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Granular packings with sliding, rolling, and twisting friction
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Intuition tells us that a rolling or spinning sphere will eventually stop due to the presence of friction and
other dissipative interactions. The resistance to rolling and spinning or twisting torque that stops a sphere also
changes the microstructure of a granular packing of frictional spheres by increasing the number of constraints
on the degrees of freedom of motion. We perform discrete element modeling simulations to construct sphere
packings implementing a range of frictional constraints under a pressure-controlled protocol. Mechanically
stable packings are achievable at volume fractions and average coordination numbers as low as 0.53 and 2.5,
respectively, when the particles experience high resistance to sliding, rolling, and twisting. Only when the particle
model includes rolling and twisting friction were experimental volume fractions reproduced.
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I. INTRODUCTION

A rolling or spinning marble on a table eventually slows
to a stop because of resistance to the rolling and twisting
modes of motion. However, rolling and twisting friction are
often excluded in simulation studies because of the added
complexity of the contact mechanics model. Such approxi-
mations may be valid for some phenomena and materials,
such as materials with low sliding friction [1], but the validity
of this approximation, and the ability to match experimental
properties, must be tested.

Simulations have found that rolling and twisting friction
is necessary to reproduce experimental observations and can
change macroscopic behavior. Only by including rolling fric-
tion were Mort et al. [2] able to reproduce experimental
shear-to-normal stress ratio in a hopper. Singh et al. [3] were
also unable to reproduce experimental shear viscosity at rel-
evant sliding friction coefficients with simulations without
rolling friction. Other simulations found that rolling friction
induces columnar granular particle contact backbones [4], in-
creases stress-dilatancy behavior [5], causes anisotropic dense
granular flows [6], and provides an explanation of discon-
tinuous shear thickening [7,8]. Simulations of shear banding
[9,10], rigid flat punch [11], and wing-crack extension [12]
processes generated large regions of rotations. Resistance to
such rotation could change behavior, and studies of such pro-
cesses should consider including rolling and twisting friction
in models. The magnitude of resistance to rolling and twisting
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can be approximated, and explained by, contact mechanics
theory.

Long before granular particles were simulated with rolling
and twisting friction, Reynolds [13] and Hertz [14] used theo-
ries of rolling and twisting resistance to suggest a substantial
impact on packing structure. These theories focus on single
particle-wall interactions using elastic and inelastic approx-
imations of rolling resistance [15,16]. Twisting and sliding
friction have the same origins—twisting having rotational
instead of translational displacements over the contact area.
Rolling friction originates from a combination of microslip
at the interface, inelastic deformation, and surface roughness
that create a pressure difference between the leading and
trailing ends of the rolling contact [17]. Constraint counting
predicts that rolling and twisting resistance leads to large
changes in packing structure (see Sec. III A). Particle prop-
erties, including surface morphology and the material [17],
sets the rolling and twisting resistance and thus can control
packing structure.

Packings of spheres and disks with sliding friction have
shown many interesting phenomena. For example, in three
dimensions, the coordination number Z decreases gradually
with friction from the frictionless value of Z = 6 to the fric-
tional isostatic number Z = 4 [18–22]. The volume fraction φ

follows the decrease in coordination number with increasing
friction. Frictionless hard spheres sets the densest volume
fraction φ∼0.64 for random packings, known as the maxi-
mally random jammed state [23]. Simulations [18] and theory
[21] have shown that sliding friction leads to looser granular
sphere packings than frictionless sphere packings, as verified
by experiments [24].

How loose frictional packings can be depends on the
friction coefficient and the path to packing. Early packing
experiments of monodisperse spheres measured a range of
volume fractions with minimums of φ ∼ 0.57–0.6 [25–27].
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Later experiments demonstrated that materials with larger
friction coefficients can access mechanically stable packings
with lower volume fractions [24,28,29]. With careful, density-
matched experiments, Farrell et al. [29] measured volume
fractions φ < 0.54 for very frictional particles. Silbert [22]
used a volume-controlled simulation protocol to produce sta-
ble packings as low as φ = 0.576 for high, but realistic sliding
friction coefficient values (μs = 0.5), which is still above
the experimental value. Because rolling and twisting friction
makes models more realistic, it offers simulations a route to
match the low volume fractions seen in experimental packings
of frictional particles.

Packings generated with a volume-controlled protocol have
difficulty forming stable packings at low pressures and vol-
ume fractions. By controlling pressure not volume, final
packings repeatably and rigorously satisfy set stress con-
ditions at low pressures. Pressure-controlled protocols have
been used to study granular packings [19,30–32], but their
application to three-dimensional (3D) frictional particles is
less common. In this article, a constant pressure in the x, y,
and z directions allows the box to adjust the edge length, and
by allowing the box to adopt triclinic configurations, constant
zero shear stresses are achieved. Packings formed by pressure-
controlled protocols are more stable to shear deformation than
volume-controlled methods, as shown by Dagois-Bohy et al.
[30] and Smith et al. [31].

In this article, a constant-pressure protocol is used to pack
3D, monodisperse particles with varying degrees of sliding,
rolling, and twisting friction. The equations of motion that de-
fine contact forces for the normal, sliding, rolling, and twisting
modes are presented in Sec. II A. The appropriate magni-
tudes of the rolling and twisting contact force parameters are
discussed in the Appendix. The details and benefits of the
constant-pressure packing protocol are described in Sec. II B.
The effect of rolling and twisting friction on packing morphol-
ogy is first predicted using constraint counting (Sec. III A),
and then the results of numerical simulations are presented
and compared to experiment in Sec. III B.

II. METHODOLOGY

A. Contact model

Granular particles are modeled as spherical particles with
radius Ri and mass mi. Particles interact only when in contact,
through a spring-dashpot-slider interaction potential for the
normal, sliding, rolling, and twisting modes of motion. Sliding
friction uses the Cundall and Strack model [33]. Rolling resis-
tance is based on Luding’s implementation [34], and twisting
resistance is based on Marshall’s implementation [35]. For
two granular particles in contact, separated by a distance
|ri j | < Ri + Rj , the force on particle i from particle j is

Fi j = Fn + Fs, (1a)

Fn = knδn − meffγnvn, (1b)

Fs = −min(μs|Fn|, | − ksξs − meffγsvs|) vs

|vs| , (1c)

where δ = Ri + Rj − |ri j |, n = ri j

|ri j | , meff = mimj

mi+mj
. Fn is the

normal force, and Fs is the sliding force. Sliding (s), rolling

FIG. 1. Schematic of the granular particle interaction model nor-
mal Fn and sliding Fs forces, and the sliding τs, rolling τr , and
twisting τt torques. Resistance to the sliding translational velocity vs,
the rolling �r , and twisting �t rotational velocities causes frictional
forces and torques.

(r), and twisting (t) give rise to torque when granular particles
are in contact. The torque acting on particle i due to contact
with particle j is defined as

τ i j = τs + τr + τt , (2a)

τs = −
(

Ri − δ

2

)
n × Fs, (2b)

τr = −Reffn × min(μr |Fn|, | − krξr − γrvr |) vr

|vr | , (2c)

τt = −min(μt |Fn|,−ktξt − γtvt )n, (2d)

where Reff = RiR j

Ri+Rj
. Note that torque acting on particle j

due to contact with particle i is τ ji = −τ i j , except for τs

if Ri �= Rj . Each mode of motion m has a Hookean spring
constant km and viscoelastic damping coefficient γm that takes
into account the inelasticity of the contact mechanics. The
Coulomb yield criteria is applied to each frictional mode force
or torque and sets the maximum to be the friction coefficient
μm times the normal force.

The displacement accumulated as particles are in contact
is an important aspect of this model because it captures
microslip and has been observed in experimental studies
of oblique impact [36]. The accumulated displacement is
measured by ξm = ∫ t

t0
vm(τ ) dτ , where t0 is the time at first

contact. To compensate for the effect of rigid body rotations,
ξm is calculated in the reference frame of the rotating particle
pair [34]. As the contacting pair rotates as a rigid body, the
tangential and rolling displacement vector components that
are parallel to n are subtracted at each time step and scaled
to preserve their magnitude. The velocity of each of the four
modes vm is relative to the contact vector, and these are de-
fined as

vn = [(v j − vi ) · n]n, (3a)

vs = (v j − vi ) − [(v j − vi ) · n]n

− (Ri�i + Rj� j ) × n, (3b)

vr = −Reff(�i − � j ) × n, (3c)

vt = (�i − � j ) · n, (3d)

where vi and �i are the translational and rotational velocities,
respectively. The twisting velocity is a scalar because it is
one component of the rotational degrees of freedom. Figure 1
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visualizes the three modes of friction and the associated ve-
locities, forces, and torques.

The assumption of linear elastic behavior for interparticle
contacts is reasonably accurate as a model for sufficiently stiff
particles. Note that as an upper limit, for example, glass has
a yield stress σy ≈ 70 MPa and would be expected to yield,
fracture, or fragment, deviating significantly from spherical
shape, for Pa � 10−3 kn

d . Most simulations were run at Pa =
10−4 kn

d where d is the diameter.
In all simulations, particles have the same radius Ri = R =

0.5 and mass mi = m = 1. The particle spring and damping
parameters are set equal to each other, kn = ks = kr = kt =
1.0 m/τ 2 and γn = γs = γr = γt = 0.5 τ−1, where m is the
particle mass and τ = √

m/kn [37]. The model parameters
and coefficients of rolling and twisting friction used in this
study are not based on a specific material. However, the
chosen parameters are within relevant values, determined by
simulations and a contact mechanics analysis. The contact
mechanics analysis and details of two-overlapping-spheres
simulations are in the Appendix. Changes within an order of
magnitude of km and γm did not yield qualitative changes in
the packing behavior. If kr or kt are orders of magnitude lower
than kn and the normal force is small, the torque resistances
are negligible. The key parameters varied in the analysis pre-
sented here of packings are the coefficients of the different
friction modes, not the spring and damping coefficients. A
wide range of friction coefficients are studied that include and
go above values for typical materials. For example, copper,
bronze, and steel spheres have coefficients of rolling resis-
tance μr of 10−4 to 10−2 [38,39], while viscoelastic materials
have values of 10−3 to 10−2 [40]. In this study, μr,t varies
from 0 to 100 because of precedent set by previous simulation
studies [2,19,22] and to understand the range of impact of
rolling twisting friction for this model.

B. Constant pressure packing simulations

The contact model described in Sec. II A was used
to perform discrete element, particle-based simulations in
LAMMPS [41] by integrating Newton’s second law with the
velocity-Verlet integration scheme. The particle positions and
orientations are updated based on the interparticle forces Fi

and torques τ i calculated by Eqs. (1a) and (2a). The equations
of motion include the degrees of freedom for a deforming
box to simulate granular particles under a constant applied
pressure tensor. The granular particles are placed within a
fully periodic 3D box which is able to change shape with
triclinic deformations to maintain the applied pressure tensor.
A barostat was used in the NPaH ensemble to integrate the
positions and momenta of the particles and box, where N is the
number of particles, Pa is the applied pressure tensor, and H
is the enthalpy. The Shinoda-Shiga-Mikami [42] formulation
used in this study combines the hydrostatic equations of Mar-
tyna et al. [43] with the strain energy proposed by Parrinello
and Rahman [44].

For each friction state measured, six packings of N =
104 diameter d = 1 nonoverlapping particles were generated.
Simulations were initialized with particles at random posi-
tions and low volume fraction φ0 = 0.05. The initial volume
fraction φ0 does not affect the properties of the final packing

TABLE I. The average number of contacts per particle Z needed
to satisfy the number of constraints per contact Nc for a mechanically
stale packing due to sliding, rolling, twisting, and the various friction
combinations for 3D and 2D particles. The inclusion “y” or exclusion
“n” of a friction mode determines Nc. Two-dimensional particles do
not have the twisting mode and values are omitted accordingly.

Friction 3D 2D

Sliding Rolling Twisting Nc Z Nc Z

n n n 1 6 1 4
y n n 3 4 2 3
n y n 3 4 2 3
n n y 2 6 – –
y y n 5 12/5 3 2
y n y 4 3 – –
n y y 4 3 – –
y y y 6 2 – –

studied here, so long as φ0 is not too near, or above, the final
volume fraction (φ0 < φ − 0.3). Initial particle translational
and rotational velocities were set to zero. The simulation time
step was set to δt = 0.02τ . A time step of 0.002τ did not
change the results for the systems studied within the uncer-
tainties.

After initialization, the particles are isotropically com-
pressed. The packing method begins with a system at φ0 =
0.05 and P = 0, then at t = 0 a constant pressure Pa with
a pressure damping of Pdamp = 2.25 τ−1 is applied until the
system jams. The applied pressure has been shown to af-
fect the final volume fraction and coordination number with
or without friction of any mode, as observed previously
[19,22,45–47]. Most of the simulations presented here are
for Pa = 10−4 kn

d , which, as we show below, is in the low-
pressure regime. Simulations were run until the per-particle
kinetic energy U kinetic/N < 10−12knd , which was well after
the volume fraction to stops developing. For Pa = 10−4 kn

d ,
the total run time was t/τ = 2×105, and for Pa = 10−7 kn

d ,
the total run time was t/τ = 4x106. The applied symmet-
ric pressure tensor Pa is defined as Pa = Pa,xx = Pa,yy = Pa,zz

and Pa,xy = Pa,xz = Pa,yz = 0 [48]. The applied and measured
pressure tensors equal each other exactly, Pint = Pa, in the
final packings. Because the shear pressures are so near zero,
these packings are stable to small deformations.

The volume fraction φ and coordination number Z are the
key parameters measured in this study. These properties were
averaged over the six packings generated from the final sim-
ulation configurations. Measured values of Z are calculated
without “rattlers,” particles that have too few contacts to con-
tribute to the mechanical stability of the packings. Particles
were classified as rattlers if Zi � Nc

ratt, where Zi is the num-
ber of contacts of particle i and Nc

ratt is a friction-dependent
minimum number of constraints on the degrees of freedom
of motion. Each mode of friction contributes constraints to
Nc

ratt. The friction contributions are determined with constraint
counting (see Sec. III A), and the values of Nc

ratt = Nc/2,
where Nc is the value in Table I. An intermediate friction of
μc

m = 0.01 was used to determine whether the sliding, rolling,
and/or twisting friction mode m would contribute to Nc

ratt,
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FIG. 2. Configurations of mechanically stable granular particle
packings at three different sliding s, rolling r, and twisting t friction
states: low (μs = μr = μt = 0, left), intermediate (μs = μr = μt =
0.3, middle), and high (μs = μr = μt = 1, right). Rattlers have been
removed from the visualization, and each granular particle is colored
based on the number of local contacts Zi.

which determines the row in Table I. The value of μc
m = 0.01

was chosen because it is the point where friction has an
appreciable impact on φ and Z . Other choices of μc

m did not
lead to large changes in Z . Rattlers are identified iteratively, so
that the number of contacts per particle decreases based on the
number of rattlers in contact with the particle. If the number of
contacts decreases enough to constitute a rattler, by removing
neighboring rattlers, it is counted as such.

III. RESULTS

Representative packed granular particle configurations
which demonstrate that the inclusion of sliding, rolling, and
twisting friction causes major microstructural change are
shown in Fig. 2. Though each system has 10 000 particles,
the volume of each is slightly different. Rattlers, which are
particles that do not have enough contacts to be mechanically
stable because they can move within a mechanically stable
packed system, are not visualized (see Sec. II B for rattler
identification details). The fraction of rattlers increases with
the friction coefficient and the number of friction modes. As
the sliding, rolling, and twisting friction coefficients increase,
particles are more likely to have fewer contacts; see the color
change of particles in Fig. 2. The structure and small fraction
of nonrattlers at high sliding μs, rolling μr , and twisting μt

frictions differ considerably from the case where μs = μr =
μt = 0 or even μs = μr = μt = 0.3. The drastic decrease in
the average number of contacts per particle with multiple
friction modes can be predicted by balancing contact forces
and constraints for a mechanically stable packing.

A. Constraint counting

Constraint counting models a packing as a state where the
total number of forces and torques on the granular particles
equals the total number of constraining contacts to satisfy
Maxwell’s rigidity criterion [49]. For N granular particles in d
dimensions there are N normal forces and, if there is friction,
(d − 1)N tangential forces, N torques for d = 2, and 3N
torques for d = 3. For mechanical stability, these forces and
torques must be balanced by the total constraining contacts
NZ , where Z is the average number of contacts per particle.
The analysis here assumes that any contact, no matter how
close it is to the friction limit, is constraining. Each constraint

mode m contributes to the number of constraints per contact,
Nc = �mNc

m. The normal contact force law of a hard sphere
contributes Nc

n = 1, although for real or simulated hard gran-
ular particles, without adhesion, it is constrained only in the
repulsive direction. The number of constraints per contact for
the other modes in three dimensions are Nc

s = 2, Nc
r = 2, and

Nc
t = 1. In two dimensions, Nc

s = 1, Nc
r = 1, and Nc

t = 0. The
total number of constraints and equations Neqn are then set to
equal each other, so that

Neqn =

⎧⎪⎨
⎪⎩

6N, 3D, frictional
3N, 2D, frictional
3N, 3D, frictionless
2N, 2D, frictionless

, (4a)

Neqn = Nc

2
N〈Z〉, (4b)

〈Z〉 = 2Neqn

NcN
, (4c)

since a packing has to balance dN forces and 3N (3D) or 1N
[two-dimensional (2D)] torques for frictional particles. The
number of local constraints N local

c , which are used to identify
rattlers in the simulation configuration analysis, is N local

c =
Nc/2. Table I lists the Nc and Z calculated from constraint
counting using Eq. (4c). The low value of Z = 2 when all
modes of friction are constraining was previously calculated
by Liu et al. [50]. The predictions for Z with different modes
are compared to simulation results in Sec. III B.

B. Packing structure with rolling and twisting

Even though constraint counting predicts that rolling and
twisting resistances cause large changes in Z , simulations
often ignore resistance to rolling and twisting. Simulations
of many particles with the isotropic compression method
described in Sec. II B can test the constraint counting pre-
dictions and compare with experimental measurements of
mechanically stable packing. Mechanically stable packings
were generated with a constant pressure tensor, where di-
agonal components are set to Pa = 10−4 kn

d and off-diagonal
components are set to zero, applied to an initially very dilute
system; see Sec. II B for more details. The pressure damping
for all components is Pdamp = 2.25 τ−1. Figure 3 quantifies
the impact of μr and μt on the coordination number without
rattlers seen in Fig. 2 and predicted by constraint counting
in Table I. The different panels in Fig. 3 isolate the impact
of each friction mode. For sliding friction without rolling
and twisting, Z decreases with increasing μs as observed
in previous volume-controlled packings [22]. As μs → 0, Z
approaches the 3D frictionless limit Z = 6. As μs increases,
Z continuously decreases to Z = 4, the limit predicted by con-
straint counting. Constraint counting predicts that Z decreases
from six to four for any nonzero sliding friction. Shundyak
et al. [19] found that, for 2D particles with sliding friction in
the hard-sphere limit, the Z predicted from constraint counting
equals the number of contacts minus the mobilized or plastic
contacts per particle. Rolling and twisting friction modes have
similar effects on Z with some distinctions.

The center two panels of Fig. 3 show that for low μs, Z is
insensitive to rolling and twisting friction. The insensitivity
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FIG. 3. Average coordination number without rattlers Z at jamming as a function of sliding (μs, far left circles), twisting (μt , for different
μs where μr = 0, center left squares), rolling (μr , for different μs where μt = 0, center right upward-facing triangles) frictions and where
rolling and twisting frictions are set equal to each other (for different μs where μr = μt , far right downward-facing triangles). The leftmost
panel shows how Z behaves with μr = μt = 0.0 (violet). For the other panels, data with different sliding frictions are drawn with the following
distinct colors going from low to high: μs = 0.01, (magenta), 0.1 (turquoise), 0.3 (orange), and 1 (black). Constraint counting values (horizontal
black dashed lines) correspond with the cases shown in Table I. Packings are generated at Pa = 10−4 kn

d with Pdamp = 2.25 τ−1. Uncertainties
are similar in size to the symbols, and solid lines are guides for the eye.

to μr and μt at low μs is due to how friction is modeled.
The contact point can move and disengage the rolling and
twisting torques if the sliding friction is too low. As sliding
friction is increased, μs > 10−2, rolling and twisting friction
begin to affect Z in a similar way as sliding friction. In-
creasing sliding friction decreases Z at the low-μr,t values
as well as increases the magnitude of the impact μr and μt

have on Z at high-μr,t values. The scale of the decrease in
Z depends on how many constraints a friction mode con-
tributes. Because rolling friction contributes two constraints
to rotational motion compared to one from twisting friction,
rolling friction leads to a larger decrease in magnitude for Z .
Constraint counting predicts those magnitudes; see Table I.
Whereas with only sliding friction limμs→∞ Z = 4, the in-
clusion of twisting friction leads to limμs,t →∞ Z = 3.291 ±
0.009, rolling friction leads to limμs,r→∞ Z = 2.85 ± 0.05 and
for all three frictions limμs,r,t →∞ Z = 2.50 ± 0.05 (limiting Z
values were taken as the minimum measured and reported in
Fig. 3). Similar limiting behavior in Z was recently observed
in shear jammed dense suspension simulations [3]. Any pro-
cess that includes granular packings is likely impacted by the
large decreases in the average number of contacts per particle
from frictionless (Z = 6) to large sliding, rolling, and twisting
friction (Z = 2.5).

These values are close to, but consistently greater than,
the values predicted by constraint counting indicated by the
dashed horizontal lines. A portion of the underestimation is
because the Z reported in Fig. 3 is without rattlers. Taking
rattlers out decreases the number of particles used to calculate
Z , without much change in the number of contacts, and is not
accounted for in constraint counting. To understand the larger
constraint counting-simulation Z discrepancy, consider the
Z = 2 prediction for all three friction modes. Because there
is no cohesion in this model, a particle with one contact is a
rattler. Therefore, the only way for there to be a mechanically

stable system with Z = 2 is if all nonrattlers have exactly
two contacts. A stable packing of particles with only two
contacts would be highly unlikely. The present system instead
forms packings with a few Z > 2 particles between chains
of Z = 2 for an average Z � 2.5. Previous simulations that
included cohesion formed packings with Z = 2 [50] support
this explanation.

From the constraint counting predictions of the number of
constraints per contact Nc

m and the critical value of mode m
friction μm,c at which Z is half way between the two limiting
cases, Zm,c = [Z (μm → 0) + Z (μm → ∞)]/2, the Z behav-
ior can be approximated without simulation data as

Z = Neqn − tanh

(
μs

μs,c

)
,

×
[

Nc
s + Nc

r tanh

(
μr

μr,c

)
+ Nc

t tanh

(
μt

μt,c

)]
, (5)

where the number of equations Neqn and constraints Nc
m are de-

tailed in Table I. For this model, μs,c � μr,c � μt,c � 0.3, and
thus Z = 6 − tanh ( μs

0.3 )[2 + 2 tanh ( μr

0.3 ) + tanh ( μt

0.3 )]. The
tanh function is chosen because it matches the correct limiting
behavior and exponentially connects the limits. The sliding
friction term, tanh ( μs

μs,c
), multiplies the rolling and twisting

terms because no resistance to the sliding mode can lead
granular particles to loose contact. The rolling and twisting
modes of rotational motion cannot individually lead to contact
disengagement. Because Eq. (5) is informed by constraint
counting, its limits of Z are those predicted by constraint
counting and do not match the simulation results. Equation
(5) is a tool to estimate Z if the sliding, rolling, and twisting
friction coefficients are known and could be used as an initial
metric to select a material or model with desired packing
properties.
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FIG. 4. Volume fraction (φ, top) and fraction of rattlers ( frattler, bottom) at jamming as a function of sliding (μs, for different μt = μr ,
far left circles), twisting (μt , for different μs where μr = 0, center left squares), rolling (μr , for different μs where μt = 0, center right
upward-facing triangles) frictions and where rolling and twisting friction coefficients are equal (for different μs where μr = μt , far right
downward-facing triangles). The leftmost panel shows a series of curves that represent different rolling and twisting friction coefficients:
μr = μt = 0.0 (violet), μr = μt = 0.01 (red), μr = μt = 0.03 (blue), and μr = μt = 0.1 (green). For μr, μt > 0.1, there is little change in
φ(μs ) behavior. Experimental φ values of Farerll et al. [29] for different materials with associated μs are shown as brown diamonds. For the
other panels, the colors are the same as Fig. 3.

The distribution of coordination numbers in high and low
Z packings are visualized in Fig. 2. To be mechanically stable
with so few contacts, a large fraction of the granular particles
must be rattlers. Not only are there fewer nonrattler parti-
cles, but the distribution of nonrattlers is very heterogeneous.
Figure 4 quantifies the fraction of rattlers as a function of the
various friction modes. The rattler fraction increases mono-
tonically with the friction coefficient of each mode. Z and
frattler transitions from the low-friction to high-friction limits
are similar. Rattlers become the majority with large friction
μr,t values if μs > 0.3. Such microstructure must be very
fragile (quantification of packing strength is subject of future
study).

Figure 4 includes the volume fraction dependence on the
different friction modes. Z and φ behave similarly, except for
a minimum in φ for high μs. The minimum in φ is likely due
to contacts saturating at the Coulomb friction criteria. Once
constraining contacts saturate, the contacts can slide to form
a denser packing, while maintaining their network. As seen
with Z and frattler, sliding, rolling, and twisting friction cause
a larger decrease in packing fraction.

The results shown in Figs. 2–4 are generated by apply-
ing a pressure Pa = 10−4 kn

d to an initially dilute system.
Figure 5 demonstrates that Pa = 10−4 kn

d is within the low-
pressure regime for frictionless, intermediate sliding friction
and intermediate sliding, rolling, and twisting friction states.
Decreasing the pressure by three orders of magnitude (from
Pa = 10−4 to 10−7 kn

d ) changes the volume fraction by 0.004
or less for all friction states reported. The impact of increasing
the friction coefficient or number of friction modes on volume

fraction and coordination number is considerably larger than
the impact of decreasing the pressure below Pa = 10−4 kn

d .
Figure 4 also shows the volume fraction of the pack-

ings generated by experiments. Experimental values are
from Farrell et al. [29] and were performed by slowly set-
tling spheres of different sliding friction coefficients, set
by the material (steel, aluminum, acrylic, or teflon). The

FIG. 5. Volume fraction (φ, top) and coordination number
(Z , bottom) at jamming as a function of the applied pressure for three
different friction states: μs = μt = μr = 0 (green diamonds), μs =
0.1, μt = μr = 0 (red squares), and μs = μt = μr = 0.1 (black cir-
cles). Uncertainties are similar in size to the symbols, and solid lines
are guides for the eye.
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experimental φ values are considerably below the simulation
φ values without rolling and twisting friction. As seen in
Fig. 4, there is agreement with experiment for φ only with
rolling and twisting friction. To match experimental values
for various acrylics, teflon, and steel, μr = μt = 0.1 is re-
quired, while for aluminum our results for μr = μt = 0.03
match the experiment. Those values required to match exper-
iments are similar to the value of μr = 0.07 used in recent
dense suspension simulations to match experimental shear
viscosities [3]. Not only do rolling and twisting friction have
a major impact on microstructure, as measured by Z , but
they should be included in experimentally relevant particle
models.

IV. CONCLUSION

Discrete-element, particle-based simulations of 3D gran-
ular particles demonstrated that rolling and twisting friction
leads to large microstructural changes in mechanically stable
packings, as insinuated by constraint counting. Agreement
with experimental volume fractions was only attained with
rolling and twisting friction (μr = μt = 0.1) using this
simulation protocol. These loose packings, φ = 0.53, demon-
strated the importance of different friction modes in real
granular systems. The pressure-controlled compression pro-
tocol generated very loose packings with less computational
effort than other methods. The barostat control parameters,
including applied pressure, pressure damping, and drag, does
impact the final packing properties, but these effects are small
compared to the effect of friction. A deeper investigation
into pressure-controlled simulation parameters and packing
methods (compression, relaxation, and tapping) is the subject
of a forthcoming article.

The decrease in the coordination number Z was predicted
from constraint counting: both rolling and twisting friction
impose extra constraints per contact. The decrease of the
volume fraction and coordination number from low- to high-
friction values was gradual for all three friction modes, as
observed for sliding friction. Unlike sliding friction, the im-
pact of resistance to rolling and twisting depended on the
sliding resistance magnitude. When multiple friction modes
were included, such as sliding with rolling or twisting, the
coordination number predicted by constraint counting is con-
siderably less than the value measured from simulations.
Nonetheless, for very high friction, μs = μr = μt = 1, a
jammed system with Z = 2.5 was observed. The majority of
particles were rattlers in systems with such low coordination
numbers, generally if Z < 3. Based on the knowledge gained
from this information, an expression to predict Z (μs, μr, μt )
was proposed to aid constitutive models and future parametric
studies.

The effect of rolling and twisting friction on packing il-
lustrates the importance of including those modes to match
experimental results and offers insight into the magnitude of
those frictions required to induce property changes for other
granular systems. Future work will focus on the impact of
rolling and twisting friction on rheology and the material
strength of packings. The publicly available rolling and twist-
ing interaction models in LAMMPS enable the presented and
future work.
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APPENDIX: ROLLING AND TWISTING
PARAMETERIZATION

Rolling and twisting resistance depend on the normal and
tangential forces in most contact mechanics models [17]. Al-
though simple, the spring-dashpot-slider system enables the
study of each mode independently. This model allows for
resistance to “pure” rolling. However, if there is no sliding
friction, contacts can relax the rolling resistance by sliding off
the contact [51–55].

Sources of twisting and sliding resistance are essentially
the same—twisting friction is largely generated by rotational,
versus translational, displacements within the contact area
[17]. Therefore, twisting resistance should be related both
to the tangential mode, from the sliding friction coefficient,
and to the normal mode, from the contact area. There are
more identified sources for rolling than twisting resistance.
Microslip at the interface, inelastic deformation, and surface
roughness all lead to resistance because of the pressure dif-
ference between the leading and trailing ends of the rolling
contact [17]. Microslip, related to incipient sliding [17], oc-
curs from creep of the interfacing material and the difference
in shear forces at the interface when material in the contact
area slips. Those phenomena arise from differences in mate-
rial elastic constants, curvature, and torsion. The difference
of strain on either side of the rolling contact causes inelastic
deformation, another source of rolling resistance [38,56]. In
most cases, inelastic deformation creates the largest rolling
resistance contribution and can be characterized experimen-
tally by a “hysteresis loss factor” [17]. Surface roughness
and viscoelasticity can lead to rolling resistance, although
likely at a lower magnitude than inelastic deformation and
microslip. Surface roughness induces changes in the center-
of-mass separation of the two bodies [57] and increases
the real contact pressure [39]. Viscoelastic materials have a
velocity-dependent rolling resistance, because of the balance
in relaxation and observation times in rolling resistance for
viscoelastic materials [58–60]. Approximations for the rela-
tive magnitude of rolling resistance have been made in the
particle-based simulation literature.

Previous particle simulation studies that used spring inter-
action models made approximations for how the rolling spring
constant kr relates to more common parameters. Iwashita
and Oda [10] set kr = ks/R2 by equating first-order approx-
imations of the shear and rolling elastic displacement. Jiang
et al. [61] instead assumed kr = 1

12 knr2
a and γr = 1

12γnr2
a ,

032903-7



A. P. SANTOS et al. PHYSICAL REVIEW E 102, 032903 (2020)

from Hertzian contact theory by representing a rolling con-
tact as springs in parallel, where ra is the contact radius
and is calculated for each contact. A more exact analyti-
cal solution for a viscous sphere on a hard plane results
in a relatively small value for kr that is friction depen-
dent and therefore does not work for our model [15]. Here
we perform our own analysis of contact mechanics models
to approximate the parameters of the twisting and rolling
pseudoforces.

The twisting resistive moment in Hertzian theory is Ft =
16
3 Gr3

aθt , where θt is the twisting angle, G is the shear mod-
ulus, and ra is the contact radius [62]. This twisting model is
associated with “no slip,” which yields a linear model with
θt . The contact radius can be estimated from the normal force

as ra = [ 3FnR(1−ν2 )
2E ]

1/3
, where R is the particle radius, ν is the

Poisson ratio, and E is the elastic modulus [17]. By using the
Hertzian approximation for ra in the Lubkin twisting force Ft

theory and by inserting ktθt and knδt for tangential and normal
Hookean-spring contact models, the following relationship for
the twisting spring constant is found: kt/kn ∝ 8GR(1−ν2 )

E . For
steel G = 79.3 GPa, E = 200 GPa, ν = 0.27, and therefore

kt/kn � 1.5. For rubber G = 0.0003 GPa, E = 0.001 GPa,
ν = 0.5, and therefore kt/kn � 0.9. A similar analysis can
also be carried out for the rolling pseudoforce. Based on John-
son’s formulation of elastic deformation [63,64], the moment
due to elastic creep between spheres is Fr = 32(2−ν)

9(3−2ν) Gr3
avr .

Using the same assumption for the contact radius of two elas-
tic bodies used for twisting, we get Fr = 16(2−ν)(1−ν2 )

3(3−2ν)
G
E RFnθr .

Since we model Fr = krθr and Fn = knδn, the ratio of rolling
and normal forces scales as kr/kn ∝ 16(2−ν)(1−ν2 )

3(3−2ν)
G
E R, for

elastic deformation. For steel kr/kn � 0.7, and for rubber
kr/kn � 0.5.

To empirically identify realistic parameters for the rolling
and twisting modes, DEM simulations of simple configura-
tions were performed. Two overlapping suspended spheres,
with fixed translational positions (and fixed Fn), were given an
initial relative rolling or twisting angular velocity. Nonphys-
ical values of km and γm gave long-lived oscillations and/or
overdamped decay of the torque. The rolling spring-dashpot-
slider has realistic behavior for 0 < kr/γr < 1, yet kr/γr > 1
is realistic if kn/kr < 10. Realistic twisting angle and torque
behavior was found for 0 < kt/γt � 2.
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