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Structure and grating efficiency of thin cells filled by a twist-bend nematic liquid crystal
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A twist-bend nematic (NTB) liquid crystalline phase spontaneously forms modulated structures on a microscale
level when confined in thin planar cells. Preliminary studies showed that these cells can be used as polarization
gratings. Here we present a theoretical description of the formation of a two-dimensionally modulated structure.
By considering the NTB phase as a pseudolayer medium, a threshold condition for the onset of a modulated
structure is calculated for weak and strong boundary conditions in the case of initially bookshelf or pretilt
alignment of pseudolayers. Based on the modeled structure we determine spatial variation of the optic axis
and calculate properties of the transmitted diffracted light. Results of the beam propagation method (BPM) and
transfer matrix method are compared and it is shown that a more complex BPM gives better agreement with
experimental results, meaning that even in thin cells the diffraction of light inside the grating should not be
neglected.
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I. INTRODUCTION

The self-assembly of deformed thin elastic layer systems
has been given a lot of attention due to potential applications
in soft robotics, photoactuators, and sensors, as well as funda-
mental research purposes [1]. Spontaneous deformations due
to the bending, wrinkling, and twisting of layered structures
are very well known in the lamellar phases of liquid crystals
(LCs) such as the smectic-A phase (Sm-A), or in chiral nemat-
ics (N∗) with a helical twist deformation of the local average
orientation of the long molecular axes, denoted by the nematic
director

⇀

n [2–4]. Under external stimuli and boundary con-
straints, layered LCs can relax the applied stress by curving
around defects such as edge dislocations or arrange around
line defects in focal conic domains and rotate periodically
along a certain plane as first reported by Helfrich [5,6] and
Hurault [7]. In their studies, the N∗ phase forms pseudolayers
parallel to the confinement substrates, if the distance between
the two substrates is much larger than the helical pitch of
the director modulation. If an electric or magnetic field is
applied normal to substrates, it causes the (pseudo-) layers
to undulate periodically. In Refs. [5–7], a two-dimensional
(2D) modulation was considered: (pseudo-) layers undulate
in the direction along the surfaces; the amplitude of undu-
lation depends on the distance of a specific layer from the
surface. Subsequently, several studies related to two- (2D)
and three-dimensional (3D) layer undulations in lamellar LCs
induced by electric or magnetic field and also by dilative
stress were reported [8–15]. Experimental observations of the
2D and 3D undulations in the N∗ phase confined in a planar
cell [16,17] revealed that layers tend to undulate already on

*Corresponding author: Natasa.Vaupotic@um.si

the substrates, so the assumption of strong anchoring of the
surface layer assumed in the previous studies was released
and finite surface anchoring was considered. By weakening
the surface anchoring, the theoretically predicted amplitude
of modulation became larger, which agreed with experimental
observations. Under very high electric fields the pseudolayers
adopted a sawtoothlike shape as predicted in Ref. [15].

Two decades ago, spontaneous chiral ordering was ob-
served in the nematic phase made of achiral bent-core
molecules [18–20]. A phase transition from the nematic to
modulated nematic phase in achiral materials was observed
[21] and the formation of the modulated structure was at-
tributed to a twist-bend deformation of the nematic director
[22], predicted theoretically [23,24] and by computer simula-
tions [25]. Based on electro-optical studies of chiral domains,
it was suggested that the director rotates on the cone with the
helical pitch on the nanometer scale [26,27] and the structural
characterization of this phase (named the twist-bend nematic,
NTB) showed that the helical pitch length is approximately
8−10 nm [28–30]. In fact, it seems that the structure is more
complex than a simple helix; based on the results of the res-
onant soft x-ray scattering it was suggested that the structure
consists of two shifted helices [31,32]. Since the identification
of the NTB phase, various theoretical models were consid-
ered to predict the formation of a stable NTB phase, building
the free energy (i) from the distortions of the pseudolayers
and elastic deformations of the nematic director [33–35],
also by including coupling with the polarization field [36];
(ii) from elastic deformations of the helical axis direction cou-
pled to the magnitude of the cone angle [37]; (iii) from elastic
deformations of the nematic director coupled to the spatial
variation of the local polarization [38,39]; and (iv) by a more
comprehensive Landau–de Gennes type free energy built from
a tensorial order parameter of the nematic phase [40–43].
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FIG. 1. (a) The pseudolayer that was initially at y0 is displaced
by u(x, z);

⇀

v is the pseudolayer normal. (b) By undulation, the pseu-
dolayer thickness is reduced from ds to d0(T ). (c) A 2D pseudolayer
undulation with the period of modulation D along the x direction.

A confinement of the NTB phase in planar cells with a
uniform surface alignment yields a stripe texture and if the cell
thickness is larger than 3 μm, stripes and focal conic domains
coexist [21,26,27,44–49]. The periodicity of the stripe texture
is always approximately twice the cell thickness [21,44–49].
The formation of a periodic structure is explained as follows
[45,48,49]. Due to a short pitch of the heliconical modulation
the NTB phase behaves as a pseudolayered medium. The pitch
of the heliconical modulation is strongly temperature depen-
dent close to the N-NTB phase transition; the modulation is
formed at the phase transition and the pitch reduces when
temperature is lowered. However, close to the surface, molec-
ular positions are anchored by the surface forces, so the pitch
close to the surface does not change. As a result, pseudolayers
start to undulate in two directions: parallel to the surfaces
(formation of a horizontal chevron) and perpendicular to the
surfaces (formation of a vertical chevron) [Fig. 1(c)]. This
leads to a spatial variation of the optic axis direction and, in
turn, to the appearance of a stripe pattern in optical textures
observed under a polarizing microscope. Due to a spatial
variation of the optic axis direction, the stripe pattern acts
as a grating, which diffracts light and affects its polarization
properties. The polarization state of the zeroth order of the
diffracted light depends on the retardation experienced by the
incident beam when propagating through the material. For
the first-order diffraction peaks the left circularly polarized
(LCP) incident light transforms into right circularly polarized
(RCP) light and horizontally linearly polarized (HLP) incident
light transforms into vertically linearly polarized (VLP) light.
For the second-order diffraction peaks, linearly polarized light
transforms into elliptically polarized light, while LCP light
transforms into almost diagonally linearly polarized (DLP)
light and vice versa [48,49].

Preliminary studies of the optical properties of the NTB

grating have shown that the diffraction pattern is asym-
metric both in amplitudes of the diffracted peaks as well
as in polarization of the second-order diffracted peaks. A
one-dimensional two-variable model was constructed to qual-
itatively predict the properties of the diffracted light [48]. This
model assumes ad hoc the pseudolayer normal variation inside
the cell and fits the model parameters to qualitatively match
the experimental behavior. The model neglects the fact that
the gratings are thick (the cell thickness is a few wavelengths
of light) and that the pseudolayer normal direction varies
also along the direction of light propagation. In this paper,
we focus on the theoretical description of the formation of
a 2D pseudolayer undulation of the NTB phase filled in thin

cells with planar surface boundary conditions. The threshold
condition for the pseudolayer undulations is calculated for
weak and strong boundary conditions for the case of initial
bookshelf or tilted alignment of pseudolayers. Then we use
the transfer matrix method (TMM) [50] and beam propa-
gation method (BPM) [51] to calculate optical transmission
properties of modulated structures and compare the results
with experimental measurements. We show that it is essential
to use the BPM to obtain good qualitative prediction of the
experimental results, which is expected because on the level
of wavelength of light the grating is thick, so the diffraction
inside the grating cannot be neglected.

II. THEORETICAL MODEL

The short-pitch heliconical arrangement of molecules in
the NTB phase can be regarded as a pseudolayer structure.
The compressibility of the helical pitch is comparable to the
compressibility of the smectic layers with the layer thickness
equal to the heliconical pitch [52] and the direction of the
heliconical axis is equivalent to the direction of a smectic
layer normal. We are interested in the pseudolayer structure
formed when a NTB material is filled into planar cells of cell
thickness (L) of the order of micrometers. The cell is filled
with a material in the nematic phase and then cooled below
the N-NTB phase transition temperature.

At first, we assume that at the N-NTB phase transition the
heliconical arrangement of molecules is formed parallel to cell
surfaces; thus pseudolayers are oriented perpendicular to the
surfaces. The pseudolayer geometry is shown in Fig. 1. Upon
the formation of the NTB phase, the layer normal (

⇀

v) is along
the y axis and the heliconical pitch (the pseudolayer thickness)
is ds. When temperature (T ) decreases, the heliconical pitch
d0(T ) reduces. If we assume that layers are strongly anchored
at the surface, the only way to reduce the layer thickness is by
undulating the layers. The displacement of a distorted layer
is represented by a scalar variable u (the displacement field).
If we assume 2D modulation, the position (y) of a distorted
layer that was initially at y0 is given by y = y0 + u(x, z).
The period of modulation along the x axis is D.

We shall describe the 2D pseudolayer structure of the NTB

phase in terms of the nematic director field
⇀

n (by which we
describe the direction of the heliconical axis) and a complex
smectic order parameter �, the gradient of which gives the
direction of the layer normal

⇀

v = ∇�
|∇�| . The director

⇀

n is

assumed to be the parallel to the layer normal (
⇀

n||⇀v).
When the temperature is lowered, the heliconical pitch

reduces. The competition between the surface strain due to
anchoring and bulk strain causes elastic deformations that
drive the undulation of pseudolayers. The free energy (F ) of
the structure is given by a sum of the integrated bulk ( f ) and
surface ( fa) free energy densities,

F =
∫

f dV +
∫

fadS, (1)

where V and S denote the cell volume and surface, respec-
tively.
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The bulk free energy density is expressed as a sum of
nematic ( fn) and smectic ( fs) free energy densities [53–55],

f = fn + fs, (2)

where

fn = 1
2 K11(∇ · ⇀

n)2 + 1
2 K22(

⇀

n · ∇ × ⇀

n)2

+ 1
2 K33(

⇀

n × ∇ × ⇀

n)2, (3)

with K11, K22, and K33 being the elastic constants related to
splay, twist, and bend deformations of the direction of the
heliconical axis, respectively, and

fs = C‖|⇀n · ∇� − i q0(T )�|2 + C⊥|⇀n × ∇�|2, (4)

with C‖ and C⊥ describing the cost of compression of the lay-
ers and the cost of tilting the director n̂ from the layer normal,
respectively. The temperature dependence of the undulated
layer of thickness d0(T ) is described by q0(T ) = 2π/d0(T ).
By taking

⇀

n ‖ ⇀

v, the nematic contribution contains only the
splay and bend elasticity, which describes the local variation
of the heliconical axis, and the smectic part reduces to the
compressibility of layers only, which accounts for the energy
associated by the heliconical pitch not being equal to its equi-
librium bulk value.

We assume that the direction of the heliconical pitch at the
surface is strongly anchored, so the periodicity along the y
axis is defined by the heliconical pitch formed at the phase
transition to the NTB phase. The smectic order parameter for
the distorted layer is thus expressed as

� = �0 eiqs [y−u(x,z)], (5)

where �0 is the amplitude and qs = 2π/ds denotes the
“frozen-in” periodicity of pseudolayers along the y direction
at the surfaces.

The position of layers at the surface does not change
[u(x, z) at both surfaces is zero]. The strength of the surface
anchoring is defined in terms of the allowed tilt of the pseu-
dolayers at the surface [16,17]. In the case of very strong
anchoring, layers at the surface remain perpendicular to the
surface [∂u(x, z)/∂z = 0]. In the case of very weak anchoring
a general tilt is allowed. We shall study only the two limiting
cases, and for the ansatz of the displacement field in the case
of very strong anchoring we take

u(x, z) = u0

[
cos

(
2π

L
z

)
+ 1

]
sin(qxx), (6)

where u0 is the amplitude of modulation, and in the case of
very weak anchoring,

u(x, z) = u0 cos

(
π

L
z

)
sin (qxx), (7)

where qx = 2π/D.
By using the above expressions for u(x, z), we search

for the threshold condition at which the modulated struc-
ture becomes stable with respect to the simple bookshelf
geometry of pseudolayers. First, we transform F into a di-
mensionless form by introducing the following dimensionless

parameters:

x̃ = x

L
, z̃ = z

L
, ỹ = y

L
,

ũ0 = u0

L
, K̃ = K33

K11
, (8)

D̃ = D

L
,

C‖q2
s �

2
0 L2

K11
= BL2

K11
= B̃,

where B is the compressibility modulus.
The dimensionless free energy (F̃ ) per unit length along

the y direction is defined as

F̃ = F

K11D̃
=

∫ D̃

0
dx̃

∫ 1/2

−1/2
f̃ d z̃, (9)

where f̃ is a dimensionless free energy density.

A. Strong boundary condition

The ansatz of the layer displacement under strong bound-
ary conditions is given by Eq. (6). The dimensionless free
energy up to the fourth order in ũ0 is

F̃ = B̃(−1 + q0s)2 + A2ũ2
0 + A4ũ4

0, (10)

where

q0s = q0(T )

qs
= ds

d0(T )
≈ 1 + ds − d0(T )

ds
(11)

is the ratio between the helical pitch at temperature T and at
the phase transition temperature, and parameters A2 and A4

are

A2 = π2

D̃4
[−B̃(−1 + q0s)D̃2(3 + D̃2) + 2π2(3 + 2D̃2 + D̃4)],

(12)

and

A4 = π4B̃q0s

16D̃4
(105 + 10D̃2 + 9D̃4), (13)

where we took into account that B̃ � 1 (B̃ ∼ 105 if K11 ∼
10−11 N, L ∼ 10−6 m, and B ∼ 106 Pa) and K̃ � 1.

The modulated structure is stable with respect to the book-
shelf geometry when its energy becomes lower than the
energy of the bookshelf structure with contracted layers. This
happens at q0s larger than the threshold value q(th)

0s .
The amplitude of the undulation ũ0 and period of modula-

tion D̃ are calculated by minimizing the free energy [Eq. (10)]
over ũ0 and D̃. We find ũ0 = √−A2/(2A4), which in the limit
of B̃ � 1 reduces to

ũ0 = 2
√

2D̃

π

√
3 + D̃2

105 + 10D̃2 + 9D̃4

√
1 − 1

q0s
. (14)

For D̃ we obtain the condition

2A4
∂A2

∂D̃
− A2

∂A4

∂D̃
= 0 . (15)

In the limit of B̃ � 1 and far from the threshold this sim-
plifies to

D̃ =
√

45

11
≈ 2. (16)
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We see that the period of modulation along the x axis
is temperature independent and approximately twice the cell
thickness. By plugging this value into the expression for ũ0,
we obtain

ũ0 = 0.28

√
1 − 1

q0s
. (17)

To obtain D̃ close to the threshold value, we start by cal-
culating D̃ numerically at a given set of parameters B̃, K̃,

and q0s. Then we check if the structure at a given q0s and
calculated D̃ is stable. This is done in the following way: We
write the free energy [Eq. (10)] by considering the equilibrium
expression for ũ0 to find F = B̃(−1 + q0s)2 − A2

2/(4A4) and
then find the second derivative of F over D̃. The structure is
stable as long as this value is positive. In this way we find
that D̃th ≈ 6 at the threshold, but it reduces to approximately
2 already within a relative change of pseudolayer thickness of
10−3.

The threshold value of q0s is found to be inversely propor-
tional to the compressibility modulus:

q(th)
0s ≈ 1 + 12.0

B̃
. (18)

The second term in Eq. (18) is of the order of 10−4 or
lower, so the modulation becomes stable already at very small
changes of the helical pitch, which means very close to the
N-NTB phase transition.

B. Weak boundary condition

The ansatz for the weak anchoring conditions is given by
Eq. (7). By following the same procedure as in the case of
strong anchoring, we first calculate the dimensionless free
energy which, up to the fourth order in ũ0, has the same shape
as given in Eq. (10), but with

A2 = π2(4 + D̃2)

8 D̃4
[−2B̃(−1 + q0s)D̃2 + π2(4 + D̃2)], (19)

and assuming B̃ � 1 and K̃ � 1,

A4 = π4B̃ q0s

256 D̃4
(144 + 8D̃2 + 9D̃4). (20)

By following the same procedure as in the case of strong
anchoring, we find the modulation period at B̃ � 1,

D̃ = 2 , (21)

and the amplitude of modulation being twice that found for
the strong anchoring case,

ũ0 = 0.57

√
1 − 1

q0s
. (22)

As in the case of strong anchoring, the modulation period
increases very close to the threshold value q(th)

0s , but in the case
of weak anchoring it increases up to D̃th ≈ 70. The threshold
is found to be

q(th)
0s ≈ 1 + 10.5

B̃
. (23)

From Eqs. (18) and (23) we see that the threshold value of
q(th)

0s is higher in the case of the strong boundary conditions

and the amplitude of modulation is larger in the case of weak
anchoring. Both results are expected.

C. Pretilt of pseudolayers with strong
and weak boundary conditions

So far, we assumed that pseudolayers formed at the phase
transition to the NTB phase are perpendicular to the surface
planes. This means that the heliconical axis is along the sur-
face, which means that molecules at the surface are tilted. If
we assume that molecules at the surface lie in the surface
plane, then the pseudolayer structure formed at the phase
transition is, in fact, tilted with respect to the surface, the
tilt being equal to the initial cone angle value. So, within
the next approximation, we assume that some finite pretilt
of pseudolayers freezes in at the phase transition and that
these tilted layers start to undulate when temperature is further
reduced. Again, we study both the weak and strong anchoring
and for u(x, z) we use Eqs. (6) and (7) by adding a term γ z,
where γ is the pretilt angle, assuming that the pretilt is small.
Therefore, for strong anchoring we have

u(x, z) = γ z + u0

[
cos

(
2π

L
z

)
+ 1

]
sin (qxx), (24)

and for weak anchoring,

u(x, z) = γ z + u0 cos

(
π

L
z

)
sin (qxx) . (25)

Even in the limiting cases the expressions for the equi-
librium and threshold values now become too long and
complicated to be reproduced here. Instead, we give results
at a given set of parameters: a chosen set of values of B̃,
K̃ , q0s, and γ . The values for the modulation amplitude and
modulation period as a function of q0s at B̃ = 5 × 105 are
given in Fig. 2 for weak and strong anchoring conditions.
The threshold values are collected in Table I. The values are
practically independent of the value of K̃ , because it is of the
order of 1 or lower and is thus much lower than B̃.

We see that close to the threshold the behavior is much dif-
ferent compared to the nontilted case: D̃ close to the threshold
is lower than 2 and the variation of D̃ is significant within
the region of up to 10% change in the pseudolayer thickness
(which can be experimentally detected), as opposed to the
nontilted case where D̃ is predicted to vary only within a
region of 0.1% of change of pseudolayer thickness below the
threshold value for the formation of the modulated structure.

III. OPTICAL PROPERTIES

In this section, we study optical properties of the diffraction
grating formed by the modulation of the pseudolayer structure
discussed in the previous section. We consider the NTB phase
as an optically uniaxial material with the local optic axis along
the pseudolayer normal

⇀

v. From Eq. (5) we calculate

⇀

v(x, z) = ∇�

|∇�| =
(− ∂u

∂x , 1,− ∂u
∂z

)√
1 + (

∂u
∂x

)2 + (
∂u
∂z

)2
, (26)

which can be expressed as
⇀

v(x, z) = (sin α cos β, cos α cos β, sin β ), (27)
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FIG. 2. Pretilt of pseudolayers. (a) The period of modulation D̃
is practically the same for weak and strong anchoring. Amplitude
of modulation ũ0 as a function of pretilt γ ; the dot-dashed (blue),
solid (green), and dotted (red) lines represent γ = 0.04, 0.07, 0.1,
respectively: (b) strong and (c) weak anchoring. Parameter values:
B̃ = 5 × 105, K̃ = 1.

where angles α and β are defined in Fig. 3 and are both
functions of x and z. The angle π/2 − β is the angle between
the optic axis and the wave vector, while the angle α defines
the projection of the optic axis to the xy plane.

A. Transfer matrix method

First, we calculate properties of the transmitted light by
the transfer matrix method. With this method, we neglect the
diffraction of light inside the cell. The part of the incident
wave that enters the cell at position x is assumed to obtain an

TABLE I. The ratio between the pseudolayer thicknesses at the
threshold temperature and at the phase transition to the NTB phase
(q(th)

0s ), period of modulation at the threshold (D̃th), in the case with
and without the pretilt γ at weak and strong anchoring. Parameter
values: B̃ = 5 × 105; K̃ = 1.

Anchoring γ D̃th q(th)
0s − 1

Strong 0 6.3 2.4 × 10−5

Strong 0.04 0.54 1.1 × 10−3

Weak 0 71 2.1 × 10−5

Weak 0.04 0.58 1.05 × 10−3

additional phase due to the propagation through the material,
which has a varying direction of the optic axis along the
direction of light propagation (z direction).

The numerical procedure goes as follows. The cell is di-
vided into thin slices of thickness 	z = L/nz, where nz is
an integer. The position along the z axis is defined by an
integer j, 0 � j � nz, as z j = −L/2 + j	z. Within a slice,
the direction of the optic axis along the z direction is assumed
to be constant. At the beginning of each slice the electric field
is divided into the ordinary and extraordinary components
and the phase difference between them upon the propagation
through the slice is 	ϕ = k0	n	z, where k0 = 2π/λ is the
wave number in vacuum, λ is the wavelength of light, and the
difference in indices of refraction between the extraordinary
and ordinary waves (	n) is

	n =
√(

sin2β

n2
o

+ cos2β

n2
e

)−1

− no, (28)

where no and ne are the ordinary and extraordinary index of
refraction, respectively. By comparing Eqs. (26) and (27) we
find

cos2β = 1 + (
∂u
∂x

)2

1 + (
∂u
∂x

)2 + (
∂u
∂z

)2 , (29)

and sin2β = 1 − cos2β. The birefringence ne − no is temper-
ature dependent and it decreases on cooling of the NTB phase.

The transfer matrix M(x, z) for the slice at position z
connects the incident (at z) and exiting (at z + 	z) field com-
ponents (ψx, ψy, only the slowly varying part is considered)

FIG. 3. Definition of angles α and β; solid (red) arrow along the
z axis and dotted (blue) arrow represent the wave vector direction and
optic axis, respectively.
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ALI, GORECKA, POCIECHA, AND VAUPOTIČ PHYSICAL REVIEW E 102, 032704 (2020)

in the laboratory coordinate system,(
ψx(x, z + 	z)
ψy(x, z + 	z)

)
= M− (x, z)

(
ψx(x, z)
ψy(x, z)

)
, (30)

where (see, for example, supplemental material to [48]):

M− (x, z) =
(

M11 M12

M21 M22

)
, (31)

with

M11 = 1 + sin2α (ei	ϕ − 1),

M12 = M21 = − sin α cos α (ei	ϕ − 1), (32)

M22 = 1 + cos2α (ei	ϕ − 1).

By comparing Eqs. (26) and (27) it is straightforward to
obtain

cos2α =
[

1 +
(

∂u

∂x

)2]−1

,

sin α cos α = −∂u

∂x

[
1 +

(
∂u

∂x

)2]−1

. (33)

The field components ψx(x, z = L/2) and ψy(x, z = L/2)
are obtained by a successive multiplication of matrices
M(x, z) at given positions x and z ranging from −L/2 to L/2.

The field components at z = −L/2 are obtained by applying
boundary conditions for the transverse electric and magnetic
field at the air-liquid crystal interface. In the case of strong
anchoring, the optic axis at the boundary lies in the yz plane
⇀

v(x,±L/2) = (0, 1, γ )/
√

1 + γ 2 and the field components
inside the LC are related to the field components in air as
(assuming that γ 	 1)(

ψ (LC)
x

(
x,− L

2

)
ψ (LC)

y

(
x,− L

2

)) =
(

ψ (air,in)
x τo

ψ (air,in)
y τe

)
, (34)

where the transmission coefficients are τo = 2/(1 + n2
o) and

τe = 2/(1 + n2
e ), and similarly at the interface at z = L/2,

where (
ψ (air,out)

x

ψ (air,out)
y

)
=

(
ψ (LC)

x

(
x, L

2

)
τo

ψ (LC)
y

(
x, L

2

)
τe

)
, (35)

but here the transmission coefficients are τo = 2/(1 + n−2
o )

and τe = 2/(1 + n−2
e ).

The components of the electric field of light propagating in
the direction given by the x component of the scattering vector
(q) are obtained by the Fourier transform:(

ψ
(q)
x

ψ
(q)
y

)
=

[∫ D

0

(
ψ (air,out)

x

ψ (air,out)
y

)
eiqxdx

](
N−1∑
j=0

eiqD j

)
, (36)

where N is the number of illuminated periods. The inter-
ference peaks are observed around q = m2π/D, with m =
0,±1,±2 . . .. The electric field components of the transmit-
ted light are (

E (q)
x

E (q)
y

)
=

(∣∣ψ (q)
x

∣∣ cos (ϕx − ωt )∣∣ψ (q)
y

∣∣ cos (ϕy − ωt )

)
, (37)

where we used ψ
(q)
x = |ψ (q)

x | exp(iϕx ) and equivalently for the
y component, and the dependence on time (t ) was added; ω is
the angular frequency of light.

B. Beam propagation method

By the beam propagation method [51], we consider also the
diffraction of light inside the grating. The propagation of light
in an anisotropic medium is described by the wave equation,

∇ × [∇ × ⇀

E (x, z)] − k2
0ε−(x, z) · ⇀

E (x, z) = 0, (38)

where ε−(x, z) is a symmetric dielectric tensor of a uniaxial

material,

ε− =
[
ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

]
, (39)

with the following elements in the laboratory system if the
optic axis direction is given by

⇀

v(x, z) [Eq. (26)]:

ε11 = ε⊥ + 	ε(sin2αcos2β ),

ε22 = ε⊥ + 	ε(cos2αcos2β ),

ε33 = ε⊥ + 	ε(sin2β ),

ε12 = 	ε sin α cos αcos2β,

ε13 = 	ε sin β sin α cos β,

ε23 = 	ε cos α cos β sin β, (40)

where ε⊥ = n2
o and 	ε = n2

e − n2
o.

By the slowly varying envelope approximation we sepa-
rate the electric field components into a product of a slowly
varying complex field and a rapidly varying phase along the z
direction:

⇀

E (x, z) =
(

ψx(x, z)
ψy(x, z)
ψz(x, z)

)
eik0noz. (41)

We plug Eqs. (40) and (41) into the wave equation (38),
assume

∂2ψx

∂z2
	 2nok0

∂ψx

∂z
,

∂2ψy

∂z2
	 2nok0

∂ψy

∂z
(42)

and obtain

2ik0no
∂ψx

∂z
= k2

0n2
oψx − k2

0 (ε11ψx + ε12ψy + ε13ψz)

+ ik0no
∂ψz

∂x
+ ∂2ψz

∂x∂z
, (43)

2ik0no
∂ψy

∂z
= k2

0n2
oψy − k2

0 (ε12ψx + ε22ψy + ε23ψz) − ∂2ψy

∂x2
.

(44)
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The longitudinal component of the electric field is calcu-
lated from Gauss’s law:

∂ψz

∂z
= − 1

ε33

{
∂ (ε11ψx )

∂x
+ ∂ (ε12ψy)

∂x
+ ∂ (ε13ψz )

∂x

+ ∂ (ε13ψx )

∂z
+ ∂ (ε23ψy)

∂z
+ ik0n0(ε13ψx

+ ε23ψy + ε33ψz ) + ψz
∂ε33

∂z

}
. (45)

To solve Eqs. (43)–(45), the explicit finite difference tech-
nique is adopted [51]. Again, along the z direction, the cell is
sliced into parts of thickness 	z = L/nz, nz being an integer
number, and along the x direction one period of modulation
is sliced into parts of width 	x = D/nx, nx being an integer
number. The position (x, z) is given by (xl , z j ), where xl =
l	x and z j = − L

2 + j	z. A periodic boundary condition is
applied at x = 0 and x = D: x−1 = xnx−1 and xnx+1 = x1.

The numerical method is stable if steps along the x and
z directions are chosen such that the following condition is
fulfilled [51]:

	z � (	x)2n0π

λ
. (46)

The initial values of the field components ψx(x,−L/2),
ψy(x,−L/2) are obtained as explained in the previous sub-
section; see Eq. (34). In the case of strong anchoring and
small γ , the transverse component is approximately zero:
ψz(x,−L/2) ≈ 0.

At z = L/2, the x and y components are calculated as given
by Eq. (35). The z component is obtained by the conservation
of the normal component of the displacement field, so

ψ (air)
z = ε33ψ

(LC)
z

(
x,

L

2

)
, (47)

where the reflected field at the upper boundary was assumed
to be much lower than the incident field ψ (LC)

z (x, L
2 ). The

Fourier components of the electric field in the transmitted light
(E (q)

x , E (q)
y ) are calculated from Eqs. (36) and (37).

C. Polarization properties of the diffracted light

Polarization properties of the diffracted light are given by
the azimuth angle ψ and ellipticity e or/and as a point on the
Poincaré sphere (see Fig. 4).

The intensity and polarization properties of the central and
the first- and second-order diffraction peaks are calculated
by TMM and BPM and the results are compared to experi-
mental values. Because the experimental diffraction pattern is
asymmetric, we use theoretical results for the pretilt case. The
pretilt leads to the asymmetry in birefringence, because the tilt
angle β [Eq. (29)] becomes asymmetric, while the tilt angle α

[Eq. (33)] remains symmetric. The asymmetry in the phase lag
between the ordinary and extraordinary waves results in the
asymmetry of polarization properties of the diffracted light.
For the central and the first-order peaks theoretical predictions
are in line with experimental observations: polarization of
the first-order diffracted wave remains linear for the linearly
polarized incident light, but changes the direction, so VLP

FIG. 4. (a) Polarization of light is defined by the azimuth angle
ψ and ellipticity e. (b) Polarization can be presented on the Poincaré
sphere by a point the coordinates of which are given by the nor-
malized values of the Stokes parameters (s1, s2, s3), where s1 =
cos(2ψ ) cos(2e) (solid arrow), s2 = sin(2ψ ) cos(2e) (dash-dotted ar-
row), and s3 = sin(2e) (dashed arrow).

is transformed to HLP and vice versa, while DLP does not
change and LCP transforms into RCP. For the central peak,
polarization of light depends on the temperature and thickness
of the cell, the first defining the birefringence, which together
with L defines the net phase difference between the ordinary
and extraordinary wave upon traversing the cell. The internal
structure of the cell has the biggest effect on the polarization
properties of the second-order diffracted peaks, which we
study in detail below.

From the TMM, the second-order diffracted peaks for the
linearly polarized incident light remain linearly polarized:
HLP remains HLP and VLP remains VLP, but, experimen-
tally, a very small ellipticity is observed. This polarization
change can be obtained only if BPM is used and strong an-
choring is assumed. Experimentally, the internal structure of
the cell has the greatest effect on the change of polarization of
the circularly polarized incident light, so LCP incident light
will be considered in further discussion.

In calculation, we focus first on CB7CB material. We used
B̃ = 5 × 105, K̃ = 1, and γ = 0.04 and assumed strong an-
choring, due to the reason described in the previous paragraph.
The value of γ was chosen such that the best qualitative fit
between the theoretical prediction and experimental results
was obtained. It was assumed that the amplitudes α0 and β0 of
angles α and β far from the phase transition temperature are
approximately equal to the tilt of molecules with respect to the
heliconical axis. In the case of strong anchoring with pretilt we
use Eq. (24) for u(x, z) and plug it into Eq. (33) to find

tan α0 = 4π ũ0/D̃, (48)

and then into Eq. (29) to obtain

tan β0 = 2π ũ0 − γ . (49)

Experimentally, α0 ≈ 37◦ at the temperature approxi-
mately 40 K below the phase transition temperature and by
taking D̃ = 2, we find ũ0 ≈ 0.12. From Fig. 2(b) we find
that this value corresponds to q0s ≈ 1.22. In such a way we
estimate the maximum value of q0s that needs to be consid-
ered. Next, the values of q0s are matched to the corresponding
temperatures (Fig. 5) in the following way: At a specific value
of q0s, we first find D̃ and ũ0 (Fig. 2). Then we calculate
amplitudes of angles α and β from Eqs. (48) and (49). These
angles approximately match the cone angles calculated from
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FIG. 5. Temperature (T ) dependence of birefringence ne − no

(experimentally measured), q0s, D̃, and ũ0, the latter two calculated
in the case of strong anchoring with pretilt at the values of q0s

denoted by blue filled circles in the left graph. (a), (b) CB7CB with
γ = 0.04; (c), (d) CB6OCB with γ = 0.1. Parameter values: B̃ =
5 × 105, K̃ = 1. In (a), (c) we give also experimentally measured
ratio q(expt)

0s = q/qmin (red filled squares), obtained by the resonant
soft x-ray scattering [31,58], where qmin = 2π/ds and ds is the pitch
measured at the phase transition temperature. The error bars on two
points are added to give the impression of the experimental error
(approximately 10%).

the measured birefringence ne − no [48,56] at a certain tem-
perature, and this temperature is then assigned to a chosen q0s.
The temperature dependences of the experimentally measured
birefringence and theoretically calculated q0s, D̃, and ũ0 are
given in Figs. 5(a) and 5(a). The procedure was repeated for
CB6OCB [57] and the temperature dependencies of the above
parameters are given in Figs. 5(c) and 5(d).

Figure 6 shows polarization of the second-order diffracted
peaks ±2q0, where q0 = 2π/D. Experimental values, results
of the preliminary model [48,49], and theoretically calculated
values by TMM and BPM are given. The cell thickness was
L = 1.6 μm (CB7CB) and L = 1.5 μm (CB6OCB), nx = 40,
and nz = 10 000. The large number nz is not defined by the
condition in Eq. (46), but rather by the requirement that the
intensity of light at z = ±L/2 is the same (because we do
not consider reflection and absorption inside the cell). We
see that there is a difference between the results obtained by
TMM and BPM, in particular the positions of the +2q0 and
−2q0 peaks on the Poincaré sphere are exchanged in TMM
compared to experimental results. The asymmetry is larger
when BPM is used and it increases if the pretilt γ increases.
Theoretical figures lack the part of uniform ellipticity far from
the phase transition, because the harmonic approximation that
we used is valid only close to the phase transition temperature.
Nevertheless, we see that the approximation gives good results
in the whole temperature region over which the birefringence
changes significantly. We see that by modeling the structure
inside the cell, we obtain a good prediction of the qualitative
behavior of the polarization properties of the second-order

FIG. 6. Experimental and theoretical temperature dependence of
the polarization of the +2q0 (orange, light gray) and −2q0 (blue,
dark) diffraction peak for the LCP incident light for CB7CB (a–d)
and CB6OCB (e–h). CB7CB: (a) experimental values, (b) prelimi-
nary model [48], (c) TMM, and (d) BPM. CB6OCB: (e) experimental
values, (f) preliminary model [49], (g) TMM, and (h) BPM. The ar-
row heads represent the direction of temperature increase. Parameter
values used in calculation are given in the text. The incident light is
LCP.

diffraction peak. Due to the crudeness of the model the ab-
solute values do not match, but it is obvious that BPM should
be used for modeling, as expected, because the cell is thicker
than the wavelength of light.

Next, we compared the experimental and theoretically pre-
dicted ratios of intensities between the zeroth (I0), first (I1),
and second (I2) order diffraction peaks (Fig. 7). The match is
very good, considering the crudeness of the model. Also in
the case of intensity ratios, the BPM is superior to TMM. By
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FIG. 7. Experimental and theoretically predicted ratios of in-
tensities between the zeroth (I0), first (I1), and second (I2) order
diffraction peaks. (a), (b) CB7CB; (c), (d) CB6OCB. Black filled
squares represent the experimental data and orange filled circles and
blue filled diamonds show the theoretically calculated ratios from
BPM and TMM, respectively.

repeating the calculations for the case of weak anchoring with
a pretilt, we find that the polarization properties and ratios of
intensities are best fitted for the strong anchoring condition,
so we conclude that for these two materials the model with
a pretilt of pseudolayers and strong anchoring describes best
the experimental observations, especially for the CB7CB, for
which there is also quantitative agreement.

The systematic discrepancies that we observe are in the
azimuth angle of elliptical polarization of the second-order
diffraction peaks, which is systematically too low. Also, the
value of q0s − 1 measured by the resonant soft x-ray scattering
at the temperature of the stripe appearance is, by an order of
magnitude, larger than the threshold value predicted by the
model (see Table I). This could be due to the softening of
the pseudolayer compressibility close to the phase transition.
Indeed, as follows from Eq. (18), q(th)

0s
∼= q(expt)

0s
∼= 1 + 10−2 if

B̃ ∼= 1 × 103 [59–61].
Finally, we would like to comment on the fact that for some

materials (for example, material KA(0.2) in Ref. [45]) several
intense diffraction peaks can be observed. This shows that the

pseudolayer undulation is beyond the harmonic modulation
and, probably, a sawtooth structure is formed [15,17].

Also, the intensity of the diffraction peaks strongly de-
pends on the value of D̃. If it were exactly 2, one would
observe only a weak first-order diffraction peak, because the
form factor of one modulation period is zero for higher-order
peaks. A small departure from 2 significantly increases inten-
sities of higher-order diffraction peaks.

IV. CONCLUSIONS

We have proposed a continuum model for the spontaneous
formation of the stripe texture due to the 2D pseudolayer
undulations in the thin cell with planar anchoring conditions
filled with liquid crystalline material exhibiting the nematic
to twist-bend nematic phase transition. Our study explains the
effect of strong and weak boundary conditions on the thresh-
old conditions for the pseudolayer undulations as well as the
optical properties (intensity and polarization of the diffracted
light) of the diffraction grating spontaneously formed in sur-
face stabilized planar cells.

In the preliminary model [48,49], it was assumed that the
angles α and β, defining the pseudolayer undulation, have the
same amplitudes, but close to the phase transition temperature
a faster reduction of β was assumed ad hoc to account for the
change of elliptical polarization of the second-order diffrac-
tion peak toward circularly polarized light. By the model
presented in this paper we have shown that this difference in
angles is inherent to the cell structure [see Eqs. (48) and (49);
the difference is large especially close to the phase transition
temperature, where D̃ < 2]. Also, in the preliminary model
the spatial variation of angles was slightly shifted to account
for the asymmetry. By modeling the pseudolayer structure,
the asymmetry enters the model due to the surface anchoring
condition. If molecules are anchored in the surface plane, the
helical cone axis will be tilted by the cone angle with respect
to the surface. The model also gives a proper qualitative
prediction of the polarization and intensity properties of the
diffracted light.
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