.

We now focus on values of γ � γc just past the transition,
such that γ is not exceptionally large, the buckled profile is
smooth, and the physics is more likely to be describable in
terms of continuum elasticity (we would not expect the pris-
matic profile’s sharp lattice-scale features shown in Fig. 4(c)
to be well suited to a continuum approach, for example). The
height of the impurity in the transition region just above γc is
plotted in Fig. 5. As shown in the inset, the height grows as√

(γ − γc)/γc. This behavior is reminiscent of the mean field
behavior of the zero field ferromagnetic or antiferromagnetic
Ising model, with γ playing the role of temperature and the
impurity height playing the role of an order parameter. We
will introduce a theory that reproduces this result in Sec. III.

The height profile of the buckled state close to the transi-
tion is also of interest, especially because it influences the in-
teractions between dilations when multiple buckled impurities
are present. When the vertical displacement caused by each
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FIG. 5. Close to the transition, the height of the impurity in its

buckled state scales as
√

γ

γc
− 1. Inset: Data on a log-log scale as

a function of (γ − γc )/γc, clearly showing a slope of 1/2 close to
the transition. Data shown are for a periodic hexagon with radius
R = 15a0, ε = 0.1, and γ is changed by varying κ .

impurity falls off quickly, as illustrated in Fig. 4(c) for γ →
∞, well-separated impurities no longer influence each other.
This is also the case for dilations prior to buckling [35]—for
δ function impurities as in Eq. (8), the interaction energy
for impurities at r1 and r2 in flat space goes as δ(r1 − r2).
However, at intermediate values of γ � γc, as we will see,
impurities do interact with each other, and the length scale
with which vertical displacements decay then determines the
interaction range of dilations on a lattice.

Remarkably, the dominant length scale close to the buck-
ling transition with γ � γc appears to be the system size
itself. At first sight, a dilation seems like a relatively minor
perturbation to an elastic sheet (compared to a more extreme,
topological lattice defect such as a disclination [26]), unlikely
to have an effect on distant nodes. However, near the buckling
transition, these systems prefer to distribute the dilation de-
formations globally and pay a penalty in stretching energy in
order to avoid bending further. We show this effect in Fig. 6.
The height of the impurity also increases with R just past the
buckling transition, as shown in Fig. 6(b); the height scales
approximately as

√
R when systems an equal amount past γc

are compared. We comment that the height of a right triangle
with a hypotenuse of length R + εa0 and base of length R also
has a height that scales as

√
R, and this may provide a crude

approximation to the profile seen in Fig. 6. This system size
dependence disappears as γ → ∞. Thus, although the system
size was not varied in Fig. 4, its variation would clearly have
had an effect sufficiently close to the buckling transition. We
note that the buckling threshold itself also has a correction due
to finite system size that decays as 1/R, which we will discuss
in detail in Sec. III.

These observations are supported by recent work of Oshri
et al. [36] who studied buckling in a closely related system
in which a disk at the center of a larger circular region
with free boundaries experiences dilational in-plane growth.
This model can be thought of as an alternative continuum

(a) (b)
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FIG. 6. Height profiles z vs x for lattices of different sizes
collapse when rescaled in the z direction by the impurity height at
the origin and rescaled in the x direction by the system size, con-
firming the extensive nature of the deformation close to the buckling
transition. Data are for γ = γc + 0.05, with γc approximated using
simulations for each value of R (see the discussion of Fig. 9 for
details). (a) Height profiles are found by taking the height at each
node along the dotted line, shown here for a lattice with R = 3a0.
Results are similar if the height profiles are instead taken along a line
at 30 degrees to the one pictured. (b) If we do not rescale x and z,
lattices of different membrane sizes have different height profiles.

version of our discrete model for a single impurity with free
boundaries, derived with a different coarse-graining proce-
dure. Oshri et al. [36] also found that there is a near-threshold
regime just past the buckling transition where height profiles
are “extensive” and the deformation spreads out over the
whole system, and a far-from-threshold regime where the
energy minimizing configurations are localized (analogous
to our approach to the prismatic limit). Their study allowed
for inclusions with a finite radius R, and they find that two
dimensionless parameters control buckling, constructed with
both the equivalent of γ as well as R. For another paper related
to this work, see Efrati et al. [25].

To summarize the results of this section, increasing the
dilation Föppl–von Kármán number γ with a single dilation
embedded in a triangulated elastic sheet leads to buckling to
a state with the potential for interactions with distant dilations
near the transition. However, the strength of these interactions
decays to zero as γ → ∞ and the deformation becomes
localized, as shown in the panels in Fig. 4.

III. SINGLE IMPURITY WITH PERIODIC BOUNDARY
CONDITIONS AS A FERROMAGNETIC ARRAY

The preceding discussion relied heavily on observations
emerging from a particular discretized “tethered surface”
model. We now supplement these simulation results for a
single impurity with a nonlinear continuum theory that is
able to predict the location of the buckling threshold and the
scaling behavior of the impurity height near the transition.

We first observe that our periodic boundary conditions
are equivalent to considering an array of impurities. For the
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hexagonal system of radius R, the periodic image impurities
are separated along the (R/a0, R/a0) ≡ (n, n) direction [using
the notation defined in Fig. 1 and Fig. 2(b)] and are all
constrained to buckle identically on the same side of the host
membrane. For comparison with later results, we call this
configuration of buckled periodic images a “ferromagnetic”
array. Treating a single impurity system as a periodic array
with a large defect spacing simplifies the analysis.

A. Nonlinear continuum theory for a ferromagnetic array

We model our system with the elastic energy functional
corresponding to the Föppl–von Kármán equations with a
contribution due to impurity defects from the generalization
of Eq. (9) [23,24],

E =
∫

d2r

[
κ

2
(∇2 f )2+μu2

αβ+1

2
λu2

γ γ − (μ+λ)�0uγ γ c(r)

]
,

(13)
with

uαβ = 1

2

(
∂uα

∂xβ

+ ∂uβ

∂xα

+ ∂ f

∂xα

∂ f

∂xβ

)
, (14)

≡ 1

2

(
∂uα

∂xβ

+ ∂uβ

∂xα

)
+ Aαβ (r), (15)

and

c(r) =
∑

i

δ2(r − ri ), (16)

where c(r) is the concentration of impurity defects—a sum of
δ functions centered at regularly spaced impurity sites {ri}.

We now minimize the energy functional [Eq. (13)] with
respect to uα , the in-plane displacements, for a fixed function
of the out-of-plane displacement field, f (r). We will then
substitute the minimizing displacements, ūα back in to the
original energy functional to arrive at an expression that
depends only on f (r) and the fixed impurity concentration
c(r).

This procedure is related to that used at finite temperatures
by Nelson and Radzihovsky [22] (and others [37]) to integrate
out in-plane phonons in a partition function. We will follow
similar steps to isolate the effect of in-plane displacements
and simplify the minimization.

We separate the strain tensor into q = 0 and q �= 0 Fourier
modes and decompose Aαβ (q) into longitudinal and transverse
parts in terms of the functions φα (q) and �(q). This gives

uαβ (r) = u0
αβ + A0

αβ

+
∑
q �=0

{
i

2
[qαuβ (q) + qβuα (q)] + Aαβ (q)

}
eiq·r,

(17)

= u0
αβ + A0

αβ +
∑
q �=0

(
i

2
{qα[uβ (q) + φβ (q)]

+ qβ[uα (q) + φα (q)]} + PT
αβ (q)�(q)

)
eiq·r, (18)

where PT
αβ (q) = δαβ − qαqβ

q2 is the transverse projection op-

erator. Following Nelson et al. [38], u0
αβ corresponds to the

uniform in-plane strains that are independent of f . The uni-
form strains that depend on f are given by A0

αβ .
Upon inserting Eq. (18) into Eq. (13), and rewriting the

resulting expression in terms of wα (q), defined as

wα (q) = uα (q) + φα (q) − λiqα

(2μ + λ)q2
�(q)

+ (λ + μ)iqα

(2μ + λ)q2
�0c(q), (19)

the energy becomes (to linear order in the extra impurity
volume �0)

E

A
= μ

(
u0

αβ + A0
αβ

)2 + λ

2

(
u0

γ γ + A0
γ γ

)2
− (μ + λ)�0

(
u0

γ γ + A0
γ γ

)
c(0)

+ 1

2

∑
q �=0

[κq4| f (q)|2 + (μ + λ)|q · w(q)|2

+ μq2|w(q)|2 + Y |�(q)|2 − Y �0�(q)c(−q)], (20)

where Y is the 2D Young’s modulus Y = 4μ(λ+μ)
2μ+λ

, and A is
the area of the unbuckled system, which also appears in our
Fourier series convention f (q) = 1

A

∫
d2r f (r)e−iq·r.

With this form of the total energy, we can now easily
minimize over the quadratic dependence on in-plane displace-
ments. Since the composite variable wα (q) appears only as a
magnitude squared, its contributions will be minimized when
wα (q) = 0. Taking wα (q) to be zero sets ūα (q) for q �= 0
in terms of φ,�, and the Fourier transform of the impurity
lattice. We can express φ and � in terms of the out-of-plane
displacements,

�(q) = PT
αβ (q)PT

αβ (q)�(q) = PT
αβ (q)Aαβ (q), (21)

φα (q) = −i

q2

[
2qβAαβ (q) − qαPL

μν (q)Aμν (q)
]
, (22)

where

Aαβ (q) = 1

2A

∫
d2r

(
∂ f

∂xα

∂ f

∂xβ

)
e−iq·r, (23)

the Fourier transform of the nonlinear part of the strain
tensor, defined above in Eq. (15), and PL

μν (q) = qμqν/q2 the
longitudinal projection operator. Note that none of these terms
depend on in-plane displacements. Since we are minimizing
over uα (q) assuming that f is being held fixed, this means
that we will be able to find a ūα (q) that sets wα (q) = 0, and
we can fully determine our in-plane displacements.

We can also use in-plane displacements to eliminate the
energetic contribution from the q = 0 mode by setting

ū0
αβ = −A0

αβ + �0c(0)δαβ. (24)

Since c(q) = 1
A

∫
d2rc(r)e−iq·r, c(0) is simply the number

density of impurity atoms, M/A. The q = 0 mode is free to
assume this value in our model because of our tension-free
periodic boundary conditions.
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We can now write our energy minimized with respect to in-
plane displacements in both Fourier and real space (neglecting
terms of order �2

0) as

E = A

2

∑
q �=0

[κq4| f (q)|2 + Y |�(q)|2 − Y �0�(q)c(−q)],

(25)

= 1

2

∫ ′
d2r

[
κ (∇2 f )2 + Y

(
1

2
PT

αβ∂α f ∂β f

)2

− Y
�0

2
PT

αβ∂α f ∂β f c(r)

]
, (26)

where the prime on the integral reminds us that the q = 0
mode is excluded. This energy has the same form as the
effective free energy in Nelson and Radzihovsky [22] to linear
order in �0. We echo their insight that the Laplacian of the
term 1

2 PT
αβ∂α f ∂β f is approximately the Gaussian curvature,

so the stretching energy is minimized when the Gaussian
curvature of the dilation to be proportional to the Laplacian
of a δ function. We note, however, subtleties associated with
crushed vacancies [39].

We focus first on the terms quadratic in f (q). Upon rewrit-
ing in terms of f (q), the portion of the energy quadratic in
f (q) reads

E2

A
= 1

2

∑
q �=0

κq4 f (q) f (−q)

+ Y �0

4v

∑
q′ + q′′ = q �= 0

G = −q �= 0

PT
αβ (q′ + q′′)q′

αq′′
β f (q′) f (q′′)δG,−q′−q′′ ,

(27)

having specified c(q) = 1
v

∑
G δq,G, the Fourier transform of

Eq. (16), where v is the real space area of the unit cell and G is
a reciprocal lattice vector, both corresponding to the impurity
superlattice.

Since we require that the system is invariant under transla-
tions respecting the periodic boundary conditions, we expand
f (q), the out-of-plane displacement, in the corresponding set
of superlattice reciprocal lattice vectors {G},

f (r) =
∑

G

f (G)eiG·r. (28)

For impurities in a periodic (n, n) = (R/a0, R/a0) array, the
primitive vectors of the reciprocal impurity lattice are

G1 = −2π

3R
x̂ + 2π

R
√

3
ŷ ≡ −g0

2
x̂ + g0

√
3

2
ŷ, (29)

G2 = 2π

3R
x̂ + 2π

R
√

3
ŷ ≡ g0

2
x̂ + g0

√
3

2
ŷ, (30)

with

g0 = 4π

3R
, (31)

the lattice spacing in reciprocal space, and a real space area of
the unit cell

v = R2 3
√

3

2
. (32)

We will also work with a third reciprocal lattice vector of the
same magnitude,

G3 = G2 − G1 = 4π

3R
x̂ = g0x̂. (33)

We expect the lowest energy buckled states near the transi-
tion can be approximately described by the smallest recipro-
cal lattice vectors, corresponding to the longest wavelength
deformations possible under our assumption of a periodic
array. As a first approximation, we assume f (r) is a lin-
ear combination of only the six smallest reciprocal lattice
vectors,{G1, G−1, G2, G−2, G3, G−3}, with labels shown in
the inset of Fig. 8.

We now write the energy given this limited subspace for
both f (q) and c(q). Since our displacements are real, we re-
quire f ∗(G j ) = f (−G j ). We impose this constraint and work
in the six-dimensional subspace composed of the real and
imaginary parts of f (G1), f (G2) and f (G3), and introduce
the shorthand Re[ f (G j )] = f R

j and Im[ f (G j )] = f I
j . We then

express the energy in matrix form such that

E

A
= Hnm fn fm, (34)

with

H =

⎡
⎢⎢⎢⎢⎢⎣

α − − 0 0 0
− α − 0 0 0
− − α 0 0 0

0 0 0 α − 

0 0 0 − α −

0 0 0  − α

⎤
⎥⎥⎥⎥⎥⎦,

f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f R
1

f R
2

f R
3

f I
1

f I
2

f I
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where α = κg4
0 and  = 3Y �0g2

0
8v

. To determine the stability
of the unbuckled state, we solve for the six eigenvalues and
eigenvectors of Hnm. The eigenvalues are(

κg4
0 − 3Y �0g2

0

4v
, κg4

0 − 3Y �0g2
0

8v
,

κg4
0 + 3Y �0g2

0

8v
, κg4

0 + 3Y �0g2
0

4v

)
,

(35)

where the second and third eigenvalue are doubly degenerate.
Since all of the variables in Eq. (35) are positive, only the
first two eigenvalues listed can attain negative values. The
first eigenvalue will always give the lowest energy. We thus
find that, at this level of approximation, our system becomes
unstable to the corresponding buckling eigenvector provided
γ > γc, where

γc ≡ Y �0

κ
= 4vg2

0

3
= 4

3

8π2

√
3

≈ 61. (36)
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FIG. 7. Contour plot of the first unstable eigenvector in our
continuum elastic analysis of the buckling of a single dilation with
periodic boundary conditions. The buckling amplitude is maximized
at the centers of the red circles. Negative deflections f (x, y) < 0 are
blue, positive deflections are red. The magnitude is arbitrary, and the
area displayed is (6R)2.

The second eigenvalue becomes negative at γ = 2γc. Note
that the dilation Föppl–von Kármán number γ emerges nat-
urally in this calculation, and all factors of R cancel in the
product vg2

0. This calculation provides a rough estimate of
the buckling threshold, but it is greater than that measured in
simulations by approximately a factor of four.

We now consider the eigenvector corresponding to the
lowest energy eigenvalue (the first mode to go unstable). We
define m1 as its magnitude. This eigenvector gives the real
space deformation

f (r) = 2m1√
3

[cos(G1 · r) + cos (G2 · r) + cos (G3 · r)],

(37)

pictured in Fig. 7. Although at this level of approximation
the eigenvector is independent of γ , this independence will
not hold when more reciprocal lattice vectors are included in
Eq. (28).

We assume that just past the transition, the deformation
f (q) can be approximately described by this eigenvector.
Contributions from the quartic stretching energy term can then
easily be included. In general, the quartic term in the energy
(13) is given by

E4 = YA

8

∑
q1 + q2 = q �= 0

q3 + q4 = −q �= 0

PT
αβ (q1 + q2)q1αq2β

× f (q1) f (q2)PT
μν (q3 + q4)q3μq4ν f (q3) f (q4)δ∑

i qi,0.

(38)

Unlike the quadratic energy term, the quartic term is strictly
positive, ensuring a finite value for the impurity height that
minimizes the energy. The total energy as a function of m1 is

then

E

A
= κg4

0

γc
(γc − γ )m2

1 + 3Y g4
0

16
m4

1, (39)

strikingly similar to the Landau free energy of the Ising model.
We find the usual mean field “critical exponent” β = 1/2
when we minimize the energy with respect to m1 when γ >

γc.

m1 = ±
√

8κ

3Y γc
(γ − γc) = ±

√
8�0

3γ

(
γ

γc
− 1

)
. (40)

This scaling behavior agrees with our data, shown in Fig. 5,
and is consistent with prior work in real space by Carraro and
Nelson [6].

In fact, this result does not require assuming that only the
buckling mode with magnitude m1 is present: At this level of
approximation we can prove that the two other eigenvectors
that can have negative eigenvalues do not appear, even for γ >

2γc. If we consider a height field composed of an arbitrary
mixture of the first three eigenvectors, the energy to quartic
order has a symmetry such that m2 and m3 always appear
in the combination m2

2 + m2
3 = ρ2, and the energy can be

mapped on to the Landau free energy of two competing Ising

order parameters (see Ref. [40], p. 181). Given that Y �0g2
0

v
> 0,

ρ will always be zero, and the only phase transition in the
system is the continuous transition in m1 that we have already
observed.

B. Comparison between continuum theory and
the discrete model

Although including only six reciprocal lattice vectors in
the continuum calculation above allowed us to derive the
scaling behavior we observe in our simulations, the calculated
value of γc [Eq. (36)] is well above our numerical results,
due, we believe, to our truncated basis in Fourier space. The
energy minimizing structures we observe in simulations will
surely have contributions from higher Fourier modes [see, for
example, the short distance structure embodied in Fig. 4(a)].
We therefore repeat the calculation with higher Fourier modes
and find that we arrive at a more accurate estimate.

Physically, as we raise the cutoff for the included Fourier
modes, we allow for better resolution of the degrees of free-
dom embodied in the space between the impurity sites, while
keeping the strength of the impurity and the distance between
impurities the same. Systematically raising the maximum
allowed |G| = Gmax in the expansion Eq. (28) is similar to
measuring γc in our discrete model for a single impurity with
periodic boundaries as we progressively increase R = na0

for a fixed value of a0. We have explored the agreement
between theory and simulations by looking for trends in γc

as we increase both the number of included modes in the
theory and the size of the system in the simulations. We do
not expect quantitative agreement for small systems or few
Fourier modes, since the discreteness of the host lattice has
a large effect and the approximation of our impurities as δ

function dilations in our theoretical treatment breaks down in
this limit. Agreement between the theory and numerics should
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FIG. 8. Variation of γc with Gmax = ng0. When plotted as a
function of G−1

max, a linear extrapolation to the infinite system size
limit gives γc = 16.3. Results from various truncations of the Fourier
expansion (28) used in our theory are shown for n between 1 and
7, with Gmax measured in units of g0. The green line connecting
these points is a guide to the eye. Inset: Fourier modes used in the
calculation when Gmax = 3g0 lie within or on the boundary of the
dotted hexagon. Labeled wave vectors are the innermost ring of six
included in the first calculation of γc [Eq. (36)].

improve as the maximum reciprocal lattice vector and system
size are increased and we approach the continuum limit.

It is helpful to examine this argument in more detail
in terms of our discrete model. The lattice constant of the
reciprocal lattice associated with the triangular mesh of the
host lattice is gh = 4π√

3a0
. However, the lattice constant of the

impurity reciprocal lattice for an (n, n) array is g0 = 4π
3R =

4π
3na0

. Because the primitive vectors of these two lattices are
at an angle of 30◦ to one another, the first Brillouin zone
of the host lattice is a hexagon of radius Gmax = 4π

3a0
(see

inset of Fig. 8). When the radius of the real space lattice is
increased from R = na0 to R = (n + 1)a0, the lattice spacing
of the impurity reciprocal lattice shrinks. If we measure in
units of the impurity reciprocal lattice spacing, the radius of
the first Brilluoin zone also increases from Gmax = ng0 to
Gmax = (n + 1)g0. It therefore is reasonable to expect that the
approach to the continuum limit will have the same scaling
behavior for both the theory and simulations when plotted in
the correct variables.

We test these ideas in Figs. 8 and 9. In Fig. 8 we calculate
γc by numerically finding the eigenvalues of the energy matrix
as in Eq. (34). In Fig. 9 we estimate γc for the discrete model
by varying γ with a resolution of 0.1. As before, for a given
value of γ , we displace the impurity node at the origin a fixed
amount in the positive z direction and minimize the energy.
We compare this energy to the energy of the system with
the same dilation when it is minimized in flat space. We set
γc to be the highest value of γ for which the energy of the
system that relaxes in three dimensions is equal (at our level
of numerical precision) to the energy of the system that relaxes
in two dimensions. For all values of γ greater than this γc, the
energy of the system that is allowed to buckle is lower.

The values of γc in Figs. 8 and 9 approach a limit as we
increase R and Gmax. We can estimate the infinite system

R

γc(∞) ≈ 13.3

 13

 13.5

 14

 14.5

 15

 15.5

 16

 0  0.05  0.1  0.15  0.2

c

R-1

FIG. 9. Variation of γc from simulations with R = na0. When
plotted as a function of R−1 (units of a−1

0 ), a linear extrapolation to
the infinite system size limit gives γc = 13.3. Data are shown for n
between 5 and 40, ε = 0.05, and γ is changed by varying κ . Inset:
Periodic unit cell of the defect superlattice for R = 3a0, which would
correspond to a R−1 value to the right of those displayed.

size value of γc by extrapolating 1/R and 1/Gmax to 0. This
extrapolation allows us to predict that γc(∞) ≈ 16.3 from
the Fourier space theory (Fig. 8) and γc(∞) ≈ 13.3 from the
simulations (Fig. 9). We seem to have approximate agreement
in the limit in which continuum theory should apply, with
a small discrepancy that is at least in part due to terms of
order �2

0 that were neglected (we find that shrinking ε in
simulations leads to small increases in γc). Furthermore, as
hoped, the scaling behavior is the same: γc appears to be a
linear function when plotted as a function of 1/R and 1/Gmax.
A linear dependence on these quantities is plausible, since we
expect corrections to the continuum limit to scale as the ratio
of the hexagon perimeter to the hexagon area in both real and
reciprocal space.

IV. SEARCHING FOR THE GROUND STATE
OF AN IMPURITY ARRAY

In this section, we make an analogy between buckled im-
purities and Ising spins that provides seven candidate ground-
state configurations for a buckled impurity array, and test
these candidates by observing their buckling transition and
measuring the energy. We find that a zigzag state (Fig. 10)
has the lowest energy by a small amount, which is consistent
with the nonlinear theory introduced in Sec. III.

Past the buckling transition, each dilation can buckle ei-
ther up or down out of the plane, possibly influenced by
interactions with neighboring impurities. This bistability gives
us a complex energy landscape with many metastable states.
Although phenomena such as phase transitions at finite tem-
peratures are quite interesting (see Sec. VI), we focus here on
the ground state (or ground states) of the system at T = 0.
Understanding the ground state will provide insight into how
the system organizes, and is a starting point for future inves-
tigations of fluctuations among the many metastable states at
nonzero temperatures, where entropy can play an important
role.
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FIG. 10. The buckled zigzag state for a (4,4) array of dilations in
a hexagonal periodic domain of size R = 48a0 at γ = 17.9, our con-
jectured ground state for the triangular host lattice. (a) Zigzag state
viewed in perspective, with the vertical displacements magnified by
a factor of 10 for clarity. (b) Top-down view of the zigzag state with
impurities that have buckled up shown in red, and impurities that
have buckled down shown in blue.

However, determining which configuration of an interact-
ing triangular superlattice of possibly buckled dilations has
the lowest energy is a challenging problem. If we consider
states characterized by their up and down patterns of M buck-
led impurities at fixed γ > γc, there are of order 2M candidate
ground states to test. Since we do not have the computational
resources to test all of these states for large M, it is difficult
to prove unambiguously which state has the lowest energy.
Instead, we will use physical reasoning, simulations, and
calculations to conjecture a likely ground state for γ > γc. We
suspect, but cannot prove, that the buckling pattern of up and
down dilations with the lowest energy for γ � γc will remain
the pattern with the lowest energy for γ � γc.

We will continue to probe the system by varying γ and
the number of mesh spacings of the host lattice separating
impurities. Although we will focus on (n, n) arrays, two other
array families are also interesting. (0, n) arrays buckle in ways
that depend more strongly on n and other microscopic details
of the underlying host lattice. Chiral arrays, which have (n, m)
with n �= 0, m �= 0, and n �= m interact more strongly with
our planar boundary conditions. The (n, n) arrays we study in
detail have a smoother approach to the continuum limit, and
allow us to directly apply lessons from the single impurity
case.

A. Analogy with the Ising model

Even after restricting ourselves to (n, n) arrays, the param-
eter space of the problem is massive. The problem becomes
more tractable if we assume that the ground state is deter-
mined by pairwise interactions between buckled impurities.
This approximation allows us to be guided by previous work
on the Ising model on a fixed triangular lattice in flat space.
Drawing a connection to the Ising model has aided in the

understanding of mechanical systems with discrete degrees
of freedom before; see Refs. [41,42] for particularly relevant
examples.

We can re-express our impurity array as a spinlike model
by associating the impurity out-of-plane displacements with
Ising spins. If an impurity buckles up, we assign it to be
spin up, and vice versa. Sufficiently close to the buckling
transition, the distortions caused by two nearby buckled
impurities will overlap. The interaction energy will differ
depending on whether the impurities are buckled in the
same direction or different directions (i.e., if the “spins”
are aligned or antialigned). Depending on whether the en-
ergy is lower for the aligned or antialigned configuration,
the local interaction is ferromagnetic or antiferromagnetic,
respectively [6].

Since the interactions between impurities can be long
range when the system is close to the buckling transition, we
allow the impurity “spins” to have interactions with not only
their nearest-neighbor “spins,” but also with next-nearest and
third-nearest neighbors. Including longer-range interactions is
physically motivated for γ � γc, and will also lift the ground-
state degeneracy due to geometric frustration if the couplings
are antiferromagnetic [43].

There are seven ground states possible for an Ising model
on a rigid triangular lattice with up to third-nearest-neighbor
interactions [43]. Which of the seven states is the ground state
depends on the sign and magnitude of the three spin coupling
constants. We translate the seven spin configurations into
buckled impurity array states; see Appendix C for top-down
views of all seven.

We assume that the ground state of our buckled impurity
system corresponds to one of these seven candidate configu-
rations, and test all of them. Since the energy minimization
algorithm used with our discrete model finds the nearest
local minimum, we can probe metastable states by initializing
simulations with small positive and negative vertical displace-
ments on the impurity atoms in the desired Ising spin pattern
(as we did for the single impurity in Sec. II). We confirm that
impurity “spins” do not flip during the energy minimization
process, and compare the energies and impurity heights of the
minimized configurations.

We find, out of the seven Ising candidate states, the “zigzag
state” shown in Fig. 10 is the first state to buckle as γ is
increased and has the lowest energy for all values of γ tested
once buckling has occurred. We plot the difference between
the energy of the zigzag state and two other states in Fig. 11.
In Fig. 11, and the rest of this work, we show results only
for three states of interest: the conjectured zigzag ground
state, the striped state, which is close in energy to the ground
state and pictured in Fig. 11(a), and the “ferromagnetic” state,
which has the highest energy of all metastable states we
measured and is pictured in Fig. 11(b).

The finding that the zigzag state has the lowest energy,
closely followed by the striped state, suggests that all pair-
wise interactions are antiferromagnetic, with the strength of
the interaction falling off with distance. Note that in an
antiferromagnetic spin system that has only nearest-neighbor
interactions, the zigzag and striped spin states have the same
energy—each spin has four favorable and two unfavorable
interactions with neighbors. Longer range interactions (such
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FIG. 11. Difference in energy between two metastable states, the
striped state (a) and the ferromagnetic state (b), and our conjectured
zigzag ground state (pictured in Fig. 10) for γ larger than γc of the
zigzag state. All data are for (4,4) arrays embedded in a hexagon
with R = 96a0, ε = 0.1. The dilation Föppl–von Kármán number γ

is changed by varying κ .

as those that appear naturally in our spinlike impurity arrays)
break the degeneracy of the ground state.

The conclusion that pairwise interactions are antiferro-
magnetic is supported by measurements of the energy of
isolated pairs of up-up and up-down buckled impurities as
the separation is varied. The strength of the antiferromagnetic
interactions goes to zero as the separation between impurities
is taken to infinity. These interactions also vanish in the
prismatic limit γ → ∞.

In a real space continuum treatment of dilations, we also
find that the bending energy favors long-range antiferromag-
netic interactions [6]. As in Sec. II, we estimate the bending
energy of two nearby aligned or antialigned impurities by
assuming the height profiles are Gaussian. However, we now
allow σ , which measures the size of the buckled region, to be
greater than the impurity core size since we will not require
the stretching energy to be negligible.

The superimposed Gaussian height profile,

f (x, y) = H0(e−[(x−d )2+y2]/2σ 2 ± e−[(x+d )2+y2]/2σ 2
), (41)

gives us a bending energy of the form

Eb = πκH2
0

σ 6
[2σ 4 ± e

−d2

σ2 (d4 − 4d2σ 2 + 2σ 4)]. (42)

The bending energy difference between the antialigned (anti-
ferromagnetic) and aligned (ferromagnetic) puckers is

E+− − E++ = −2πκH2
0

σ 2
e− d2

σ2

⎧⎨
⎩
[(

d

σ

)2

− 2

]2

− 2

⎫⎬
⎭ (43)

and is negative when d/σ >
√

2 + √
2 ≈ 1.85. Provided we

can neglect the difference in stretching energy for the anti-
ferromagnetic and ferromagnetic puckers, there are antiferro-
magnetic pairwise interactions for impurities with separations
somewhat larger than the buckling size. These conclusions
once again hold if a more realistic height profile with an
exponential decay is used (see Appendix A).
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FIG. 12. Root-mean-square height at impurity sites (as a measure
of the magnitude of up and down buckling) versus γ . The zigzag
state buckles first, followed closely by the striped state, and then the
ferromagnetic state. Data are for (4,4) arrays with R = 96a0, ε = 0.1,
and γ is changed by varying κ .

This argument also seems to suggests the possibility of
short-range ferromagnetic interactions, when impurity centers
are very close. A more detailed analysis would be necessary
to make this claim, since the precise form of the height
profiles is more relevant in this case. However, we did observe
ferromagnetic pairwise interactions in a (2,0) array, consistent
with the behavior observed by Carraro and Nelson [6], al-
though the impurities are so close together in this case that the
continuum description cannot be straightforwardly applied.
We have avoided this regime in our simulations.

In addition to measuring the energy of various states con-
taining many dilations, we can measure the buckling thresh-
old. As seen in Fig. 12, the zigzag state buckles first. This
observation is consistent with a zigzag ground state, since
the buckling transition is defined as the point at which a
new configuration attains an energy lower than the flat-state
energy. It also means we can use our calculation of γc to better
understand ground-state behavior. As we now show, the anal-
ysis presented to study a single impurity as a ferromagnetic
array readily generalizes to other types of deformations.

B. Comparison between continuum theory
and the discrete model

To proceed, we determine the subspace of wave vectors
compatible with the periodicity of the zigzag and striped
states. We can predict nonzero f (q) modes by, in the language
of solid state physics [44], looking for extinctions in the
structure factor of the impurity superlattice. To simplify our
analysis, we initially assume that each impurity has a height
of either 1 or −1, and all nonimpurity sites have a height of
zero. Under this assumption, we can find the Fourier transform
of our height field by treating up and down impurities as two
different types of atoms with atomic form factors of 1 and −1,
respectively.

We first describe a unit cell for the impurity height field
with a basis. For the striped state, the lattice vectors

a1 = 3na0x̂, a2 =
√

3na0ŷ, (44)
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FIG. 13. (a) Fourier modes for the height field computed with
Eq. (53) for a striped configuration on a (4,4) impurity array with R =
96a0, γ ≈ 68. (b) Allowed wave vectors for a striped (4,4) impurity
array using Eq. (48). (c) Fourier modes for the zigzag state under the
same conditions as in (a). (d) Allowed wave vectors for the zigzag
state as in (b) using Eq. (52).

with the basis

d1 = 0, d2 = 3na0

2
x̂ +

√
3na0

2
ŷ, (45)

give the appropriate description, with d1 and d2 corresponding
to impurities that buckle up and down, respectively. The
reciprocal lattice vectors describing this deformation are

G(b1, b2) = b1
2π

3na0
x̂ + b2

2π√
3na0

ŷ, (46)

where b1 and b2 are integers, whose amplitude is modulated
by the geometrical structure factor

SG =
∑

i

fdi (G)eiG·di = fd1 (G) + fd2 (G)eiG·d2 . (47)

If we rescale the atomic form factors fdi (G) to unity, cor-
responding to identical atoms, we regain the reciprocal lat-
tice described by Eqs. (29) and (30). However, the choice
fd1 (G) = 1 and fd2 (G) = −1, leads to

SG = 1 − exp [iπ (b1 + b2)]. (48)

If b1 + b2 is odd, the reciprocal vector characterized by b1 and
b2 will survive. If b1 + b2 is even, SG will be zero, and this
wave vector will not show up in the Fourier transform of the
striped state. This rule leads to the lattice shown in Fig. 13(b).

For the zigzag state, the lattice vectors

a1 = 3na0x̂, a2 = 2
√

3na0ŷ, (49)
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FIG. 14. Variation of γc with Gmax = ng0 for the ferromagnetic
state (same values as in Fig. 8), striped state, and zigzag state. Results
from various truncations of the Fourier expansion Eq. (28) used in
our theory are shown for n between 1 and 7, with Gmax measured in
units of g0.

with the basis

d1 = 0, d2 = 3na0

2
x̂ +

√
3na0

2
ŷ,

d3 =
√

3na0ŷ, d4 = 3na0

2
x̂ + 3

√
3na0

2
ŷ, (50)

give the appropriate description, with dilations at d1 and d4

buckling up and those at d2 and d3 buckling down. The
corresponding reciprocal lattice vectors

G(b1, b2) = b1
2π

3na0
x̂ + b2

π√
3na0

ŷ (51)

lead to a structure factor of

SG = 1 − e
iπ
(

b1+ b2
2

)
− eiπb2 + e

iπ
(

b1+ 3b2
2

)
, (52)

which gives the lattice shown in Fig. 13(d).
To verify that we have identified the appropriate compo-

nents of f (q), we plot the intensity that would result from a
scattering experiment,

I (q) = 1

N

∣∣∣∣∣
∑

ri

f (ri )e
−iq·ri

∣∣∣∣∣
2

, (53)

using simulation data of the states, where ri is the (x, y) lo-
cation of node i on the lattice (both impurity and nonimpurity
sites included, N sites in total), and f (ri ) is the height of that
node. These results are shown in Figs. 13(a) and 13(c) for the
striped and zigzag state, respectively.

Calculating γc as before for each of these structures in
Fig. 14, we find that the analysis correctly predicts that the
striped and zigzag states buckle before the ferromagnetic state
when a reasonable number of Fourier modes are included.
We truncate Fourier space for each calculation such that the
magnitude of the largest superlattice reciprocal lattice vector
included in the calculation [see Eq. (27)] is greater than or
equal to the magnitude of the largest Fourier space component
of f . Upon extrapolating to G−1

max = 0 (corresponding to an
infinitely fine mesh for the host lattice of our dilations) and
using a linear fit that neglects the two points with the fewest
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FIG. 15. Root-mean-square impurity height (as in Fig. 12) for
the zigzag state in our simulations as a function of γ with increasing
impurity separation (n, n). Data are for separations n = 2, 4, 6, and
8 in a hexagonal domain of size R = 96a0 with ε = 0.1, and γ is
changed by varying κ .

Fourier modes included, we find an estimate of γc(∞) = 16.3
for the ferromagnetic state, γc(∞) = 16.2 for the striped state,
and γc(∞) = 16.0 for the zigzag state.

We can also see the effect of increasing the number of
mesh points between impurities in our simulations, illustrated
in Fig. 15 for the zigzag state. As we increase the separation
between impurities embedded in (n, n) lattices, effectively
increasing the number of wave vectors that can be included,
the buckling threshold decreases in a manner consistent with
a smooth approach to a limiting γc(n) as n → ∞.

V. EXTENSION TO A SQUARE LATTICE

In this section, we introduce and characterize a discrete
model with a square host lattice. We find similar results
for single impurity buckling as in Sec. II, and conjecture a
checkerboard ground state for impurity arrays (see Fig. 20
below) using the same methods as Sec. IV. The energy gap
between the checkerboard state and other square lattice states
tested, as well as the difference in the buckling threshold, is
much greater than what was observed with the triangular host
lattice model.

Explorations of the ground state for a triangular lattice of
impurities are complicated by geometric frustration, a familiar
difficulty in Ising-like systems [43]. Because pairwise inter-
actions between neighboring dilations are antiferromagnetic,
longer-range interactions are necessary to specify the ground
state. A natural question to ask is: How do our results change
for impurity buckling in a geometry where the ground state of,
say, an antiferromagnetic configuration is not frustrated?

A. Discrete model design: Square host lattice

To study this question, we design a discrete model of a
2D isotropic solid whose underlying lattice has a local square
symmetry. This model allows us to have a square lattice of
dilational impurities, whose postbuckling ground state we
expect to be an unfrustrated checkerboard configuration. We
begin with a simple square lattice, and add diagonal bonds
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FIG. 16. Comparison between theory [Eq. (54)] and simulation
for the macroscopic increase in area due to an impurity versus the
parameter ε for various values of the Young’s modulus Y = 4

3 k,
where k is the spring constant. The gray line shows A = 4a2

0ε. Data
are for a square periodic cell with “radius” (half of a side length)
R = 30a0. Inset: Local lattice deformations near an impurity site
obtained by energy minimization in our discrete square lattice model.
Compare to Fig. 3.

between a subset of next-nearest-neighbor pairs to remove
floppy modes. Placing bonds between all next-nearest neigh-
bors is an appealing option, because it approximates a pair
potential with a second minimum at

√
2a0, thus favoring a

square lattice. Unfortunately, with two diagonal bonds in each
square unit cell, the definition of the normals used to calculate
bending energy is somewhat complicated. We instead make a
simpler choice, shown in the inset of Fig. 16, which results
in uniquely defined normals, but two distinct types of sites
on the lattice. Half of the sites have four bonds, all of which
connect to nearest neighbors, and the other half have eight
bonds, half of which connect to nearest neighbors. We place
impurities only on sites that have eight bonds in order to
better approximate isotropic dilations. The relative strengths
of the diagonal and nearest-neighbor springs will be adjusted
to produce isotropic elastic behavior at long wavelengths,
despite the local square symmetry.

To fully specify the geometry, we must provide rest lengths
for the bonds, which, as before, are modeled as harmonic
springs. In the absence of impurities, nearest-neighbor bonds
have rest length a0, and diagonal next-nearest-neighbor bonds
have rest length

√
2a0. For a dilational impurity, we would like

the γ → ∞ ground state to be an isolated pyramid with zero
stretching energy, as we found for the triangular lattice. With
this aim in mind, on each impurity site we extend the nearest-
neighbor bonds to have rest length a0(1 + ε) and the next-
nearest-neighbor bonds to have rest length a0(

√
2 + 2ε + ε2).

We can then calculate the excess area of the planar state �0 as
before to be

�0 = A = 4
(
a2

0(1 + ε) − a2
0

) = 4a2
0ε. (54)

Figure 16 shows the linear relationship between A and ε

with the predicted slope. Unlike for the triangular lattice, we
do not see any deviation at high ε, presumably because there
are no higher order corrections to �0 in this case. As for the
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FIG. 17. Square lattices (without dilations) rolled into cylinders
such that (a) short bonds of length a0 are along the axis and
(b) diagonal bonds of length

√
2a0 are along the axis.

triangular lattice, the magnitudes of the elastic constants drop
out.

Having specified our lattice structure, we now follow stan-
dard methods to find the spring constants for the discrete
model that approximate an isotropic solid in the continuum
limit [24,26]. While in principle the spring constants for
nearest and next-nearest neighbors could differ, we find that
they are the same for this model, and equal to

k = 3

4
Y, (55)

where Y is again the macroscopic 2D Young’s modulus. We
also find a 2D Poisson ratio ν = 1/3, just as we had for the
triangular lattice.

To find the correspondence between the discrete bending
rigidity κ̃ and the continuum limit parameter κ , we roll the
modified square lattice into a cylinder along a vertical axis
such that faces only bend perpendicular to hinges formed
by nearest-neighbor bonds of length a0 [Fig. 17(a)]. This
configuration allows us, both analytically and numerically, to
show

κ̃ = κ, (56)

where κ is the continuum value of the bending rigidity. In
principle, we could have a different value of the bending
rigidity associated with bending perpendicular to bond hinges
of length

√
2a0. We test for this possibility by rolling a section

of the lattice into a cylinder such that diagonals are along the
cylinder axis, with bending now occurring across both long
and short bonds [Fig. 17(b)]. This construction allows us to
compare the measured bending energy of large cylinders to the
expected bending energy from continuum theory, and confirm
that using only one value of κ̃ = κ gives the right result.
By explicitly calculating the normals, this can also be shown
analytically. Calculations and data for the bending energy as
a function of R for both cylinder constructions are shown in
Appendix B and Fig. 24 below.

FIG. 18. Height of a single impurity, rescaled by the height in
the prismatic limit as a function of γ for R = 15a0. Close to the

transition, the height scales as
√

γ

γc
− 1. Inset: Data on a log-log scale

as a function of (γ − γc )/γc with ε = 0.1, and γ changed by varying
κ . Compare to Figs. 4 and 5.

We can now define a dimensionless dilation Föppl–von
Kármán number γ as for the triangular lattice model, differing
only in the form of �0:

γ ≡ Y �0

κ
= 4

(
4a2

0ε
)
k

3κ̃
. (57)

B. Square lattice results

As before, we find a buckling transition for an isolated
dilation with increasing γ , as shown in Fig. 18, and impu-
rity height scaling close to the transition that again goes as√

(γ − γc)/γc (inset of Fig. 18).
We can again systematically increase the size of the dis-

crete system and the number of modes in the Fourier space
theory to estimate the buckling threshold in the infinite system
size limit. For the square lattice, the periodic image impurities
appear along the (0, n) direction. We find rough agreement
between the measured values of γc shown in Fig. 19 [1/R
extrapolation γc(∞) ≈ 10.4] and the predicted values shown
by the purple line in Fig. 23 below [1/Gmax extrapolation
γc(∞) ≈ 16.4]. As in the triangular lattice case, the simula-
tion value is lower than the continuum elastic theory estimate.
Note that we quote lattice size in terms of R, which we define
to be half of the length of a side of the square domain defining
our periodic boundary conditions (inset of Fig. 19), for the
purpose of easier comparison with the hexagonal domain used
for the triangular lattice study.

Finally, we study periodic arrays of interacting dilations
inserted into our square host lattice. By analogy with an
Ising model on a square lattice with nearest and next-nearest-
neighbor interactions, we focus on only three candidate
ground states [45]. The checkerboard state, a Néel configura-
tion shown in Fig. 20, will be the ground state if (as we expect
for our system) there is strong nearest-neighbor antiferromag-
netism. The ferromagnetic state [Fig. 21(b)] would have the
lowest energy if ferromagnetic nearest-neighbor interactions
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FIG. 19. Variation of γc for the buckling of a single dilation and
its periodic images with R = na0. When plotted as a function of R−1

(units of a−1
0 ), a linear extrapolation to the infinite system size limit

gives γc ≈ 10.4. Data are shown for n between 5 and 30, ε = 0.05,
and γ is changed by varying κ . Compare to Fig. 9. Inset: Periodic
unit cell of the defect superlattice for R = 3a0.

were to dominate, and the striped state [Fig. 21(a)], would
have the lowest energy if next-nearest-neighbor antiferromag-
netism were to dominate. Other ground states are possible
with strong third-nearest-neighbor interactions [45], but these
do not appear to be realized for our model.

We restrict our attention to (0, n) arrays, i.e., dilational
impurities separated along a row of nearest-neighbor bonds.
These arrays seem to be robust to microscopic lattice details,
and allow us to make contact with our results for a single
impurity with periodic boundary conditions, just as (n, n)
arrays did for the triangular lattice case.

FIG. 20. The checkerboard state for a (0,4) array in a square
periodic domain of size R = 24a0 at γ = 26.7 > γc, viewed in
perspective with the vertical displacements magnified by a factor of
5 for clarity. This configuration is our conjectured ground state for
the square lattice. Impurities that have buckled up are shown in red,
and impurities that have buckled down are shown in blue. Compare
to Fig. 10.
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FIG. 21. Difference in energy between two metastable states,
the striped state [(a), stripes run vertically] and the ferromagnetic
state (b), and our conjectured checkerboard ground state pictured in
Fig. 20 for γ larger than γc of the checkerboard state. All data are for
(0,4) arrays with R = 96a0, ε = 0.1, and γ is changed by varying κ .
Compare to Fig. 11 and note the difference in scale on the y axis.

As anticipated, the checkerboard state appears to be the
postbuckling ground state for all values of γ by a more
substantial margin than in the triangular case (Fig. 21), and is
the first configuration to buckle (Fig. 22). Note that there are
gaps in the data in Fig. 22 for the striped and ferromagnetic
states close to the transition. In these regions, the striped or
ferromagnetic states lose their metastability and “spins” are
able to flip during energy minimization and create domains of
the more stable checkerboard phase.

We can also estimate γc for these three states using the
Fourier space continuum elastic theory employed for a tri-
angular host lattice. As shown in Fig. 23, the checkerboard
state has the lowest buckling threshold when more than eight
Fourier modes are included in the calculation, as well as when
we extrapolate to infinite system size. Upon extrapolating to
G−1

max = 0 using a linear fit that neglects the two points with the
fewest Fourier modes, we find an estimate of γc(∞) = 16.4
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FIG. 22. Root-mean-square height measured at impurity sites
versus γ . The checkerboard state buckles first, followed by the
striped state, and then the ferromagnetic state. Data are for (0,4)
arrays with R = 96a0, ε = 0.1, and γ is changed by varying κ .
Compare to Fig. 12.
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FIG. 23. Variation of γc with Gmax = ng0 for the ferromagnetic
state, striped state, and checkerboard state. Results are shown for n
between 1 and 7, with Gmax measured in units of g0. Compare to
Fig. 14.

for the ferromagnetic state, γc(∞) = 16.2 for the striped state,
and γc(∞) = 16.1 for the checkerboard state.

VI. DISCUSSION

The dilational impurity arrays studied here provide a sim-
ple arena for exploring shape memory, instability, metastable
states, and Ising-like phase transitions for 2D surfaces embed-
ded in three dimensions. Tools from continuum elastic theory
allow us to predict the approximate location and nature of the
buckling transitions as a function of the dilation Föppl–von
Kármán number γ = Y �0

κ
. Furthermore, we have conjectured

ground states for (n, n) arrays embedded in triangular host
lattices and (0, n) arrays with square host lattices, and found
that these conjectures are consistent with simulations, calcu-
lations, and an Ising model analogy.

The Ising analogy provided us with a set of states to test,
and in our analysis we assumed that the true ground state was
contained in this set. While this approach has an appealing
physical motivation, it would also be of interest to design a
numerical experiment allowing the system itself to select the
ground state. We could, for example, start a triangular lattice
with dilations at a high temperature, slowly cool it down, and
hope to observe domains of the zigzag state forming. How-
ever, such simulations are technically challenging because of
the large system size required, the many metastable states with
energies close to the ground state, especially for the triangular
lattice, and the energy barrier for flipping an impurity and
nearby affected sites from up to down. Although beyond
the scope of this work, these difficulties could certainly be
overcome, and we feel that this avenue is worth pursuing.

An especially intriguing aspect of finite temperature sim-
ulations of a regular lattice of dilations embedded in one of
the “tethered surfaces” studied here is the interplay between
crumpling transitions and the Ising-like orderings of buck-
led dilations. Even in the absence of an array of buckled
impurities, triangulated surfaces in a low-temperature flat
phase can undergo a transition to an entropy-dominated crum-
pled state above a critical temperature Tc [38]. Recent results
suggest that this crumpling temperature (in the absence of dis-
tant self-avoidance) can be lowered considerably by inserting

a regular array of holes in a simple model of free-standing
graphene [46]. If these holes are replaced by the regular
array of dilations studied here, the resulting membranes have
additional internal degrees of freedom. There can now be a
finite temperature buckling transition at a temperature Tb, as
well as a transition to a low-temperature phase where these
puckers then order into a zigzag or checkerboard state via
an Ising model phase transition at temperature TI . It would
be intriguing to study such phase transitions in this system,
which resembles a highly compressible Ising model: The host
lattice itself may rise up and crumple for entropic reasons!
Self-avoidance of the host polymer sheet might well play a
role under some circumstances [47], as would the relative
ordering of important temperatures such as Tc, Tb, and TI .

Although we have focused here on dilations, which locally
add extra area to the lattice, one could also study defect
arrays that remove area, such as a lattice of vacancies. In
2D flat space, removing a single particle from a triangular
array typically produces a “crushed vacancy,” whose elastic
field has a dipolar character [39]. Little is known about what
happens to interacting arrays of crushed vacancy dipoles,
especially when allowed to relax into the third dimension.

It would also be of interest to study more systematically
other (n, m) tessellations of dilations in the host lattice, par-
ticularly the chiral versions with n �= 0, m �= 0, and n �= m,
which play an important role in the capsids of viruses [48] and
in various phyllotaxis problems (see Ref. [49] and references
therein).

Finally, while we studied systems with periodic bound-
aries to better approximate an infinite, approximately planar
material, experimental realizations of this system and related
systems will likely have free or clamped boundaries. Bound-
ary effects should therefore be systematically studied, as they
can profoundly change the behavior in small systems, as
illustrated by Fig. 2(a).
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APPENDIX A: RESULTS FOR DILATION BUCKLING
WITH AN EXPONENTIAL PROFILE

We present here a back-of-the-envelope calculation to
motivate the existence of a buckling threshold like that in
Eq. (5), using, however, an exponential height profile that
better mimics details of our discrete model than a Gaussian
[see Figs. 4(a) and 4(b)]. Upon assuming a buckled state
height profile of the form

f (r) = H0e−r/σ , (A1)

the bending energy is

Eb = κH2
0

2

∫
d2r

e−2r/σ (σ − r)2

σ 4r2
. (A2)

If we integrate this from r = δ, a microscopic cutoff, to r =
∞, the result can be expressed in terms of the exponential
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integral function Ei(z) = − ∫∞
−z e−t/t dt ,

Eb = πκH2
0

e−2δ/σ (2δ − 3σ ) − 4σEi(−2δ/σ )

4σ 3
. (A3)

Upon letting x = 2δ/σ , this simplifies to

Eb = πκH2
0

4σ 2
[e−x(x − 3) − 4Ei(−x)]. (A4)

We require that both δ and σ are of order a few lattice con-
stants a0, so that there is negligible stretching energy outside
the inclusion core. We therefore assume that the bracketed
term provides a multiplicative constant.

As before, we relate �0 to H0 by considering the extra
surface area generated by the dilation in the Monge represen-
tation (now integrating from r = 0 to r = ∞). This gives

�0 ≈ πH2
0

4
. (A5)

If we again ask when the bending energy of a buckled dilation
is lower than the stretching energy [Eq. (2)], we once again
find that it occurs above a critical value of the dimensionless
Föppl–von Kármán number γ , constructed with the impurity
size �0,

γc ≡ Y �0

κ
∼ δ2

σ 2
, (A6)

which agrees with Eq. (5). We have assumed here that the
microscopic bending and stretching cutoffs are both δ.

We can also superimpose two exponential height profiles
and calculate the difference in bending energy between the
ferromagnetic and antiferromagnetic configurations, as we did
for Gaussian profiles in Eq. (43). The superimposed exponen-
tial height profile [compare with Eq. (41)] is now

f (x, y) = H0(e−
√

(x−d )2+y2/σ ± e−
√

(x+d )2+y2/σ ). (A7)

We find the difference in bending energy between the
anti-aligned and aligned configurations [E+− − E++, as in
Eq. (43)] by numerically integrating (∇2 f )2 over a large
region that excludes an area of radius δ around x = ±d, y = 0.
As in the case of superimposed Gaussians, we find short-
range ferromagnetism and long-range antiferromagnetism if
we only consider bending energy.

APPENDIX B: BENDING ENERGY OF
SQUARE LATTICE CYLINDERS

Following standard techniques [24,26], we expect the con-
tinuum limit of the bending energy for a cylinder with bending
rigidity κ to be

Eb = κπL

R
, (B1)

where R and L are the cylinder radius and length, respec-
tively. For the case that we simulate, in which the cylinder is
constructed by rolling up a square domain so that R = L/2π ,
this reduces to

Eb = 2κπ2. (B2)

Using the discrete formulation, not yet assuming that the
bending rigidity associated with hinges of length

√
2a0, κ̃ ′, is
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FIG. 24. As the cylinder size is increased, the bending energy
approaches Eb = 2κπ 2 for both types of cylinders shown in Fig. 17.
Cylinders constructed as in Fig. 17(a) are labeled “a,” and cylinders
constructed as in Fig. 17(b) are labeled “b.” Note that the cylinder
length L is always equal to the cylinder circumference 2πR in these
simulations.

equal to the bending rigidity associated with hinges of length
a0, κ̃ , the bending energy can be written

Eb = κ̃
∑

<αβ>

(1 − nα · nβ ) + κ̃ ′ ∑
<γδ>

(1 − nγ · nδ ), (B3)

where α and β index neighboring triangular faces sharing an
edge of rest length a0, and γ and δ index faces sharing an
edge of rest length

√
2a0. We now show that κ = κ̃ = κ̃ ′ in

the continuum limit.

1. Cylinder in Fig. 17(a)

In the configuration shown in Fig. 17(a), all bending occurs
across hinges formed by short bonds (rest length a0). If we
look down the axis of the cylinder, we see a circle with
radius R that is discretized by N points, such that Na0 = 2πR.
Neighboring normals are rotated by an amount

θ = 2π

N
= a0

R
. (B4)

Counting up all contributing pairs of normals, the total bend-
ing energy in the limit of large N is

Eb = κ̃
NL

a0
[1 − cos(θ )] ≈ κ̃πL

R
. (B5)

This is equal to the continuum result (B1) when κ̃ = κ .

2. Cylinder in Fig. 17(b)

We now consider the configuration shown in Fig. 17(b).
There are two types of sites in our square lattice: those with
four short bonds and those with eight bonds, four short and
four long. If the sites with only four short bonds are omitted,
we form a simple square lattice with lattice constant

√
2a0.

If we were to roll the simple square lattice into a cylinder
and look down its axis, we would see a circle discretized by
N = 2πR√

2a0
points. However, when we also include the sites

with four short bonds, we find a circle discretized by twice

033002-18
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FIG. 25. Top-down views of the candidate ground states inspired
by an Ising model with first, second, and third-nearest-neighbor
interactions on a triangular lattice [43]. Impurities that have buckled
up are shown in red and impurities that have buckled down are shown
in blue, on a (4,4) lattice. Panel (a) is our conjectured ground state
for the buckled impurity array system.

as many points, and N = 4πR√
2a0

. In other words, each unit cell
of the simple square lattice has a node with four short bonds at
its center, offset radially from its four nearest neighbors. This
locally forms a pyramid in each unit cell, with the pyramid
height going to zero as R → ∞.

There are three types of contributions to the bending
energy. The first is similar to that considered above for the
cylinder in Fig. 17(a): bending occurs perpendicular to long
hinges due to the rotation of the normals by an amount θ =
2π
N . Counting up all the relevant pairs of normals, this type of

bending contributes κ̃ ′ πL
4R to the total bending energy.

The second type of bending energy comes from the bend-
ing across short hinges in the pyramid unit cells. In coordi-
nates such that ẑ is the radial displacement, the four points at
the base of the cylinder are

ri =
[
±R sin(θ ), ±

√
2

2
a0, 0

]
, (B6)

and the point at the peak is

r0 = (0, 0, R[1 − cos (θ )]). (B7)

Note that if we take the continuum limit by sending N → ∞
with Na0 fixed, so that R remains constant, we find that the
{ri} points are at the corners of a square of side length

√
2a0,

as expected.
We then can explicitly compute the normals for the four

faces of the pyramid and calculate the bending energy for
each pair of faces that share an edge. We expand the result
in the large N limit, keeping only the lowest order terms in
1/N . Each of the 2πRL

2a2
0

pyramids contribute identically to the
bending energy. The total energy from this type of bending is
κ̃ πL

2R .
The third type of bending energy comes from bending

across long hinges. If we consider a line of pyramids along
the axis of the cylinder, the long hinges joining the pyramids
together also contribute bending energy. This term, to lowest
order in 1/N gives a total contribution of κ̃ ′ πL

4R .
Summing up the three contributions, we find

Eb = κ̃ ′ πL

2R
+ κ̃

πL

2R
. (B8)

We already know that κ̃ = κ from the cylinder in Fig. 17(a),
so we conclude that κ̃ ′ = κ as well.

For both types of cylinders pictured in Fig. 17, we also
confirm numerically that the bending energy approaches the
expected value for large cylinders with κ = κ̃ = κ̃ ′ in Fig. 24.

APPENDIX C: CANDIDATE GROUND STATES
FOR THE TRIANGULAR HOST LATTICE

We present the top-down views of the seven candidate
ground states that we test for the triangular host lattice case
in Fig. 25. See Tanaka and Uryû [43] for details.
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