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Delamination of open cylindrical shells from soft and adhesive Winkler’s foundation

Oz Oshri *

Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

(Received 25 May 2020; accepted 7 August 2020; published 8 September 2020)

The interaction between thin elastic films and soft-adhesive foundations has recently gained interest due to
technological applications that require control over such objects. Motivated by these applications we investigate
the equilibrium configuration of an open cylindrical shell with natural curvature κ and bending modulus B that
is adhered to soft and adhesive foundation with stiffness K . We derive an analytical model that predicts the
delamination criterion, i.e., the critical natural curvature, κcr, at which delamination first occurs, and the ultimate
shape of the shell. While in the case of a rigid foundation, K → ∞, our model recovers the known two-states
solution at which the shell either remains completely attached to the substrate or completely detaches from it,
on a soft foundation our model predicts the emergence of a new branch of solutions. This branch corresponds
to partially adhered shells, where the contact zone between the shell and the substrate is finite and scales as
�w ∼ (B/K )1/4. In addition, we find that the criterion for delamination depends on the total length of the shell
along the curved direction, L. While relatively short shells, L ∼ �w , transform continuously between adhered
and delaminated solutions, long shells, L � �w , transform discontinuously. Notably, our work provides insights
into the detachment phenomena of thin elastic sheets from soft and adhesive foundations.

DOI: 10.1103/PhysRevE.102.033001

I. INTRODUCTION

Over the past few decades there has been renewed interest
in the elasticity of slender bodies and their interaction with
soft and adhesive foundations [1–23]. The motivation to study
these systems comes from a wealth of technological appli-
cations that require control over the contact between such
objects. For example, in the field of stretchable electronics
and soft robotics [24], thin layers of electrical actuators are
frequently placed on top of elastomeric robotic arms [25].
These arms are required to operate under extreme mechan-
ical deformations while maintaining contact with the upper
sensors. Any detachment between the two layers can po-
tentially drive the deterioration of such devices. In contrast,
some applications are motivated by the opposite functionality,
which is to develop nondestructive methods for the removal of
thin elastic layers from their adhesive surfaces. For example,
many human diseases are initiated by the accumulation of
plaque on the inner walls of arteries. This plaque corresponds
to thin layer of bacteria that in the continuum limit can be
viewed as a viscoelastic thin layer, or to leading order, as a
thin elastic sheet. Recent studies developed a technique that
utilizes wrinkles, which are regular undulations on the free
surface of the thin film, to initiate detachment between the
unwanted bacteria and the inner wall of an artery [26–29].
Furthermore, another motivation to study these adhesive in-
teractions is related to geophysical systems [30,31], where
glaciers are modeled as thin elastic beams that are resting on
soft foundations with isolated regions of uplifting pressure.
The criterion for the expansion of these isolated regions due to
the underlying pressure, i.e., delamination, is usually obtained
from the classical theory of fracture mechanics.
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In the above examples the thin film was assumed flat in
its rest configuration. However, in many cases these films
accommodate nonzero curvatures even in their stress-free
representation, i.e., they behave as shells rather then plates
[32]. While in artificial materials shells emerge due to some
predesign conditions, such as variations in the crosslink den-
sity along the thickness of a gel [33], in nature they emerge
spontaneously due to irreversible processes that involve, for
example, differential growth of internal fibers [34,35]. Despite
the ubiquitous nature of these elastic structures, less attention
was given in the literature to their interplay with an adhesive-
compliant foundation and, moreover, to their effect on the
detachment criterion. This criterion refers to the ultimate
state of the system beyond which the shell detaches, either
completely or partially, from the substrate. A numerical study
that did considered this interaction was recently presented
in Ref. [36], where a closed cylindrical shell was pulled
from an adhesive foundation and revealed different regions
in the force-displacement diagram. Another example, albeit
without delamination, was presented in Refs. [37,38]. In
this paper, elongated striplike shells with constant Gaussian
curvature were placed on a fluid substrate. The interplay
between the intrinsic curvature of the shell and its ability
to stretch and bend in response to the hydrostatic pres-
sure of the fluid resulted in rich morphological wrinkled
structures.

In the present paper we aim to derive the detachment
criterion at which a thin cylindrical shell with constant radius
of curvature, κ−1, and bending modulus, B, first delaminates
from an adhesive substrate with stiffness K , and adhesion
energy, wad. Hereafter we use the term “cylindrical shell”
to denote thin elastic sheet with constant natural curvature,
κ , that has two free edges. The analysis of this system in
the case of a rigid substrate, K → ∞, is well known ([39],
p. 52) and relies on a boundary condition that prescribes
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FIG. 1. Schematic overview of the system. (a) We consider a cylindrical shell that in the rest configuration has radius of curvature, κ−1, and
total length 2L. Since the shell is inextensible the arclength parameter, s ∈ [−L, L], remains unchanged between the undeformed and deformed
configurations. Initially the shell is brought into contact with the adhesive substrate and then released to obtain the equilibrium configuration.
(b) The final configuration can either remain completely adhered to the substrate, � = L, or partially adhered to the substrate, � < L. In either
case, the profile is symmetric around s = 0. In the case of partial adhesion, the center of the shell remains adhered to the substrate (solid
orange), and the tails (solid blue lines) are detached from the substrate. The deformed configuration is determined by four fields, ha(s) and
φa(s) in the adhered region and hd (s) and φd (s) in the delaminated region.

discontinuous bending moments at the edges of the delam-
inated portion [16,40–44]. This analysis implies that below
κ < κcr = √

2/�ec, where �ec = (B/wad)1/2 is the elastocapil-
lary length scale [45], the shell remains completely adhered
to the substrate, whereas above this critical value the shell
completely detaches from the substrate. Evidently, this cri-
terion neither depends on the total length of the shell, nor
does it allow any partial contact with the substrate. Herein
we show that when the assumption on the infinite rigidity
of the substrate is relaxed, i.e., K is finite, new branch of
solutions emerges. The properties of these solutions deviate
significantly from the observed behavior on a rigid substrate.

Our new solution relies on a previous work that considered
the delamination of a uniaxially compressed sheet (not a shell)
from soft and adhesive substrate [46]. In this formulation
the interplay between the softness of the substrate and the
adhesion energy was taken care of by a new boundary con-
dition that allows continuous transition of momentum across
the point of delamination. In particular, the new boundary
condition accounted for the height of the sheet at the point of
detachment, instead of the bending moment. In the respected
limit of a rigid substrate the new, continuous, formulation
converged into the known solution on a rigid substrate [16]
up to narrow transition layers that are accommodated close to
the take-off points.

Differently, when this new formulation is applied in the
present cylindrical system it opens the door to a new branch of
solutions that is qualitatively different from the solution on a
rigid substrate. Within this new branch there are mechanically
stable states with partial contact between the shell and the
substrate. The length of the contact zone in these solutions
scale as � ∼ �w, where �w = (B/K )1/4 is the wrinkling length
scale [9,17,47], and therefore diminishes to zero as K in-
creases. In addition, we show that within the new branch the
delamination criterion depends on the total length of shell,
2L. When 2L < 2�� � 5.54�w the adhered-to-delaminated
transition is continuous, i.e., of a second order, and is delayed
compared to the corresponding criterion on a rigid substrate.
However, when 2L > 2�� the adhered-to-delaminated transi-
tion is discontinuous, i.e., of a first order, and preempts the
corresponding criterion on a rigid substrate.

The structure of the paper is as follows. In Sec. II we
formulate the problem and derive the solution of this model
in the case of a rigid substrate. In Sec. III we derive an
approximated solution to shells that are partially adhered to
the substrate and compare it with the numerical solution of
the nonlinear equations. In Sec. IV we derive the delamination
criterion. This section is divided into two parts. While in the
first part we derive an approximated solution to shells that
are completely adhered to the substrate, in the second part
we analyze the transitions between adhered and delaminated
solutions. Last, in Sec. V we conclude and summarize our
main results.

II. FORMULATION OF THE PROBLEM

We consider an inextensible cylindrical shell with radius of
curvature κ−1, bending modulus B, and total length 2L, that
is adhered to a soft substrate with stiffness K and adhesion
energy wad, see Fig. 1(a). Given these physical constants, our
goal is to develop a theoretical model that predicts the final
configuration of the shell.

The deformation of the shell is described by two fields,
one is the height function h(s) and second is the tangent angle
φ(s), where s ∈ [−L, L] is the arclength along the center axis
of the shell, see Fig. 1(b). The latter two fields are related by
the geometric constraint,

dh

ds
= sin φ. (1)

The total energy of the system has two contributions.
One from the adhered region, s < |�|, and second from the
delaminated region, s > |�|,

E [h(s), φ(s)] = Ea[ha(s), φa(s)] + Ed [hd (s), φd (s)], (2)

where in the forthcoming analysis we use the subscript and
superscript “a” and “d” to denote quantities that are calculated
in the adhered and the delaminated regions of the shell. In
addition, we emphasize that the contact zone 2� [see Fig. 1(b)]
is a priori an unknown quantity; it will be determined from
our analysis such as to minimize the total energy. While Ea

accounts for (i) deviations from the natural curvature, κ , (ii)
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the deformation of the substrate, and (iii) the adhesive inter-
action between the shell and the substrate, the delaminated
energy, Ed , penalizes only bending deformations. Therefore,
the energies in the corresponding regions are given by

Ea = 2
∫ �

0

[
B

2

(
dφa

ds
− κ

)2

+ K

2
h2

a − wad

]
ds, (3a)

Ed = 2
∫ L

�

[
B

2

(
dφd

ds
− κ

)2
]

ds. (3b)

Since we anticipate the final solution to be symmetric
around s = 0, we consider only one-half of the shell (s � 0)
and multiply the energy by a factor of 2. In addition, we
assume a Winkler-type foundation that penalizes deviations
from the stress-free configuration as in a series of linear
harmonic springs [48,49]. We note that if the deformation of
the substrate remains small compared with its flat, stress-free,
configuration, then Winkler’s energy becomes equivalent to
that of a fluid foundation [8,46]. In the case of a fluid substrate
the proportionality constant is given by K = ρg, where ρ is
the fluid density and g is the gravitational acceleration.

Overall, our system is defined using five independent
constants, L, κ , B, K , and wad, that yields four independent
length scales. The total length 2L, the radius of curvature κ−1,
the capillary length scale, �c = (wad/K )1/2, and the elasto-
capillary length scale �ec = (B/wad)1/2. Note that the latter
two length scales yields the wrinkling length, �w = (B/K )1/4,
that does not depend on wad but yet will play a role in our
formulation.

To obtain the equilibrium configuration of the shell we
need to minimize the total energy, Eqs. (2) and (3), given the
geometric constraint, Eq. (1). To do that, we first normalize all
lengths by �w = (B/K )1/4 (i.e., s → s/�w) [50], the energy
by B/�w, and the adhesion by (BK )1/2. Second, we follow
the kinetic analogy in Ref. [7] and write S = 2(

∫ �

0 Lads +∫ L
�
Ld ds), where

La = 1

2

(
dφa

ds
− κ

)2

+ 1

2
h2

a − wad − pa
h

(
sin φa − dha

ds

)
,

(4a)

Ld = 1

2

(
dφd

ds
− κ

)2

− pd
h

(
sin φd − dhd

ds

)
. (4b)

In these equations pa
h(s) and pd

h (s) are Lagrange multipliers
that enforce the geometric constraints in each region, Eq. (1)
[51]. Physically these multipliers account for the total vertical
force that the substrate exerts on the shell [46,52].

Third, we minimize Eq. (4) with respect to φi, hi, and pi
h

(i = a, d). This gives the following equilibrium equations in
the adhered region:

d2φa

ds2
+ pa

h cos φa = 0, (5a)

d pa
h

ds
− ha = 0, (5b)

dha

ds
− sin φa = 0, (5c)

and in the delaminated region,

d2φd

ds2
+ pd

h cos φd = 0, (6a)

d pd
h

ds
= 0, (6b)

dhd

ds
− sin φd = 0. (6c)

Equations (5) and (6) form a closed system of equations
once they are supplemented with nine boundary conditions;
eight boundary conditions are necessary to solve Eqs. (5) and
(6) and one to obtain the parameter �. The symmetry of the
profile at s = 0 gives

φa(0) = 0, (7a)

pa
h(0) = 0. (7b)

Continuity of the elastic shape and of momentum at s = � are
taken care of by

ha(�) = hd (�), (8a)

φa(�) = φd (�), (8b)

dφa

ds
(�) = dφd

ds
(�), (8c)

pa
h(�) = pd

h (�). (8d)

Vanishing of forces and moments on the free edge of the
delaminated section gives

pd
h (L) = 0, (9a)

dφd

ds
(L) = κ. (9b)

Last, minimization of the total energy with respect to the
parameter � yields the ninth boundary condition. This bound-
ary condition is essentially equivalent to Griffith’s theorem,
which relates the interfacial toughness of the material to the
energy release rate [16,40,41,53–55]. Following Appendix B
in Ref. [46] we find the following condition:

ha(�) =
√

2wad. (10)

This completes the formulation of the problem. In sum-
mary, given the total length, 2L, the natural curvature of
the shell, κ , and the adhesion energy, wad, we can find the
equilibrium configuration from the solution to Eqs. (5) and (6)
and the boundary conditions Eqs. (7)–(10). In the following
analysis we explore the energetical interplay between two
possible solutions, one corresponding to shells that are com-
pletely adhered to the substrate (� = L) and, second, to shells
that are partially adhered to the substrate (� < L). We will
look for the critical natural curvature at which delamination
becomes energetically favorable over the laminated solution.
The total energy of a given shape is obtained from Eqs. (2)
and (3).

A. The limit K → ∞
We add a comment regarding the limit of a rigid sub-

strate, K → ∞. Retrieving dimensions into Eq. (10) gives
ha(�) = √

2�c, where �c = (wad/K )1/2 is the capillary length
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scale. Apparently, taking the limit K → ∞ leads to a singular
formulation because ha(�) → 0, and the problem becomes
independent on wad [56].

There are two routes to resolve this apparent singularity.
The first route corresponds to our direction for obtaining the
solution, i.e., no matter how stiff the substrate is, the height
ha(�) must always assume a finite value. The limit K → ∞ is
thought only in the corresponding solution of the equilibrium
equations. The second route corresponds to taking the limit
K → ∞ in the elastic energy, even prior to minimization. This
method is known to yield a discontinuous profile in the sense
that the final configuration accommodates a discontinuity in
the bending moments at the point of delamination [41].

Indeed, keeping in mind that on a rigid substrate dφa/ds =
0, and in the free edge dφd/ds = κ , we can immediately
calculate the total energy of the shell from Eqs. (2) and (3).
This gives E = 2�( 1

2κ2 − wad). Minimization of this energy
with respect to �, i.e., dE/d� = 0, gives the following delam-
ination criterion:

rigid substrate: κcr =
√

2wad, ⇒ κcr =
√

2/�ec, (11)

where hereafter expressions given after an arrow correspond
to the dimensional form of the preceding formula. When
dimensions are retrieved into Eq. (11) we recover the familiar
relation between the critical curvature and the elastocapillary
length scale [16,39,41,57]. For a later comparison, note that
Eq. (11) neither depends on the total length of the shell,
2L, nor on the contact zone 2�. Consequently, below the
critical curvature, κ < κcr, the shell is completely adhered to
the substrate, and above the critical curvature, κ > κcr, it is
completely detached from the substrate.

Although the two routes converge in the limit K → ∞,
they deviate when K is assumed finite in the first route. As
we shall see in the next section, this deviation is manifested
both in the resulting shape of the shell and in the detachment
criterion.

III. APPROXIMATE SOLUTION TO PARTIALLY
ADHERED SHELLS

In this section we seek an approximated solution to the
problem under the assumption that wad 
 1. This assumption
has two consequences. First, using our normalization conven-
tion, wad = (�c/�w )2 and �w = (�c�ec)1/2, it implies the scale
separation,

�c 
 �w 
 �ec. (12)

Second, it allows us to linearize the equilibrium equations in
the adhered region, i.e., using the approximation ha(s) 
 1.
This is because the height at the point of delamination is
proportional to the small parameter, ha(�) ∝ w

1/2
ad ∼ �c [see

Eq. (10)]. Nonetheless, the delaminated region of the shell is
in general not restricted to small deviations from the flat con-
figuration, and therefore we keep its associated nonlinearities.

Solving Eq. (6) along with the linearized form of Eq. (5),
i.e., d4ha/ds4 + ha = 0, we obtain the following height

functions:

ha(s) =
√

2wad
[cosh(2q�) − cos(2q�)]1/2

sin(2q�) − sinh(2q�)

× [e−qs cos(qs − ϕa) + eqs cos(qs + ϕa)], (13a)

hd (s) = (2wad)1/2 + cos(κ� + ϕd )

κ

[
1 − cos(κs + ϕd )

cos(κ� + ϕd )

]
,

(13b)

where q = 1/
√

2 is the wave number of the profile in the
adhered region and

ϕa = tan−1

[
1 + cot(q�) tanh(q�)

1 − cot(q�) tanh(q�)

]
,

ϕd = −�κ + 2q(2wad)1/2 cosh(2q�) − cos(2q�)

sinh(2q�) − sin(2q�)
, (14)

are the phase shifts [58]. In the derivation of Eqs. (13) and
(14) we used only eight out of the nine boundary conditions.
To satisfy the ninth boundary condition this solution must
be supplemented with the following equation that relates the
natural curvature and the adhesion energy to the contact zone:

sinh(2q�) + sin(2q�)

sinh(2q�) − sin(2q�)
= κ

(2wad)1/2
. (15)

Given κ and wad we can now solve Eq. (15) to obtain �.
Following the graphical solution of this equation in Fig. 2(a),
we find that up to κ/(2wad)1/2 � 0.94 no solution exists. At
κ�/(2wad)1/2 � 0.94 a delaminated solution with �� � 2.77
first becomes available [59]. When 0.94 � κ/(2wad)1/2 � 1
there are two possible solutions, one with decreasing values
of � and second with increasing �, see the inset of Fig. 2(a).
As can be verified by direct substitution in the total energy,
Eq. (2), the former solution, with smaller values of �, is always
energetically favorable over the latter one. We note that this
subtlety of multiple solutions is similar in nature to obser-
vations made in other adhesion related systems [43,46,60].
Last, when κ/(2wad)1/2 �1 the solution for � is unique. In
the latter region, when the solution is unique, some analytical
approximation of Eq. (15) can be derived. Expanding the
left-hand side of Eq. (15) in powers of � gives to leading order,

3

�2
� κ

(2wad)1/2
. (16)

This approximation is plotted in Fig. 2(a) (black dashed line)
along with the exact function (blue solid line). The two lines
deviate at large values of � but tend to coincide starting from
� � 1.0.

We emphasize that even if a delaminated solution becomes
available, it yet may not be the global minimizer of the
problem. The experimentally observed pattern is selected
among all possible solutions, adhered and delaminated, such
as to minimize the total energy. Further discussions on these
adhered-to-delaminated transitions are kept to the next sec-
tion.

This completes the approximated solution. In summary,
given the natural curvature of the shell, κ , and the adhesion
energy, wad, we first obtain � from Eq. (15) and then determine
the height profile from Eqs. (13) and (14). In Fig. 2(b) we
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FIG. 2. Solutions to Eq. (15) and plots of the shell’s configuration. (a) Graphical solution of Eq. (15). The parameter κ/(2wad)1/2 is plotted
as a function of the normalized adhered length, �. While the solid blue line represents the function on the left-hand side of Eq. (15), the black
dashed line represents the approximated solution at small �, which is κ/(2wad)1/2 � 3/�2, see Eq. (16). The open red circles represents the
numerical solution of the nonlinear equations at κ/(2wad)1/2 that are considered in panel (b). Inset: Zoom-in the area indicated by the dashed
light gray rectangle. Up to κ�/(2wad)1/2 � 0.94 there is no solution to Eq. (15). At this critical value partial adhered solution with �� � 2.77
first becomes available. Above it, 0.94 � κ/(2wad)1/2 � 1, there are two possible solutions, one with � � 2.77 and second with � � 2.77; the
former solutions are energetically favorable over the latter ones. Beyond κ/(2wad)1/2 � 1 the solution is always unique. (b) The profile of the
shell is plotted for several values of the parameter κ/(2wad)1/2 where 2L = 10 and wad = 0.05. The analytical solution (solid lines) is compared
with the numerical solution (dots) of Eqs. (5) and (6). In both cases orange and blue colors correspond to adhered and delaminated regions,
respectively. For clarity, the different profiles of the shell are shifted along the y direction. Keeping in mind the even parity of the solution,
the analytical profile in the adhered region, (s, ha(s)), is given by Eqs. (13a) and (14), where � is determined from Eq. (15). The delaminated
profile (xd (s), hd (s)) is given by Eqs. (13b) and (14), where xd (s) = � + ∫ s

�
cos φd (s′)ds′.

plot this solution for a given wad and for several values of
κ , and compare the results with the numerical solution of
the complete set of nonlinear equations. The relatively good
fit between the two solutions, approximated and numerically
exact, essentially validates our set of simplifying assumptions.

We add several comments regarding this solution. First,
although the total length of the shell, 2L, appears in our
boundary conditions, Eq. (9), it does not play a role in
Eqs. (13)–(15). This is because the delaminated part of the
shell is free, and therefore an extension of the total length
by some increment does not change the energy of the body.
One may then ask the following question: What happens if
L < �, where � is the solution of Eq. (15)? In that case our de-

laminated solution does not even exist because the boundary
condition at the shell’s edge, Eq. (9b), is not properly satisfied.
Consequently, although L does not explicitly appear in this
solution, it does have an effect on the resulting morphology in
some range of the parameter space.

Second, retrieving dimensions into the right-hand side
of Eq. (15) we find that κ/

√
2wad → κ/(

√
2/�ec), where

�ec = (B/wad)1/2 is the elastocapillary length scale. Indeed,
although our formulation does not involve this length scale
explicitly, it appears naturally in the boundary conditions.
We note that scaling argument for the geometrical interplay
among �c, �w, and κ that gives rise to �ec was given in Ref. [45]
regarding another adhesion related system.
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Third, the total elastic energy of this partially adhered so-
lution is obtained from Eq. (3a), i.e., the adhered region. Ob-
viously, the energy of the free, delaminated, region, Eq. (3b),
vanishes [61]. Substituting Eqs. (13a) and (14) in Eq. (3a) and
integrating gives

E (κ/(2wad)1/2, �)/wad

= 2�

{[
κ

(2wad)1/2

]2

− 1

}
− 23/2

[
1 + 2

κ

(2wad)1/2

]

× cosh(
√

2�) − cos(
√

2�)

sinh(
√

2�) − sin(
√

2�)

+ 4
√

2[cosh(
√

2�) − cos(
√

2�)] sinh(
√

2�)

[sinh(
√

2�) − sin(
√

2�)]2
, (17)

where we substituted q = 1/
√

2 in order to simplify the
final expression, and we keep in mind that � is determined
from Eq. (15). Note that Eq. (17) essentially depends on the
parameter κ/(2wad)1/2 and not on κ alone.

Last, comparing this solution with the solution of a rigid
substrate, Sec. II A, we can already point to the first and
important deviation between them. When the assumption on
the substrate’s stiffness is relaxed new branch of solutions
emerges. This branch corresponds to partially adhered shells
where the contact zone, �/�w (in dimensional form), remains
finite. Within this solution, the limit of a rigid substrate is
recovered when �w = (B/K )1/4 → 0.

IV. TRANSITIONS BETWEEN ADHERED
AND DELAMINATED SOLUTIONS ON SOFT SUBSTRATE

In this section we derive the adhered-to-delamination cri-
terion. For a given strength of the adhesion energy, wad, we
are interested in obtaining the critical curvature, κcr, at which
delamination first occurs. To do that, we divide the section
into two parts. In the first part we derive the solution of a shell
that is completely adhered to the substrate and calculate its
total energy, and in the second part, we compare the energies
of the two solutions, delaminated and adhered, and derive the
delamination criterion.

A. Solution to completely adhered shells

In this section we aim to find the energy of shells that are
completely adhered to the substrate. Since adhesion no longer
affects the final configuration, we anticipate this solution to
depend only on three, out of the four, independent length
scales, �w = (B/K )1/4, L and κ−1.

In the previous section we showed that delaminated solu-
tions become available when κ/(2wad) ∼ 1. Since we antic-
ipate an adhered-to-delaminated transition around this value,
and wad was assumed small, we will restrict ourselves in this
section to cases where κ 
 1. To obtain the height function
of the shell under this approximation, we linearize Eq. (5) and
solve them together with four boundary conditions; two at s =
0, Eq. (7), and two at the free edge, Eq. (9). To differentiate
between this completely adhered solution, and the previous,

partially adhered solution, we will use the subscript ‘ca’ on
the corresponding quantities. The solution reads [62]

hca(s) = κ[cosh(2qL) − cos(2qL)]1/2

2q2[sinh(2qL) + sin(2qL)]

× [e−qs cos(qs − ϕca) + eqs cos(qs + ϕca)], (18a)

ϕca = tan−1

[
1 + cot(qL) tanh(qL)

1 − cot(qL) tanh(qL)

]
, (18b)

where q = 1/
√

2. Indeed, in this linearized solution the height
profile is proportional to κ , which is our small parameter.
In Figs. 3(a) and 3(b) we plot this height profile for several
values of L, and compare it with the solution of the nonlinear
equations, Eq. (5).

Examining the resulting shapes we identify two distinct
limits within this linearized solution. When the total length of
the shell is smaller than the characteristic decay length, i.e.,
qL 
 1, the configuration remains approximately circular.
This configuration is extensive in the sense that its maximum
amplitude scales with L. When the shell is very long, qL � 1,
the deformation becomes localized around s = L at a narrow
region of length ∼1/q. In both limits the approximated form
of Eq. (18) and their corresponding energies, Eq. (3a), are
given by

qL 
 1: hca(s) = κL2

6

(
3s2

L2
− 1

)
, Eca − Eo � L5κ2

45
, (19a)

qL � 1: hca(s) = κ

2q2
e−qζ [cos(qζ ) − sin(qζ )],

Eca − Eo � Lκ2, (19b)

where ζ = L − s measures the relative distance from the
edge, Eo = −2Lwad is the adhesion energy, and to derive
the solution in Eq. (19b) we neglected the boundary condi-
tions at s = 0, Eq. (7). In addition, to derive the energy in
Eq. (19b) we kept terms of order κL in tact, but neglected
terms of order e−qL and κ2. These approximations are plotted
in Fig. 3 (dashed black lines) along with the linearized (solid
orange) and exact numerical solutions (dots). While Fig. 3(a)
corresponds to relatively short shells, where Eq. (19a) holds,
Fig. 3(b) correspond to long shells, where Eq. (19b) holds. At
approximately L � 2.5 we find a transition between the two
limiting solutions. Indeed, comparing the energies of the two
approximations, Eqs. (19a) and (19b), gives the critical length,
L � 2.59. In addition, in Fig. 3(c) we plot the maximum
height of the profile, hca(L). When L 
 1 the maximum
height growth parabolically as hca = κL2/3, see Eq. (19a),
and when L � 1 it saturates and approaches an ultimate value
of hca(L) = κ/(2q2), see Eq. (19b).

As is further discussed in the next section, this transition
between extensive and localized shapes affects the adhered-
to-delamination transition. While relatively short shells trans-
form continuously into a delaminated state, long shells present
discontinuous jump.

Last, we calculate the energy of the linearized profile.
Substituting Eq. (18) in the total elastic energy of the adhered
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FIG. 3. The height profiles of completely adhered shells (κ = 0.3). In panels (a) and (b) solid-orange lines correspond to the solution of
the linear equations, Eq. (18), dots to the numerical solution of the nonlinear equations, Eq. (5), and dashed black lines to the approximations,
Eq. (19). For clarity, the profiles are shifted along the y direction. While relatively short shells are plotted in panel (a) and are approximated by
Eq. (19a), long shells are plotted in panel (b) and are approximated by Eq. (19b). The circular approximation to the elastic profile breaks down
at L � 2.5. (c) The maximum height of the shell as a function of the total length. When L is small the height is proportional to hca(L) = κL2/3
[see Eq. (19a)], and when L is large the maximum height saturates and equals hca(L) = κ/(2q2) [see Eq. (19b)]. As in previous panels, dots
corresponds to the numerical solution of Eq. (5) and solid orange line to Eq. (18).

region, Eq. (3a), and integrating gives,

Eca(κ/(2wad)1/2, L)/wad

= 2L

{[
κ

(2wad)1/2

]2

− 1

}

+ 23/2

[
κ

(2wad)1/2

]2 cos(
√

2L) − cosh(
√

2L)

sin(
√

2L) + sinh(
√

2L)
, (20)

where in order to simplify the final expression we substituted
q = 1/

√
2. Equation (20) reduces to the expressions given in

Eq. (19) in their respective limits of approximations. Note that
similarly to Eq. (17) this energy depends on the parameter
κ/(2wad)1/2, and not on κ alone. Note also that the solution
derived in this section is limited by the assumption that κ 
 1,
i.e., the natural radius of curvature of the shell must be much
larger than the characteristic wrinkling length scale. This
restriction is equivalent to the requirement that the amplitude
of the resulting elastic shape remains small.

B. Adhered-to-delamination criterion

In this section we drive the delamination criterion, i.e.,
given wad and L we look for the critical curvature, κcr, and the
critical contact zone, �cr, at the adhered-to-delamination tran-
sition. In accordance with the standard terminology of critical
phenomena, κ and m ≡ (L − �)1/2 will be referred to as the
control and order parameters of the transition respectively.

This section is divided into two parts. In the first part we
present the evolution of the energy landscape, 	E = E − Eca,
as a function of the control parameter κ , and highlight two
different regions in its behavior with respect to the total length
of the sheet. In the second part, we derive an approximated
quantitative criterion for the delamination in each region.

1. Qualitative analysis of the energy landscape

As a first step in the analysis we focus on the evolution
of the energy landscape. Following Ref. [63] we calculate the
energy difference,

	E = E (κ/(2wad)1/2, �) − Eca(κ/(2wad)1/2, L), (21)

where E (κ/(2wad)1/2, �) and Eca(κ/(2wad)1/2, L) are given
by Eqs. (17) and (20) respectively. Two examples for the
typical evolution of 	E as a function of κ/(2wad) and �,
where L = 6 and L = 2, are plotted in Fig. 4. These examples
suggests that the adhered-to-delamination transition behaves
differently depending on whether L > �� or L < ��. We re-
mind the reader that �� � 2.77 corresponds to the contact
zone at which delaminated solution first becomes available,
see Fig. 2(a).

On one hand, if L > �� [Fig. 4(a)] the energy landscape
exhibits a first order transition. Namely, when κ/(2wad)1/2 �
0.94, the global minimizer is always � = L. At κ/(2wad)1/2 �
0.94 an inflection point (spinodal) appears in 	E , but yet
the global minimizer is unchanged. When κ/(2wad)1/2 � 0.94
new local minima appears. This minima becomes the global
minimizer when κ/(2wad)1/2 � 1. On the other hand, if L <

�� [Fig. 4(b)], then the energy landscape exhibits a second
order transition. The global minima is � = L until κ/(2wad)
is crossing a certain threshold. Beyond this threshold, � is
continuously decreasing to zero.

The different behavior of the transition as a function of
L can be explained from the graphical solution of Eq. (15),
see Fig. 2(a). Indeed, one can verify that minimization of the
energy landscape, Eq. (21), with respect to � gives this equa-
tion. If L > ��, then the inflection point in 	E corresponds to
the critical confinement κ/(2wad)1/2 � 0.94 at which the de-
laminated solution becomes available. The system then jumps
into this new solution, as in a first order transition, when it
overcomes some energetical barrier [64], or when the control
parameter is made large enough. Contrary, when L < �� the
delaminated solution does not even exist if the solution of
Eq. (15), i.e., �, is greater than total length, L. In that case, the
transition is delayed until κ/(2wad)1/2 is made large enough so
as the solution of Eq. (15) satisfies � = L. Beyond this critical
point, delamination progresses continuously according to the
solutions of Eq. (15).

2. Approximated quantitative criteria for delamination

As a second step in the analysis we are interested to derive
quantitative criteria for delamination. For this reason, we will
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FIG. 4. Examples of the energy landscape for two different total lengths, (a) L = 6 > �� and (b) L = 2 < ��. In both panels the energy
difference, Eq. (21), is plotted as a function of the adhered length, �, for several values of κ/(2wad)1/2. The blue dots on each curve indicate
the local minima. While the behavior depicted in panel (a) corresponds to a discontinuous, first order transition, the behavior in panel
(b) corresponds to a continuous, second order transition.

assume that at the transition the energies of the two solutions,
adhered and partially adhered, coincide. Of course, if the
transition is of a first order, then the system yet needs to cross
some energetical barrier to jump into the new equilibrium
state. Keeping in mind that the contact zone is determined
from Eq. (15), we obtain a system of two equations for the
two unknowns κcr and �cr,

	E : E

(
κcr

(2wad)1/2
, �cr

)
= Eca

(
κcr

(2wad)1/2
, L

)
, (22a)

κcr

(2wad)1/2
= sinh(2q�cr) + sin(2q�cr)

sinh(2q�cr) − sin(2q�cr)
,

(22b)

Since both energies depend on the parameter κ/(2wad)1/2

we can just substitute the right-hand side of Eq. (22b) in
Eq. (22a), and obtain an equation for �cr,

E (�cr) − Eca(�cr, L) = 0, (23)

where L is a free parameter. In Fig. 5(a) we plot the solutions
of this equation as a function of L.

When L < �� we find that Eq. (23) has the unique solution
�cr = L. Substituting this solution in Eq. (22b) gives the
critical curvature at the onset of the instability,

soft substrate (L < ��):

κcr = (2wad)1/2 sinh(2qL) + sin(2qL)

sinh(2qL) − sin(2qL)
� 3

(2wad)1/2

L2
,

⇒ κcr � 3
√

2
�c

L2
, (24)

where the last equality is the leading order expansion in power
of L [65].

After the initial detachment the adhered length � is deter-
mined from Eq. (15), or by its approximated form, Eq. (16).
Note that within the latter approximation the order parameter
at the vicinity of the instability is given by,

m � (3/4)1/4

[
(2wad)1/2

κcr

]1/4

[(κ − κcr)/κcr]
1/2, (25)

with a critical exponent of β = 1/2, that is expected from a
continuous, second order transition. In Fig. 5(b) we plot the
detachment criterion, Eq. (24), in comparison with Eq. (11),

that corresponds to the criterion on a rigid substrate. Evi-
dently, in this region of the parameter space delamination is
delayed compared to the expected behavior on a rigid sub-
strate. In other word, decreasing the stiffness of the substrate,
K , or the total length, L, increase the critical curvature κcr at
which delamination occurs.

When L > �� new branch emerges in the solution of
Eq. (23), see Fig. 5(a). Notably, the new branch quickly
converges to a constant �cr = π/

√
2 < ��, which is indepen-

dent on L. Since solutions with � > �� are always higher in
energy compared to solutions with � < �� [see Fig. 2(a)],
the new branch is energetically preferable over the previous
one, �cr = L. We note that other branches bifurcate from the
unstable branch, �cr = L, beyond L > ��, however, they are
not shown in Fig. 5(a). These branches correspond to solutions
with � > ��, and therefore are unstable.

To approximate the critical curvature and contact zone in
the new branch we employ the long shells approximation
and expand κcr and �cr in powers of 1/L. Solving Eq. (22)
perturbatively within this expansion gives,

soft substrate (L > ��):

κcr � (2wad)1/2
(

1 + a1

L

)
,

⇒ κcr �
√

2

�ec

(
1 + a1

�w

L

)
, (26a)

�cr � π√
2

+ b1

L
,

⇒ �cr �
(

π√
2

+ b1
�w

L

)
�w, (26b)

where a1 = (1 − coth π − 1/ sinh π )/
√

2 and b1 = (1 +
cosh π − sinh π )/4 are negative and positive constants re-
spectively. Equation (26b) is plotted in Fig. 5(a) along with
the exact solution of Eq. (23). While the two solutions,
approximated and exact, deviate close to L = ��, they tend
to coincide when L � 4. Obviously, this branch of solutions
corresponds to a discontinuous transition. When detachment
occurs, the order parameter jumps from zero to a finite value,
m � (L − π/

√
2)1/2, as in a first order transition.
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FIG. 5. Critical contact zone, �cr, and state diagrams of the adhered-to-delamination transition. (a) Solutions of Eq. (23) as a function of L.
Up to �cr < �� the solution is unique and is given by �cr = L (solid blue line). At �cr = �� (black dot) the solution bifurcates into two branches.
One corresponding to �cr = L (dashed red line), and a new branch that converges to the constant �cr(L � 1) � π/

√
2 (solid blue line). When

the long shell approximation is invoked for the latter branch, its asymptotic behavior is given by Eq. (26b) (dashed dotted black line). Since
the first branch corresponds to solutions with � > ��, and the second to � < ��, the latter set of solutions is always energetically preferable
over the first one. While stable solutions with L < �� transform continuously, as in a second order transition, into a deleminated state, stable
solutions with L > �� transform discontinuously, as in a first order transition. (b) State diagram of short shells (L < ��). The curvature, κ , is
plotted as a function of the adhesion parameter, (2wad)1/2, for several values of L. While blue and orange dots represents the critical lines at
which delamination occurs, i.e., the numerical solution of Eq. (22), the corresponding dashed lines represents the approximation that is given
by Eq. (24). The solid black line corresponds to the delamination criterion of a rigid substrate, Eq. (11). For a given wad, the critical curvature
increases as the total length decreases. (c) State diagram of long shells (L > ��), where the axes are as in panel (b). While orange and blue dots
corresponds to the numerical solution of Eq. (22) at different total lengths, dashed black line corresponds to the long shells approximation,
Eq. (26a). Solid black line is the rigid criterion, Eq. (11). As the total length increases the criteria on soft and rigid substrates tend to coincide.
Nonetheless, for any finite L and at a given wad the delamination criterion on soft substrate slightly preempt the expected criterion on a rigid
substrate.

In Fig. 5(c) we plot the delamination criterion, Eq. (26a)
and compare the results with Eq. (11) for a rigid substrate.
In different from short shells, Eq. (24), now delamination
slightly preempts the rigid criterion. However, as the to-
tal length increases the the two criteria, on soft and rigid
substrates, tend to coincide. Indeed, in the limit of a rigid
substrate we have that, �w = (B/K )1/4 → 0, and therefore
κcr → √

2/�ec and �cr → 0, as predicted by Eq. (11).
This completes the adhered-to-delamination analysis. In

summary, given the adhesion energy and the total length, wad

and 2L, we obtain the critical curvature and the contact zone,
κcr and �cr, from the solution of Eqs. (22). The solution of
these equations can be divided into two main branches. One
corresponding to short shells (L < ��), that undergo continu-
ous transition where �cr = L and κcr is given in Eq. (24), and
second corresponding to long shells (L > ��), that undergo
discontinuous transition where �cr and κcr are approximated
in Eq. (26). While in the first branch delamination is delayed
compared to the criterion of a rigid substrate, Eq. (11), in the
second branch delamination preempt the rigid criterion. In the
limit of a rigid substrate the bifurcation point [black dot in
Fig. 5(a)] is shifted toward the origin, such that the first branch
of solutions no longer exists and �cr → 0 for all values of L.

V. CONCLUSIONS

In this manuscript we analyzed the delamination of a
thin cylindrical shell from a soft and adhesive foundation.
Following the analysis in Ref. [46] we derived a set of
nonlinear equilibrium equations, Eqs. (5)–(10), that predict
the final configuration of the shell as a function of the system
parameters, L, κ , B, K , and wad. Notably, this formulation
guarantees continuous transfer of linear and angular momen-
tum across the point of delamination, �, and therefore provides

more realistic description of the detachment phenomena. In
different from the expected behavior on a rigid substrate, we
showed that the solution of these equations corresponds to
partially adhered shells that have finite contact zone.

An analytical approximation to these partially adhered
solutions was derived under the assumption that the adhesion
energy is small, wad 
 1. Within this approximation we found
that delaminated solutions are always energetically preferable
over adhered solutions, given that the natural curvature of the
shell, κ , is made large enough compared to wad. To facili-
tate comparison with experiments, the delamination criteria
that we found in Sec. IV B are summarized in Table I and
compared with the expected behavior on a rigid substrate.
Although the predictions of our theory have not been tested
experimentally, we can yet compare our delamination criteria
with the experiments reported in Ref. [37]. In the latter
experiments narrow strips of spherical shells were deposited
on a water substrate. Considering the typical parameters of
the shells, i.e., thickness 30 μm, Young’s modulus 1.5 MPa,
radius of curvature 4–15 cm and L/�w � 1, the softness
of the substrate, K = 104 N/m3, and the surface tension
wad � 0.1 N/m, we find that the critical radius of curvature for
delamination is κ−1

cr ∼ 10−2 cm, much smaller than consid-
ered experimentally. Indeed, delamination was not observed
in the latter experiments. Alternatively, changing the thickness
in the latter experiments to ∼10−3 m, and keeping the other
parameters fixed gives κ−1

cr ∼ 3 cm, much closer to the range
of the prescribed natural curvatures.

We add several comments regarding the analysis. First,
although we did not mention it explicitly, the total length
of the shell, 2L, must always remain much larger than the
shell’s thickness. Otherwise, our reduced dimensional elastic
theory does not hold [39]. The thickness of the shell, t , enters
the formulation through the bending modulus B ∝ t3 and
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TABLE I. Summary of main results in dimensional form.

Delamination criteria on soft and rigid substrates

κcr �cr

Soft L < �� = 2.77�w ∼3
√

2 �c
L2 [Eq. (24)] L

Substrate L > �� = 2.77�w ∼
√

2
�ec

(1 − 0.06 �w

L ) [Eq. (26a)] ∼( π√
2

+ 0.26 �w

L )�w [Eq. (26b)]

Rigid substrate all L
√

2
�ec

[Eq. (11)] 0

therefore affects the wrinkling length scale, �w = (B/K )1/4 ∝
t3/4.

Second, the validity of Winkler’s model and its ability to
approximate the complex deformation of an actual elastic sub-
strate has been discussed by several authors; see, for example,
recent review on the subject in Ref. [48], or the discussion
in Ref. [49]. In regard to our system, this approximation has
the obvious limitation that lateral deformations (shear) are
not taken into account in the calculations. This underlying
assumption of the model remains plausible as long as the sub-
strate is incompressible [3] and its deformation remains small
compared with its stress-free configuration. Indeed, both of
our approximated solutions in Secs. III and IV A complied
with this smallness requirement. While in the case of par-
tially adhered shells we assume that the normalized height at
the point of delamination remains small, h(�/2) ∝ w

1/2
ad 
 1,

in the case of completely adhered shells we assume that
the normalized natural curvature remains small κ 
 1. Any
extension of this theory into regions that accounts for large
deformations of the substrate must take under consideration
nonlinear effects in the substrate’s response. These nonlinear-
ities can either be derived systematically as is considered, for
example, in Ref. [66], or can assume a phenomenological de-
scription that extends the validity of Winkler’s model [8,67].

Third, problems involving contact between two cylindrical
rings, without the support of an adhesive foundation, had
been previously considered, either when the two rings are
elastically deformable [68] or when only one ring is de-
formable and the other is rigid [69]. Note that due to the
periodic boundary conditions prescribed on these objects [70],
the minimizing configurations are always independent on the
spontaneous curvature, κ . Differently, in our analysis the
elastic configuration has a free edge at s = L, and therefore
κ enters the formulation through the boundary condition,
Eq. (9b). Considering the system in Ref. [68], one possible

extension that may include a nontrivial contribution of the
spontaneous curvature could be when an open circular ring,
i.e., with κ �= 0, is encapsulating a longer closed ring. Under
this setup, the boundary conditions on the outer, opened, ring
will depend on its natural curvature. Furthermore, an even
more intriguing scenario would be to investigate the latter
setup, of an open ring that is encapsulating a closed ring, when
the whole system is supported on a soft foundation. We assess
that in this configuration, the adhered length between the outer
ring and the substrate will affect the contact length between
the two rings, at least in some range of the parameter space.

Fourth, in our model we neglected the energy of the menis-
cus. Indeed, as discussed in Refs. [14,46] this contribution is
of a higher order if one considers an expansion in powers
of wad. Fifth, note that the elastic theory of inextensible
shells that undergo cylindrical deformation, i.e., with zero
Gaussian curvature, is similar to that of fluid membranes. The
adhesion of these membranes to an underlying substrate has
been the subject of many recent studies [71–73]. In particular,
the present formulation suggests new route to investigate the
adhesion of closed cylindrical vesicles to soft substrates [74].
Last, it would be of great interest to extend the present frame-
work into two-dimensional shells that encompass nonzero
Gaussian curvature. For example, one can ask the following
question: What are the delamination criteria of a spherical
shell or wavylike patterns [75] that are adhered to soft foun-
dations?

ACKNOWLEDGMENTS

We thank Lior Atia for many useful discussions that mo-
tivated this work and to Haim Diamant for critical reading
of the manuscript. This work was supported in part by the
Pearlstone Center for Aeronautical Studies.

[1] K. Kendall, J. Phys. D: Appl. Phys. 4, 1186 (1971).
[2] H. Mei, R. Huang, J. Y. Chung, C. M. Stafford, and H.-H. Yu,

Appl. Phys. Lett. 90, 151902 (2007).
[3] H. Mei, C. M. Landis, and R. Huang, Mech. Mater. 43, 627

(2011).
[4] H.-H. Yu and J. W. Hutchinson, Int. J. Fract. Mech. 113, 39

(2002).
[5] E. Cerda and L. Mahadevan, Phys. Rev. Lett. 90, 074302

(2003).
[6] D. Vella, J. Bico, A. Boudaoud, B. Roman, and P. M. Reis, Proc.

Natl. Acad. Sci. USA 106, 10901 (2009).
[7] H. Diamant and T. A. Witten, Phys. Rev. Lett. 107, 164302

(2011).

[8] B. Audoly, Phys. Rev. E 84, 011605 (2011).
[9] O. Oshri, F. Brau, and H. Diamant, Phys. Rev. E 91, 052408

(2015).
[10] O. Kruglova, F. Brau, D. Villers, and P. Damman, Phys. Rev.

Lett. 107, 164303 (2011).
[11] F. Brau, Phys. Rev. E 90, 062406 (2014).
[12] F. Brau, P. Damman, H. Diamant, and T. A. Witten, Soft Matter

9, 8177 (2013).
[13] T. J. W. Wagner and D. Vella, Phys. Rev. Lett. 107, 044301

(2011).
[14] E. Hohlfeld and B. Davidovitch, Phys. Rev. E 91, 012407

(2015).

033001-10

https://doi.org/10.1088/0022-3727/4/8/320
https://doi.org/10.1063/1.2720759
https://doi.org/10.1016/j.mechmat.2011.08.003
https://doi.org/10.1023/A:1013790232359
https://doi.org/10.1103/PhysRevLett.90.074302
https://doi.org/10.1073/pnas.0902160106
https://doi.org/10.1103/PhysRevLett.107.164302
https://doi.org/10.1103/PhysRevE.84.011605
https://doi.org/10.1103/PhysRevE.91.052408
https://doi.org/10.1103/PhysRevLett.107.164303
https://doi.org/10.1103/PhysRevE.90.062406
https://doi.org/10.1039/c3sm50655j
https://doi.org/10.1103/PhysRevLett.107.044301
https://doi.org/10.1103/PhysRevE.91.012407


DELAMINATION OF OPEN CYLINDRICAL SHELLS FROM … PHYSICAL REVIEW E 102, 033001 (2020)

[15] J. Hure, B. Roman, and J. Bico, Phys. Rev. Lett. 106, 174301
(2011).

[16] T. J. W. Wagner and D. Vella, Soft Matter 9, 1025 (2013).
[17] L. Pocivavsek, R. Dellsy, A. Kern, S. Johnson, B. Lin, K. Y. C.

Lee, and E. Cerda, Science 320, 912 (2008).
[18] A. Epstein, D. Hong, P. Kim, and J. Aizenberg, New J. Phys.

15, 095018 (2013).
[19] O. Oshri and H. Diamant, Phys. Chem. Chem. Phys. 19, 23817

(2017).
[20] S. S. Velankar, V. Lai, and R. A. Vaia, ACS Appl. Mater.

Interfaces 4, 24 (2012).
[21] A. Ghatak, L. Mahadevan, J. Y. Chung, M. K. Chaudhury, and

V. Shenoy, Proc. R. Soc. Lond. Ser. A 460, 2725 (2004).
[22] A. Ghatak, L. Mahadevan, and M. K. Chaudhury, Langmuir 21,

1277 (2005).
[23] F. Brau, S. Thouvenel-Romans, O. Steinbock, S. S. S. Cardoso,

and J. H. E. Cartwright, Soft Matter 15, 803 (2019).
[24] J. A. Rogers, T. Someya, and Y. Huang, Science 327, 1603

(2010).
[25] N. Lu and D.-H. Kim, Soft Rob. 1, 53 (2014).
[26] L. Pocivavsek, J. Pugar, R. O’Dea, S.-H. Ye, W. Wagner, E.

Tzeng, S. Velankar, and E. Cerda, Nat. Phys. 14, 948 (2018).
[27] L. Pocivavsek, S.-H. Ye, J. Pugar, E. Tzeng, E. Cerda, S.

Velankar, and W. R. Wagner, Biomaterials 192, 226 (2019).
[28] H. Diamant, Nat. Phys. 14, 878 (2018).
[29] N. Nguyen, N. Nath, L. Deseri, E. Tzeng, S. S. Velankar, and L.

Pocivavsek, Biomech. Model. Mechanobiol. (2020).
[30] A. J. O. Butler, C. R. Meyer, and J. A. Neufeld, J. Appl. Mech.

87, 051010 (2020).
[31] T. J. W. Wagner, T. D. James, T. Murray, and D. Vella, Geophys.

Res. Lett. 43, 232 (2016).
[32] A. Libai and J. Simmonds, The Nonlinear Theory of Elastic

Shells (Academic Press, New York, 1988).
[33] Y. Zhou, C. M. Duque, C. D. Santangelo, and R. C. Hayward,

Adv. Funct. Mater. 29, 1905273 (2019).
[34] S. Armon, E. Efrati, R. Kupferman, and E. Sharon, Science 333,

1726 (2011).
[35] R. M. Erb, J. S. Sander, R. Grisch, and A. R. Studart, Nat.

Commun. 4, 1712 (2013).
[36] X. Yuan and Y. Wang, Soft Matter 16, 1011 (2020).
[37] O. Albarrán, D. V. Todorova, E. Katifori, and L. Goehring,

arXiv:1806.03718 [cond-mat.soft].
[38] I. Tobasco, Y. Timounay, D. Todorova, G. C. Leggat, J. D.

Paulsen, and E. Katifori, arXiv:2004.02839 [cond-mat.soft].
[39] L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 2nd ed.

(Butterworth-Heinemann, Oxford, 1986).
[40] C. Majidi and G. G. Adams, Mech. Res. Commun. 37, 214

(2010).
[41] C. Majidi and G. G. Adams, Proc. R. Soc. A 465, 2217 (2009).
[42] C. Majidi, O. M. O’Reilly, and J. A. Williams, Mech. Res.

Commun. 49, 13 (2013).
[43] G. Napoli and S. Turzi, Proc. R. Soc. Lond. A 471, 20150444

(2015).
[44] C. Majidi and K.-t. Wan, J. Appl. Mech. 77, 041013 (2010).
[45] B. Roman and J. Bico, J. Phys.: Condens. Matter 22, 493101

(2010).
[46] O. Oshri, Y. Liu, J. Aizenberg, and A. C. Balazs, Phys. Rev. E

97, 062803 (2018).
[47] S. T. Milner, J. F. Joanny, and P. Pincus, Europhys. Lett. 9, 495

(1989).

[48] D. A. Dillard, B. Mukherjee, P. Karnal, R. C. Batra, and J.
Frechette, Soft Matter 14, 3669 (2018).

[49] M. A. Biot, J. Appl. Mech. 4, 1 (1937).
[50] Alternatively, we could as well normalize all lengths by the

total length of the shell, L. Nonetheless, since the results of our
analysis will depend strongly on this length scale, we prefer to
keep it explicit in our formulation.

[51] Note that, in general, another two Lagrange multipliers must
be prescribed to account for the geometric constraints in the
horizontal direction, i.e., pi

x (s)(cos φi − dxi
ds ). Nonetheless, we

have omitted these terms in our formulation because there are
no external forces acting on the system in x direction. Had
we included these multipliers, we would have obtained after
minimization that pi

x (s) = 0.
[52] H. Diamant and T. A. Witten, Phys. Rev. E 88, 012401 (2013).
[53] J. W. Hutchinson and Z. Suo, Adv. Appl. Mech. 29, 63

(1991).
[54] Z.-H. J. C. T. Sun, Fracture Mechanics (Elsevier, Amsterdam,

2012).
[55] G. Gioia and M. Ortiz, Delamination of Compressed Thin Films,

edited by J. W. Hutchinson and T. Y. Wu, Adv. Appl. Mech.,
Vol. 33 (Elsevier, Amsterdam, 1997), pp. 119–192.

[56] Had we replaced Eq. (10) with ha(�) = 0, our set of equilibrium
equations, Eqs. (5)–(10), would yield the trivial solution � = 0,
i.e., completely detached cylinder.

[57] H.-Y. Kim and L. Mahadevan, J. Fluid Mech. 548, 141 (2006).
[58] Note that in the derivation of ϕd we used the approximation

wad 
 1.
[59] This is the first solution of the equation tan(2q�) = tanh(2q�).
[60] G. Napoli and S. Turzi, Meccanica 52, 3481 (2017).
[61] The contribution of the free edge is trivial, i.e., its shape is a

circular arc with radius of curvature κ . Therefore, the energy of
the free edge always vanishes, and it only provides a boundary
condition to the inner, adhered, region.

[62] D. A. Dillard, J. Adhesion 26, 59 (1988).
[63] B. Davidovitch and V. Démery, arXiv:2007.04748 [cond-

mat.soft].
[64] Numerical investigation indicates that the size of this barrier is

	Ebar � 0.1�w/B.
[65] Note that since the delaminated solution is physically accessible

only when L > � (see discussion at the end of Sec. III), the
adhered-to-delaminated transition will only occur when κ >

κcr + ε, where ε is arbitrarily small.
[66] F. Brau, H. Vandeparre, A. Sabbah, C. Poulard, A. Boudaoud,

and P. Damman, Nat. Phys. 7, 56 (2011).
[67] T. C. T. Michaels, R. Kusters, A. J. Dear, C. Storm, J. C.

Weaver, and L. Mahadevan, arXiv:1906.04638 [cond-mat.soft].
[68] G. Napoli and A. Goriely, Proc. R. Soc. A 473, 20170340

(2017).
[69] R. De Pascalis, G. Napoli, and S. Turzi, Physica D 283, 1

(2014).
[70] E. Katifori, S. Alben, and D. R. Nelson, Phys. Rev. E 79,

056604 (2009).
[71] M. Tanaka and E. Sackmann, Nature 437, 656 (2005).
[72] E. T. Castellana and P. S. Cremer, Surf. Sci. Rep. 61, 429

(2006).
[73] H. Noguchi, Soft Matter 15, 8741 (2019).
[74] U. Seifert, Phys. Rev. A 43, 6803 (1991).
[75] Y. Klein, S. Venkataramani, and E. Sharon, Phys. Rev. Lett. 106,

118303 (2011).

033001-11

https://doi.org/10.1103/PhysRevLett.106.174301
https://doi.org/10.1039/C2SM26916C
https://doi.org/10.1126/science.1154069
https://doi.org/10.1088/1367-2630/15/9/095018
https://doi.org/10.1039/C7CP03239K
https://doi.org/10.1021/am201428m
https://doi.org/10.1098/rspa.2004.1313
https://doi.org/10.1021/la0484826
https://doi.org/10.1039/C8SM01928B
https://doi.org/10.1126/science.1182383
https://doi.org/10.1089/soro.2013.0005
https://doi.org/10.1038/s41567-018-0193-x
https://doi.org/10.1016/j.biomaterials.2018.11.005
https://doi.org/10.1038/s41567-018-0212-y
https://doi.org/10.1007/s10237-020-01345-0
https://doi.org/10.1115/1.4046197
https://doi.org/10.1002/2015GL067247
https://doi.org/10.1002/adfm.201905273
https://doi.org/10.1126/science.1203874
https://doi.org/10.1038/ncomms2666
https://doi.org/10.1039/C9SM01863H
http://arxiv.org/abs/arXiv:1806.03718
http://arxiv.org/abs/arXiv:2004.02839
https://doi.org/10.1016/j.mechrescom.2010.01.002
https://doi.org/10.1098/rspa.2009.0060
https://doi.org/10.1016/j.mechrescom.2013.01.004
https://doi.org/10.1098/rspa.2015.0444
https://doi.org/10.1115/1.4000924
https://doi.org/10.1088/0953-8984/22/49/493101
https://doi.org/10.1103/PhysRevE.97.062803
https://doi.org/10.1209/0295-5075/9/5/015
https://doi.org/10.1039/C7SM02062G
https://doi.org/10.1103/PhysRevE.88.012401
https://doi.org/10.1016/S0065-2156(08)70164-9
https://doi.org/10.1017/S0022112005007718
https://doi.org/10.1007/s11012-017-0618-0
https://doi.org/10.1080/00218468808071274
http://arxiv.org/abs/arXiv:2007.04748
https://doi.org/10.1038/nphys1806
http://arxiv.org/abs/arXiv:1906.04638
https://doi.org/10.1098/rspa.2017.0340
https://doi.org/10.1016/j.physd.2014.05.008
https://doi.org/10.1103/PhysRevE.79.056604
https://doi.org/10.1038/nature04164
https://doi.org/10.1016/j.surfrep.2006.06.001
https://doi.org/10.1039/C9SM01622H
https://doi.org/10.1103/PhysRevA.43.6803
https://doi.org/10.1103/PhysRevLett.106.118303

