
PHYSICAL REVIEW E 102, 032702 (2020)

Multidirectional switching behavior by transversely stretching a composite cholesteric elastomer
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We have analyzed the propagation of electromagnetic waves impinging obliquely in a hybrid material, made
by a cholesteric elastomer slab with spherical metallic inclusions randomly located in the host material. We
have carried out an analytical and numerical model which permits us to obtain the reflection and transmission
spectra when the system is submitted to a mechanical stress applied transversely to the cholesteric axis. We
have demonstrated that for a large interval of angles of incidence, it can be observed a switching behavior
from a discriminatory circular filter to a polarization independent device. The sample also exhibits regions of
transformation from right to left circularly polarized waves in the reflection spectra, which are intercalated with
zones of similar transmission of both circularly polarized waves.
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I. INTRODUCTION

Cholesteric liquid crystalline elastomers (CLCEs) are
soft solids made of mesogenic molecules embodied into
a polymer backbone with helical arrangement resembling
low-molecular-weight chiral nematic liquid crystals [1]. The
interaction between the polymer chains and mesogens relates
orientational order of the mesogens to mechanical strain ap-
plied to the polymer chains. Such an interrelationship induces
a range of electro-mechanical and opto-mechanical phenom-
ena, with a great range of possible applications [2]. Tunable
lasing from a single CLCE film was observed for the first
time and reported in 2001 [3]. It was found that by extensively
stretching the elastomer film, the cholesteric pitch is reduced,
causing a noticeable redshift of the reflection band and, in
turn, of the wavelength of laser emission. Additionally the
pitch of the CLCE was switched by applying a biaxial strain
normal to the helical axis. This deformation diminishes the
helical pitch, keeping the 1D structure completely invariant,
but giving rise to a nonvanishing distortion with supplemen-
tary shear near the sample borders. As a consequence, the
helical pitch varies across the cholesteric elastomer film, and
its meticulous ascertainment is difficult.

Liquid crystals behave as photonic crystals, so they show
an optical band gap in their reflectance and transmittance
spectra. Given that an LCE combines the optical properties
of the liquid crystals and the mechanical properties of elas-
tomers, the band gap can be modified selectively if the LCE
gets deformed. Whether the magnitude of the stress applied
is sufficiently large, the LCE will show a bandwidth in a
different wavelength range; moreover the form of the optical
band gap observed will be different. These results have been
reported in various experiments, for instance, in cholesteric
liquid crystalline polymer films, where selective transmission
and reflection under biaxial stress have been detected; the
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same behavior also has been observed in stretchable liquid-
crystal blue-phase gels [4,5]. Furthermore, other authors have
found solutions to boundary value problems corresponding
to electromagnetic waves impinging normally with respect to
transverse section of a cholesteric elastomer using numerical
methods [6].

The method of mechanical tuning of the lasing wavelength
for single, or layered, CLCEs consists in setting a uniaxial
extension on the cholesteric elastomer film that is applied in
the orthogonal direction with respect to the helical axis. The
uniaxial elongation, perpendicular with respect to the helical
axis of cholesteric elastomer, induces an extension parallel to
the strain, and a contraction that follows a power law along
the remaining perpendicular directions. This phenomenon has
been widely analyzed theoretically [7,8], and measured ex-
perimentally [9]. The cholesteric director is gradually aligned
with the applied strain, and it produces a remarkable defor-
mation of the cholesteric helix, that is to say, the molecules of
liquid crystal linked with polymers will change their orienta-
tions.

Furthermore, the presence of metallic inclusions produces
a remarkable modification in the transmittance and reflectance
spectra of the sample because of the occurrence of the plas-
mon resonance phenomenon. This has been reported for a
nanocomposite consisting of metallic nanospheres randomly
dispersed in a transparent matrix, whereas the optical proper-
ties of host materials lack resonant properties [10]. In addition,
many periodic chiral dielectric and metallic structures have
been studied for some years because of its ability to pro-
vide giant circular dichroism [11–13] or giant optical activity
even for the optical regime. Nowadays, with energy losses,
chiral dielectric structures overcome the expectations of chi-
ral metallic structures by a large margin. Moreover, various
works have demonstrated that the photonic band gap can
be dramatically deformed by including metallic dispersive
inclusions [14–16]. For instance, a graphene photonic band
structure can be tailored by inserting metallic sheets [17].
Also, a system possessing a nonchiral band gap for which
gold helices have been inserted can act as a circular polarizer
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of the same handedness of the helices [18]. Also, the optical
properties of a cholesteric liquid crystal (CLC), doped with a
dye, have been studied recently [19], and it was shown that the
presence of dye molecules splits the photonic band gap of the
CLC, into two, three, or even more band gaps under certain
conditions. Also, the Bragg frequencies and the widths of for-
bidden bands can be varied by changing the parameters of dye
molecules.

Different studies have been carried out about the spectral
properties of a CLC with a combined defect, which consists
of a layer made of metallic nanospheres, which are dispersed
in a transparent matrix layer and a twist jump [20–22]. It
was found that the band-gap width and the position of defect
modes can be controlled by external fields applied to the
cholesteric liquid crystal. A recent study of sculptured thin
films doped with metallic spheres has shown that if the posi-
tion of the resonance frequency of the dopant is located inside
the pure helical band gap, the bands split and new sub-band
gaps are created [23].

Other studies of the optical spectra of CLCEs have been
performed for elastomers under the action of an axial strain
[24]. Subsequently, a generalization for calculating the op-
tical spectra for oblique incidence was developed, where
an omnidirectional reflection band appears induced by the
metallic resonance [25]. An elastomer transversely stretched
also doped with metallic inclusions was analyzed previously
[26]. It is worth mention that when a cholesteric elastomer
is transversely stretched, the system is deformed in such a
way that the discriminatory circular features of the material
are gradually lost after a critical strain. Therefore, intervals
of conversion from right to left circularly polarized waves
can be observed in the reflection spectra. These intervals are
alternated with regions resembling the transmission spectra
for both circularly polarized waves, whereas the zones near
the metallic resonance are damped.

In this paper, we carry out theoretical and numerical
research to study the behavior of electromagnetic waves
impinging in any direction with respect to the bound-
ary of a cholesteric elastomer sample in order to discern
which of the features mentioned above are present for other
angles of wave propagation. The sample is doped with
silver nanospheres uniformly and randomly distributed in
the structure. As a consequence of the presence of metal-
lic spheres, the optical response is modified. Moreover, the
slab is transversely stretched by the action of mechanical
forces.

II. ELASTIC MODEL

Let us assume an elastomer submitted to an external stretch
imposed transversely to the pitch axis; the system is elongated
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FIG. 1. Schematic of the system. An electromagnetic field is
shown as it impinges on an elastomer cholesteric slab of finite thick-
ness: panel (a) corresponds to an undistorted elastomer, and panel
(b) to an elastomer under action of a force.

uniformly in the direction x, and this strain is denoted by
ηxx = η. It is reasonable to expect that the rotations of the
director vector have to be confined to the plane x-y. However,
the strains ηxy and ηyx, which give rise to soft elasticity, are
suppressed. The strains ηxz, and ηyz are not involved because
of symmetry reasons, even though they are not subjected to
compatibility requirements. Before the deformation, the cor-
responding director can be written as

n̂0 = (cos φ0, sin φ0, 0), (1)

where φ0 = q0z, q0 represents the chiral wave number, with
q0 = 2π

p , and p is the spatial period of the structure, which
is a function of different physical variables as temperature
and material composition, and z denotes the position along
the elastomer. Since the deformation occurs in a direction
transverse to the cholesteric axis, the director rotates after the
deformation, but stays in x-y plane, to yield

n̂ = (cos φ, sin φ, 0), (2)

where φ = q̃z and q̃ = q0

ηzz
, ηzz represents a strain due to con-

traction in the z direction because of the stretch ηxx = η. A
system scheme is shown in Fig. 1. In Fig. 1(a) we can observe
an undistorted LCE slab of length L, and in Fig. 1(b) it is
shown an LCE under the action of a strain in the x direction.
In both cases, electromagnetic waves are impinging obliquely
in the slab, forming a θ angle with respect to the cholesteric
axis.

The spatial orientation of the mesogenic molecules after a
deformation is obtained by minimizing the free energy density
for an elastomer, which for a contraction orthogonal to the
helix axis is given by

F⊥= 1

2
C

{
η2 + η2

yy + η2
zz + g − 1

4g

[
(g − 1)

(
η2 + η2

yy

)
(1 − cos 2φ cos 2φ0)

+ (g + 1)
(
η2 − η2

yy

)
(cos 2φ − cos 2φ0) − 2(g − 1)ηηy sin 2φ sin 2φ0

]}
. (3)
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Here C = 106 Pa is the shear modulus of the elastomer
and g = l‖/l⊥ is the anisotropy ratio of the elastomer, which
is a characteristic value of the polymer backbone. Indeed,
g measures the shape anisotropy of the backbone, which,
although coupled to the mesogens, might not have an iden-
tical degree of alignment. Thus, in liquid crystal polymers
it is necessary to distinguish between the anisotropy of the
polymer backbone and the orientational mesogenic order.
To ensure the equilibrium of the system, we require the
Helmholtz free energy density to be a minimum. Because
of our last assumption, the free energy of this expression
has to be minimized with respect to the director angle φ

at a given extension. Hence the director after the defor-
mation depends on the initial director and is given by the

expression [26]

tan 2φ = 2ηηyy(g − 1) sin 2φ0

(g − 1)
(
η2 + η2

yy

)
cos 2φ0 + (g + 1)

(
η2 − η2

yy

) .

(4)
The Frank energy is being neglected, hence the free energy

is optimized at each point of z. The optimal strain perpendic-
ular to the pitch ηyy minimizes the total free energy of half
a helix repeat, given by the expression 〈F⊥〉 = ∫ π/2

0 dφ0F⊥.
Taking ∂〈F⊥〉/∂η2

yy = 0 gives rise to the condition for ηyy, and
by setting the preserved volume condition, we can obtain that
ηzz = 1/ηηyy, and, finally, the condition for ηyy is given by
[7,8]

π

4

(g + 1)2

g
− π

η4
yyη

2
= g − 1

2g

∫ π/2

0
dφ0

a1[(g + 1) − (g − 1) cos 2φ0] cos 2φ − 4gη2√
a2

1 − 4gη2η2
yy

, (5)

where we have straightforwardly integrated the terms not in-
volving cos 2φ and sin 2φ and

a1 = 1
2

[
(g + 1)

(
η2 + η2

yy

) + (g − 1)
(
η2 − η2

yy

)
cos 2φ0

]
.

(6)
Equation (5) can be solved numerically. Alternatively, one

can expand it for small strains, η − 1 � 1. It is then simple
to show analytically that the strain in the y direction goes as
ηyy � η−5/7 and ηzz � η−2/7. This analytical approach to the
transverse contraction provides a response, which is a com-
promise between classically hard (ηyy = ηzz ∼ 1/

√
η) and

semisoft behavior (ηyy ∼ 1/η), meaning that at some points
along the helix, the director rotates towards the stretching
direction x̂ to reduce the cost in elastic energy, and at others
it cannot, so it responds as if as hard as those points which
already are along x̂. The contraction transports the helix with
it, so the pitch contracts by a factor η−2/7 and the wave number
is q = η2/7q0.

The fact that the strains ηxx = η and ηyy are different makes
the director of the liquid crystal rotate. Actually, these strains
do not depend on z, so they have the same magnitude for
every value of z. This is a consequence of the fact that the
three nonvanishing elements of the strain tensor ηxx, ηyy, and
ηzz, were expressed in terms of the externally imposed strain
ηxx = η. This in turn was established after minimizing 〈F⊥〉
with respect to the remaining free variable ηyy, as can be seen
in the procedure developed above, provided the preserved
volume condition is fulfilled. Thus, by assuming a uniform
imposed element η we get a z-independent strain; nevertheless
the cholesteric configuration, that is to say the orientation of
the director, would not rotate by the same value for all z [see
Eq. (4)]. Moreover, after a given threshold strain ηc (defined
below) it will almost untwist.

Equation (4) also defines a characteristic value called ηc,
which can be estimated examining Eq. (4) for φ0 = ( π

2 )±,
where this expression denotes angles in a neighborhood of
(φ0 = π

2 ); hence a twist wall is defined, that is to say, a value
that separates two possible states of rotation of the director:

rotation towards φ = 0 for the interval 0 < φ0 < π
2 and rota-

tion towards φ = π for the interval π
2 < φ0 < π ; for η > ηc

the twist wall disappears, and only exist one state for the
rotation. The value ηc has the analytical form ηc ∼ g

7
24 , for

η ∼ 1. In this work we take g = 1.16, hence ηc = 1.04424,
therefore we will study an elastomer submitted to different
strains: in its undistorted state (η = 1), η = 1.03, which is
found in the range η < ηc, and finally η = 1.07, which is in
the interval η > ηc; the behavior of φ versus z, for different
values of η, can be found in Ref. [26].

Before ending this section, we shall compare our system
with a piezo-electric-controlled polymeric sculptured thin film
(STF) [27]. The optical response of an STF is governed by
its permittivity matrix, which should be determined after be-
ing compressed by a piezo-electric slab. The compression
modifies not only the value of STF pitch q but also the el-
ements of the permittivity tensor, giving rise to a blueshift
for the central wavelength of about 10 nm. Even though an
LCE has a polymeric backbone, the mesogens attached to
the polymer skeleton offer a significant contribution in the
optical properties of the LCE. Hence, by stretching an LCE
within the soft elasticity interval [7], the orientation of the
mesogens is changed without changing its optical indexes.
This implies that the permittivity tensor of an LCE depends
on the resulting strains by means of the director n̂. This
peculiar behavior, so-called soft elasticity, is a consequence of
the mechanical coupling between the low-density cross-linked
polymer and the mesogenic molecules, which mathematically
is manifested as a golden mode in the neoclassical free energy
F to describe an LCE. This causes in turn that the energy
required to stretch a LCE during the mesogenic reorientation
is theoretically null but practically negligible.

III. OPTICAL SPECTRA

An LCE can be treated as a uniaxial medium, and therefore
the orientation angle of the mesogenic molecules determines
the dielectric response; however, the presence of metallic in-
clusions makes necessary a theory of an effective medium
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to find the effective permittivity of the hybrid medium. The
effective response of a dielectric composite sample, produced
by inserting a very small amount of an isotropic dopant ran-
domly dispersed in an also isotropic homogeneous medium
can be approximated by using a generalization the Maxwell
Garnett formula for a locally uniaxial medium [28,29], which
has been deduced by assuming the long-wavelength approx-
imation. None of the physical parameters of the components
of the hybrid medium change with the amplitude of the ex-
ternal field; moreover, neither of the physical quantities of the
mixed medium is a function of time as a result of external
forces. The characteristic scale of the dopant is shorter than
the wavelength of light propagating in the composite medium.
The guest medium is randomly dispersed, and the filling factor
should be smaller than the percolation threshold, which means
that there is no long-range connectivity among the parts of the
particulated material.

The dielectric tensor for the effective uniaxial medium is
given by the expression [30]

ε̃eff = εe
⊥(ω)Ĩ + [εe

‖(ω) − εe
⊥(ω)]n̂n̂, (7)

where ε⊥, and ε‖, are the dielectric responses in the perpendic-
ular and parallel directions with respect to the director vector.

The Maxwell Garnett approach has been generalized to
study the dielectric response of locally uniaxial materials
[31]. Expressions of general validity for getting the effec-
tive relative permittivity and permeability tensors have been
calculated for the case when both the guest and host media
are uniaxial. Both dielectric and magnetic tensors must be
calculated simultaneously for the general case; nevertheless,
the effective dielectric tensor can be considerably diminished

when the dielectric anisotropy given by the ratio
εh
‖

εh
⊥

(where

εh
⊥,‖ are the dielectric responses in the perpendicular and par-

allel directions with respect to the director vector for the host
material) is approximately 1, which means that the terms of
order up to O[(ε3 − ε1)/(ε3 + ε1)]3 can be ignored. For this
case, the local effective permittivities are [32]

εe
⊥,‖(ω) = εh

⊥,‖

[
1 + f

εh
⊥,‖/

(
εm(ω) − εh

⊥,‖
) + (1 − f )/3

]
,

(8)
where εm(ω), is the relative permittivity of the metallic in-
clusions. We are taking into account the Drude model for the
metal nanospheres. This is stated by the expression

εm(ω) = ε0 − ω2
p

ω(ω + iγ )
, (9)

where ε0 is the background dielectric constant taking into ac-
count contributions from interband transitions, ωp the plasma
frequency, γ the plasma relaxation rate, and, as we mentioned
above, ω is the frequency of the propagating wave. Before
proceeding with our discussion of the optical properties of this
hybrid system, it is worth mention that the radius and shape
of the metallic nanospheres remain practically unaffected af-
ter stretching the elastomer because the shear modulus C =
106 Pa of the LCE is much smaller than the shear modulus of
silver, the dopant material. One should bear in mind that the
elastomer is submitted only to shear deformations, so neither
the metal nor the elastomer changes their volumes.

In order to find the transmittance and reflectance spectra,
we state the Maxwell equations in different regions: for z < 0
we have both incident and reflected electromagnetic waves
circularly polarized, and for z > L we have only circularly
polarized transmitted waves.

For the region outside the LCE we have to solve the source-
free Maxwell equations in the vacuum. For the region inside
the LCE corresponding to 0 < z < L, we also have to solve
the source-free Maxwell equations; however, we will consider
the constitutive relation for the displacement to be D(r) =
ε̃eff · E(r). Therefore, we state below the optical response in
the three corresponding regions by means of the Maxwell
equations.

A. Maxwell equations in the region outside the LCE

As has been stated in the last section, we will consider a
circularly polarized electromagnetic wave which impinges a
LCE slab of thickness L located at 0 < z < L, whose helical
axis is aligned parallel to the normal of the plane boundaries
of the slab, which is surrounded by two semispaces of vac-
uum. In the first region, corresponding to vacuum for z < 0,
the solution of the Maxwell equations can be expressed in
terms of simple plane waves which we choose to be a linear
combination of right and left circularly polarized waves. This
expression is given by

E(r) = (ARn−1 + ALn+1) exp(ik1 · r)

+ (RRn−2 + RLn+2) exp(ik2 · r), (10)

H(r) = 1

μ0ω
[k1 × (ARn−1 + ALn+1) exp(ik1 · r)

+ k2 × (RRn−2 + RLn+2) exp(ik2 · r)], (11)

where ω indicates the wave frequency, kj = kxx̂ + kyŷ −
(−1)jkz, ẑ, ( j = 1, 2) are the forward and backwards wave
vectors, μ0 is the permeability of the vacuum, AL,R are the
amplitudes of the incident waves with right and left circularly
polarizations, and RL,R are the amplitudes of the reflected
waves.

Here the unit vectors of the circularly polarized waves can
be expressed as

n±j = (−1) j+1

√
2

(
[ẑ × kj] × kj

|ẑ × kj|kj
± i

ẑ × kj

|ẑ × kj|
)

, (12)

where the vectors ẑ × kj and [ẑ × kj] × kj form a base for
an incident E(r) with linear polarization, and the vectors
n+1 and n−1 play the same role for an incident wave whose
polarization is circular. Analogously the vectors n+2 and n−2

form a base for the states of polarization of the reflected wave
for z > L. Hence, the transmitted wave can be expressed as

E(r) = (TRn−1 + TLn+1) exp(ik1 · r)

+ (BRn−2 + BLn+2) exp(ik2 · r), (13)

H(r) = 1

μ0ω
[k1 × (TRn−1 + TLn+1) exp(ik1 · r)

+ k2 × (BRn−2 + BLn+2) exp(ik2 · r)], (14)

where TR,L are the transmission amplitudes and BR,L can be
understood as incident amplitudes coming from the right side,
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in the region z > L. In our case we set BR = BL = 0. Addi-
tionally, we will construct the four-dimension vector ψ(z),
whose components are those of the transverse electric and
magnetic fields

ψ(z) =

⎛
⎜⎜⎜⎝

Ex(z)

Ey(z)

Bx(z)

By(z)

⎞
⎟⎟⎟⎠. (15)

We write Maxwell equations in the absence of sources in SI
units

∇ · D(r) = 0, (16)

∇ × E(r) = ıωB(r), (17)

∇ · B(r) = 0, (18)

∇ × H(r, t ) = −ıωD(r), (19)

and we will impose boundary conditions to calculate the
transfer function of the system. Continuity of the transverse
components implies continuity of the vector ψ(z), which can
be expressed as

ψ(0) = Q

⎛
⎜⎜⎜⎝

AL

RL

AR

RR

⎞
⎟⎟⎟⎠, ψ(L) = A(L) · Q

⎛
⎜⎜⎜⎝

TL

0

TR

0

⎞
⎟⎟⎟⎠, (20)

Upon substitution of Eqs. (10), (11), (13), and (14) in the
latter expressions we get the following explicit expression
matrices for Q and A:

Q = 1√
2

⎛
⎜⎜⎜⎜⎝

cϕcθ − isϕ cϕcθ + isϕ cϕcθ + isϕ cϕcθ − isϕ

sϕcθ + icϕ sϕcθ − icϕ sϕcθ − icϕ sϕcθ + icϕ√
ε0
μ0

(−sϕ − icϕcθ )
√

ε0
μ0

(sϕ − icϕcθ )
√

ε0
μ0

(−sϕ + icϕcθ )
√

ε0
μ0

(sϕ + icϕcθ )√
ε0
μ0

(cϕ − isϕcθ ) −
√

ε0
μ0

(cϕ + isϕcθ )
√

ε0
μ0

(cϕ + isϕcθ ) −
√

ε0
μ0

(cϕ − isϕcθ )

⎞
⎟⎟⎟⎟⎠, (21)

where sx, cx, denotes sin x and cos x respectively, θ is the
angle of incidence of the electromagnetic waves, and ϕ is the
azimuthal angle; additionally

A(L) =

⎛
⎜⎜⎜⎝

eikzL 0 0 0

0 e−ikzL 0 0

0 0 eikzL 0

0 0 0 e−ikzL

⎞
⎟⎟⎟⎠. (22)

The incoming and outgoing waves on the LCE slab are
related by the transfer matrix. We will denote by U the men-
tioned matrix associated with the elastomer slab; this matrix
has the property ψ(L) = U · ψ(0). Below we will explain how
to calculate numerically this matrix, and we will determine
the explicit form of ψ inside the LCE slab. The solution of the
Maxwell equations for the whole system, that is to say, outside
and inside the elastomer, can be expressed in terms of matrix
T (z), which is the transfer matrix of the complete system,

⎛
⎜⎜⎜⎝

TL

0

TR

0

⎞
⎟⎟⎟⎠ = T (z)

⎛
⎜⎜⎜⎝

AL

RL

AR

RR

⎞
⎟⎟⎟⎠, (23)

where after substitution of the boundary conditions given in
Eq. (20), we get

T (L) = A−1(L) · Q−1 · U · Q. (24)

Finally, we will obtain the amplitudes of the reflected and
transmitted waves, taking into account those corresponding to
the incident waves. For each value of the polarization, for this

purpose, we restate Eq. (23) as⎛
⎜⎝

TL

RL

TR

RR

⎞
⎟⎠ = S

⎛
⎜⎝

AL

0
AR

0

⎞
⎟⎠, (25)

where S denotes the scattering matrix. For our case the el-
ements S�,2 and S�,4 of matrix S, with � = 1, 2, 3, 4; are
unnecessary because we have assumed that there are no in-
cident waves in the region z > L. Therefore the amplitudes of
the transmitted and reflected waves can be expressed as⎛

⎜⎝
TL

RL

TR

RR

⎞
⎟⎠ =

⎛
⎜⎝

tLL S12 tLR S14

rLL S22 rLR S24

tLR S23 tRR S34

rLR S24 rLR S44

⎞
⎟⎠

⎛
⎜⎝

AL

0
AR

0

⎞
⎟⎠, (26)

where tnm and rnm (n, m = R, L) are the transmission and re-
flection coefficients, AL,R, TL,R and RL,R, are the amplitudes of
incident, transmitted, and reflected circularly polarized waves,
respectively, and the subscripts L, R denote the left or right
circular polarization of the waves. The copolarized transmit-
tances are denoted by Tnn = |tnn|2 and the cross-polarized ones
by Tnm = |tnm|2 with n 
= m, and similarly for the reflectances.
These quantities are function of the incidence angle θ and the
azimuthal angle ϕ, the axial elongation η, and the wavelength
λ.

B. Maxwell equations in the region inside the LCE slab

The Maxwell equations can be stated in the Marcuvitz-
Schwinger representation for the region inside the elastomer.
Hence, the Maxwell equations can be written in the form

d

dz
ψ(z) = −iM(z) · ψ(z), (27)
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where ψ(z) is a four-component vector, formed by the trans-
verse components of the electromagnetic fields

ψ(z) =

⎛
⎜⎜⎜⎝

Ex(z)

Ey(z)

Hx(z)

Hy(z)

⎞
⎟⎟⎟⎠. (28)

Here M(z) is a 4 × 4 matrix, which can be written as

M(z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 − kxky

ρεe
zz

k2
x

ρεe
zz

− ζ

0 0 ζ − k2
y

ρεe
zz

kxky

ρεe
zz

kxky

ζ
+ ρεe

yx ρεe
yy − k2

x
ζ

0 0

k2
y

ζ
− ρεe

xx − kxky

ζ
− ρεe

xy 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(29)
where ρ = εoω and ζ = μoω, εe

ν,γ and ν, γ = (x, y, z) cor-
respond to elements of the dielectric tensor for the hybrid
medium, and kx and ky are the components of the forward and
backwards wave vectors.

To solve numerically Eq. (29), we shall use the piece-
wise constant method, which has been successfully applied
to calculate optical properties of structurally chiral artificial
films. In this method [33,34], an inhomogeneous material is
divided into slices perpendicularly placed with respect to the
inhomogeneity axis, each one of thickness �z. Within each
thin slice, the dielectric tensor is approximated as constant at

the center of the slice. Each slice is taken thin enough such
that the difference between the dielectric tensor in contiguous
slices will be quite small:

ψ(z, κ, ϕ) = eiM(κ,ϕ)�z · ψ(z′, κ, ϕ), (30)

where �z = z − z′. Thus, if z j−1 is the distance from the
beginning of the jth slice and �zs is the thickness of the slice,
the transfer of the fields can be expressed as

ψ(z j, κ, ϕ) = exp
[
iM

(
z j−1 + �zs

2
, κ, ϕ

)
�zs

]
· ψ(z j−1, κ, ϕ). (31)

Let us denote the matrizant that describes the propagation
through the jth slice by

P′
j (κ, ϕ) = exp

[
iM

(
z j−1 + �zs

2
, κ, ϕ

)
�zs

]
. (32)

Therefore, the propagation over the whole sample can be
obtained from the expression

P(L, κ, ϕ) � P′
Ns

(κ, ϕ) · P′
Ns−1(κ, ϕ)

· P′
Ns−2(κ, ϕ) · · · P′

1(κ, ϕ), (33)

where the number of slices Ns = L/�zs should be adequately
chosen for obtaining a convergent solution.

To perform the calculation of Eq. (33) we should expand
the exponential matrix shown in Eq. (32) to find

exp
[
iM

(
z j−1 + �zs

2
, κ, ϕ

)
�zs

]
= I +

∞∑
n=1

(i�zs)n

n!

[
M

(
z j−1 + �zs

2
, κ, ϕ

)]n

. (34)

The sum of matrices of the right-hand side of this expression
is calculated term by term. According to the procedure of
Lakhtakia et al. [34] this sum is stopped when the changes
in all the elements of the matrices are smaller than one part
in 1012. It should be noted that the right-hand side of the
latter expression can be calculated by diagonalizing M(z j−1 +
�zs

2 , κ, ϕ), and it is worth mention that the eigenvalues have
no other geometric multiplicity than the unity [35,36]. The
precision of the piecewise constant approach is controlled
by means of �z. However, there is no a general formula to
know in advance how thin the slices should be to achieve a
particular precision degree in the calculation; therefore, we
have repeated the calculation several times by increasing the
number of slices each time and paying attention to the stability
of the transmittances and reflectances to attain the degree of
desired precision. Once P(L, κ, ϕ) was determined using the
piecewise approximation method, the plane-wave response of
the slab is obtained, so we set U = P(L, κ, ϕ) in Eq. (24) to
finally solve Eq. (26) in order to calculate the reflectance and
transmittance spectra of our system.

IV. RESULTS

We will apply the formalism developed in this work
to calculate all the elements of the spectra of a siloxane

backbone chain reacting with 90 mol% and 10% of the flexi-
ble difunctional cross-linking groups (di-11UB). The rodlike
mesogenic groups are present in the proportion 4:1 between
the nematic 4-pentylphenyl-4′-(4-buteneoxy) benzoate and
the derivative of chiral cholesterol pentanoate. Their corre-
sponding material parameters are [9] r = 1.16, L = 28.8 μm,
p = 428 nm, ε⊥ = 1.91, ε‖ = 2.25, μ = 1, along the interval
(350 nm, 700 nm) and for angles of incidence in the interval
(0◦, 88◦).

In order to analyze the influence of the dopant mate-
rial, we can obtain from Eq. (8), the components of the
dielectric tensor parallel and perpendicular to the helix axis
of the cholesteric liquid crystal doped with randomly dis-
persed Ag (silver) nanospheres. The background dielectric
constant, the collision angular frequency, and the relaxation
rate for silver in Eq. (9) are given, respectively, by ε0 = 5,
ωp = 1.367 × 1016 Hz, and γ = 3.03 × 1013 Hz [29,37]. The
imaginary parts of the components are shown in the Fig. 2;
Fig. 2(a) corresponds to the perpendicular component, and the
parallel is shown in Fig. 2(b); we found that a small amount
of metallic inclusions modifies the dielectric response of the
sample, that is to say, the filling factor of dopant is less or
equal than 1%. We can observe a resonant behavior around
410 nm, manifested like narrow peaks, whose thicknesses
are approximately 15 nm for both components. As we show
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FIG. 2. Behavior of the imaginary parts of (a) ε⊥ and (b) ε‖, for the filling factors f = 0 and f = 0.01, for the interval (350 nm, 500 nm).

below, this resonance is manifested dramatically in the optical
spectra of the hybrid system.

For an undistorted LCE we can clearly observe the usual
circularly discriminatory behavior, which consists of allowing
it to transmit the right circularly polarized field and reflect the
left one; such behavior occurs in the pure system and for the
filling factor f = 0.01. Also we can observe the blueshift of
these structures as the incidence angle increases. When the
dopant material is present, stripes of null transmittance can be
observed around 400 nm for the components of the transmit-
tance spectra, TRR, TLL, TLR, because of energy absorption by
the metallic spheres. The components of reflectance spectra,

RRR, RLL, and RLR, are null in practice for all the wavelengths
studied.

The transmittances and reflectances for a strain applied
on an elastomer of magnitude η = 1.03 corresponding to a
pure one ( f = 0.0) and a doped one ( f = 0.01) are such
that the twist angle does not depend longer linearly on the
z coordinate. However, the spectra exhibit some oscillations
around a linear trending. Specifically, the spectra for TRR and
RRR exhibit, respectively, stop and reflection bands, such as
in an elastomer in the undistorted state. However, these bands
not only blueshift as the incidence angle increases, they also
widen considerably. Additionally, some narrow bands appear

FIG. 3. Transmittance spectra (a) TLL , (b) TLR, and (c) TRR for an elastomer stretched by η = 1.03 doped with filling factor f = 0.01.
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FIG. 4. The same as Fig. 2 but for η = 1.07 and f = 0.

also for both copolarized components: TLL and RLL. The ef-
fect of the silver doping in TLL is shown in Fig. 3(a), TLR

in Fig. 3(b), and TRR in Fig. 3(c), which is manifested as
striped shaped flat canals for both reflectances and transmit-
tance situated around 400 nm, which are near the resonance
of the metallic inclusions. These stripes. indeed, merge with
the discriminatory stop bands for the larger incidence angles.
These canals are present for all the spectra components and
redshift lightly the reflection and stop bands just mentioned
above with respect to the case without doping. In addition,
we have observed that the band of conversion of a circularly
left polarized wave into a right polarized one and vice versa
diminishes by doping the elastomer; this band is defined by
the cross-polarized transmittance TLR.

We have depicted the copolarized transmittance TLL in
Fig. 4(a), the cross-polarized one TLR in Fig. 4(b), and the
copolarized one TRR in Fig. 4(c); for a pure elastomer ( f =
0.0) in stretched state, the strain applied is η = 1.07, which
is above the threshold value, therefore the helical structure is
unwound. We notice that in this case, TRR and TLL are very
similar, displaying stop bands whose bandwidths widen as the
incidence angle increases. Hence, we can state the fact that
the sample has a polarization-independent behavior within the
reflection band located around 650 nm. On the other hand,
for the component TLR, we have some regions of maximum
polarization conversion in the shorter wavelengths (about
400 nm), alternated with zones of polarization-independent
behavior, which is also exhibited in the components TRR

and TLL of the transmittance spectra. A comparison between
Figs. 4 and 5 shows that if an LCE is doped with metal-
lic nanospheres, omnidirectional stop bands can be observed
around 400 nm for the three components of the transmit-
tance spectra, TRR, TLL, and TLR, which particularly erase the
conversion band that we just mentioned. All these regions
are observed for an interval of incidence angles going from
zero to 60◦.

V. CONCLUDING REMARKS

We have developed a model to calculate the optical spectra
of an elastomer slab doped with metallic nanospheres which
is submitted to a transversely applied stress. We have obtained
that once the characteristic value of stretching is overpassed,
and the cholesteric arrangement has been unwound, the
system switches from a discriminatory circular filter to a
polarization-independent device. The system exhibits regions
where the conversion from right to left circularly polarized
waves is very efficient, which are alternated with regions
where the transmission corresponding to both circularly polar-
ized waves are almost indistinguishable. The specific location
of each of these regions can be shifted by varying both
the stretching parameter and the filling factor of the silver
nanospheres.

Therefore, this tunable elastomer slab provides the possi-
bility to build a mechanically controlled optical device which
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FIG. 5. The same as Fig. 2 but for η = 1.07 and f = 0.01.

changes either from a circularly polarized selector to a mech-
anism that does not distinguish between polarization states
or to a device which transforms from left to right circularly
polarized waves. We think that our study could encourage the
construction of these interesting types of devices.
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