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Aggregate morphology of active Brownian particles on porous, circular walls
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We study the motility-induced aggregation of active Brownian particles (ABPs) on a porous, circular wall. We
observe that the morphology of aggregated dense-phase on a static wall depends on the wall porosity, particle
motility, and the radius of the circular wall. Our analysis reveals two morphologically distinct, dense aggregates;
a connected dense cluster that spreads uniformly on the circular wall and a localized cluster that breaks the
rotational symmetry of the system. These distinct morphological states are similar to the macroscopic structures
observed in aggregates on planar, porous walls. We systematically analyze the parameter regimes where the
different morphological states are observed. We further extend our analysis to motile circular rings. We show
that the motile ring propels almost ballistically due to the force applied by the active particles when they form a
localized cluster, whereas it moves diffusively when the active particles form a continuous cluster. This property
demonstrates the possibility of extracting useful work from a system of ABPs, even without artificially breaking
the rotational symmetry.

DOI: 10.1103/PhysRevE.102.032619

I. INTRODUCTION

Active fluids that consist of self-motile elements are known
for their large-scale collective ordering. A large class of such
systems that occur in nature, such as bird flocks, fish schools,
and cytoskeletal filaments, display both orientational and den-
sity ordering [1–10]. However, synthetic self-motile particles
without shape anisotropy or alignment interactions show only
density ordering. Such a density ordering caused by the ag-
gregation of particles in the absence of adhesive interactions
is known as motility-induced phase separation (MIPS) and
have been extensively studied theoretically [3–11], as well as
validated in experiments [12–22]. Although MIPS is a highly
nonequilibrium aggregation process, its qualitative similari-
ties to equilibrium liquid-gas phase separation have motivated
the formulation of an effective thermodynamic approach
for explaining this phenomenon. Such descriptions involve
formulations of pressure [23–32], surface tension [33–36],
and chemical potential [37–39], in the context of active
systems.

It has been shown previously that the presence of a non-
adhesive planar wall enhances the MIPS since the slowing
down of active particles due to wall repulsion leads to the
nucleation of dense phase on the wall [23,40–42]. Since most
of the micron-scaled active systems in nature are confined
in space, it becomes imperative to understand how the dy-
namics of these active particles get modified in the presence
of such walls [43–45]. It has been shown recently that the
wall-adhesion properties of active particles can be utilized for
sorting and trapping of such particles, by effectively tuning
the wall geometry [46–50]. Besides, changing the wall pen-
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etrability of particles also changes their properties near the
wall, which has potential applications in specific biomedi-
cal processes involving drug delivery [51,52]. In the case of
nonplanar walls, it has been shown that the wall curvature af-
fects the aggregation properties of active particles [31,53,54].
Because of the nonequilibrium nature of wall adhesion, the
active particles continuously propel, thereby exerting mechan-
ical stress on the wall. Similarly, a passive tracer particle
immersed in a bath of active particles experiences random
drive due to the background activity [55–59]. Also, in the
presence of an active bath, passive polymers display unusual
dynamical behavior [60–64]. These properties have recently
inspired the formulation of active work [65,66], and proposed
ways of extracting maximum work [66–68]. Recently, there
is a growing interest in studies on the active heat engines
both theoretically [69–72] and experimentally [73]. It has
been shown that curved [43,74] and chevron-shaped [75] pas-
sive tracers which break the rotational symmetry can propel
ballistically in an active bath, because of the asymmetry in
active particle accumulation. Recent theoretical investigations
are interested in formulating the design principles to optimize
the shapes of such passive tracers [76]. In our recent study,
we have shown the formation of localized clusters of active
particles on planar, porous walls [77]. The same property can
be utilized to induce localized clusters on circular walls. The
absence of rotational symmetry in such clusters allows us to
extract useful work without introducing shape anisotropy.

In this article, we numerically study the aggregation of
active particles on a nonadhesive 2D circular wall fixed in
space. To make the wall porous, we arrange “wall” particles
at regular intervals, to form a circular ring. We find that
the morphology of particle aggregates crucially depends on
both the wall porosity and particle motility. Two morphologi-
cally distinct clusters are formed as the porosity is increased.
One type of cluster spreads entirely along the wall, called
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FIG. 1. Observed variation in clustering behavior at a fixed ra-
dius of the circular wall R = 64, and Pe = 180 for different values of
pore sizes δ. Increasing values of δ cause the clustering on the ring to
change from (a) a connected dense phase at δ = 1.25 (Supplemental
Material Movie 1 [79]) to (b) a localized cluster dominated by a
single large cluster at δ = 1.65 (Supplemental Material Movie 2
[79]) and finally (c) rapidly fluctuating small clusters at δ = 2.05
(Supplemental Material Movie 3 [79]). The active particles are col-
ored in red, whereas the static obstacles are colored in blue. All three
simulations are performed for a particle area fraction φ = 0.3.

connected dense phase (CDP) [Fig. 1(a)], and the other one
which does not spread along the entire circumference of the
wall is called localized cluster (LC) [Fig. 1(b)], which does
not have the rotational symmetry of the adhering wall. When
the pore size is much larger than the particle diameter, the
aggregation becomes insignificant [Fig. 1(c)]. The cluster
formation also depends on the radius of the porous circle,
especially at moderate porosity, where the cluster disappears
below a threshold radius. We finally demonstrate that this
angular asymmetry in the case of a localized cluster gives rise
to force imbalance on a porous circle. When the circle is made
motile, this leads to a propulsive motion of the passive, porous
circle. Thus, we propose a novel way to extract work from
the system without any externally induced anisotropy. We
organize the paper as follows: we introduce the model of our
system in Sec. II. In Sec. III, we present our simulation results
and quantitative analysis for the static circular ring, followed
by the nonstatic porous ring in Sec. IV. We summarize the
results in Sec. V.

II. NUMERICAL MODEL

We consider a system containing N disk-shaped active
particles in 2D, which are enclosed in a square simulation
box of length L with periodic boundaries. The particles in-
teract via a repulsive and short-ranged WCA potential, U =
4ε[(σ/ri j )12 − (σ/ri j )6], where ri j < 21/6σ and zero other-
wise [78], ri j being the distance between particles i and j. To
model a porous circular wall, we arrange Nw “wall” particles
on a circle of radius R at a regular interval of d in such a
way that Nwd � 2πR. Both R and d are invariant throughout
a single simulation. The active particle interaction potential
with the wall U w is also short-ranged, and repulsive in na-
ture. For the sake of simplicity, we assume U w = U . The
time evolution of ith particle position ri is determined by the
overdamped equation,

ṙi = Dβ
(
Fi + Fw

i

) + v0êi +
√

2Dηi, (1)

where Fi = −∇iU and Fw
i = −∇iU w. D is the diffusion co-

efficient, β = 1/kBT , and η is Gaussian white noise such

that 〈η(t )〉 = 0 and 〈ηiα (t )η jβ (t ′) = δi jδαβδ(t − t ′). v0 de-
notes the self-propulsive speed of active particles, and êi =
(cos θi, sin θi ) is the polarity vector, where θi evolves as θ̇i =√

2Drη
R
i , Dr = 3D/σ 2, is the rotational diffusion coefficient.

We choose σ as the unit for distances, τ = σ 2/D as the units
of time, and kBT as the unit of energy. We use the dimension-
less Pèclet number Pe = v0σ/D to parametrize the activity,
and δ = d/σ is the dimensionless parameter for porosity.
Previous studies have shown that the probability of MIPS in
the absence of a wall is determined by the ABP motility via Pe
and the particle area fraction, φ = Na/L2, where a = πσ 2/4,
the area of a single ABP [3,4]. To focus on the dense-phase
formation only on the walls, we choose φ = 0.3 for all our
simulations, where we do not observe MIPS in the bulk
fluid.

We study two different systems, one in which the circular
wall is static and the second in which the center-of-mass
of the wall is allowed to translate (motile walls). In the
case of motile walls, we assume the circle to be able to
translate and rotate like a rigid body, in response to the active
force and the torque applied by the ABPs. Thus, we evolve the
center-of-mass of the ring ṙcm = μ

∑Nw
j

∑N
i −Fw

i, j (t ) where
the vector summation is over the number of wall particles
and μ = Dβ/Nw, the mobility of the circle, and Fw

i, j is the
interaction force between ith ABP and jth wall particle. Also,
we calculate the net torque τ(t ) = ∑Nw

j [r j × ∑N
i −Fw

i, j (t )]
upon the ring, where r j is the radial vector of jth wall particle
from the center of the circle. The orientation of the circle is
defined by the direction of a body-fixed unit vector, which is
pointing to one of the specified wall-particles from the center,
denoted by the angle, �. The orientation � evolves according
to the relation, �̇ = γ τ , where τ is the only nonvanishing
component of the torque vector, normal to the plane of the
circle and γ = μ/R2.

We ensure that the size of the simulation box L > 2R in
the case of both static as well as motile walls. Keeping these
constraints, we study different systems in which N varies
from N = 725 to N = 11 345 for static walls with R rang-
ing from 16 to 64. For motile walls, we choose R = 64 and
N = 11 345. We observe that for static walls, the aggregate
converge into a steady state at a relatively short time, t < 20
for most cases. Thus, we run our simulations until t = 100
and analyze the steady-state behavior of the system. For a
few cases at large δ, where the system undergoes a transition
from negligible clusters to LC, it takes relatively longer (up
to t = 85) to reach a steady state. To improve the averaging,
each parameter values are examined from 5 to 10 independent
simulations. For calculations involving cluster dynamics and
pressure tensor, we run our simulation till t = 1000. We have
employed Euler integration scheme, with time-step 10−5 for
Pe < 180 and 5 × 10−6 for Pe � 180. In the case of motile
walls, the simulations are performed until t = 4500 to calcu-
late the dynamical behavior of the system by averaging over
40 independent runs. For the system with static circular wall,
we numerically study Eq. (1) for values of Pe from 30 to 240,
R from 16 to 64 and δ from 1.25 to 2.05 and determine the
characteristics of dense-phase morphology. For motile walls,
we simulate for various values of porosity (ranging from 1.25
to 1.95) by keeping the motility fixed at Pe = 150.
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III. AGGREGATION OF ABP’S ON STATIC
CIRCULAR WALLS

Our previous study on planar porous walls [77] has shown
that in the low porosity limit (δ < 1), the wall is practically
impenetrable for the ABPs, causing a uniform dense-phase
formation on the surface. On the contrary, when δ � 2, the
wall permits ABPs to penetrate through easily, causing neg-
ligible aggregation on the wall. However, at the intermediate
porosity, 1.0 < δ � 2.0 the steric hindrance due to the wall is
significant, while the ABPs are still able to penetrate through,
leading to interesting morphological properties of aggregates.
Thus, we focus our analysis on this intermediate range of
porosity. We observe similar behavior in the case of circular
walls, wherein the dense-phase undergoes a transition from
a connected dense-phase (CDP) [Fig. 1(a)] (Supplemental
Material Movie 1 [79]) to a localized cluster (LC) [Fig. 1(b)]
(Supplemental Material Movie 2 [79]) as we increase the
wall porosity. This behavior has qualitative similarities to
wetting-dewetting transition observed at equilibrium liquid-
solid interfaces. We thus focus our analysis on characterizing
such transitions quantitatively.

A. Effect of pore size and particle motility

First, we systematically study the dependence of dense-
phase morphology on particle motility and the wall porosity.
For this purpose, we consider a ring of fixed radius R = 64 and
analyze the ABP aggregation by changing δ from 1.25 to 1.95
and Pe from 30 to 240. We observe the formation of dense-
phase clusters for a range of values of Pe and δ. To analyze this
dense-phase quantitatively, we identify the particles which
adhere to the wall and form clusters. We assume that an ABP
has adhered to the wall if its separation from the wall particle
is less than the interaction cut-off, rcut = 21/6σ , which is also
the definition for particles forming clusters. This estimation
also allows us to calculate the cluster boundary and cluster
thickness on the wall. This way, we compute the fraction of
total ABPs, which are part of the dense-phase cluster on the
wall, called cluster fraction Nc. In our simulations, Nc reaches
a steady state before t < 20 for most values of (Pe, δ) and
t < 85 for a few cases at δ � 1.75, where the transition from
negligible clustering to LC takes place. We also repeat the
simulation for five independent initial conditions for better
averaging. The average cluster fraction, 〈Nc〉 acts as a good
indicator for cluster formation. Here, 〈.〉 indicates the aver-
aging over all the steady-state configurations in all the five
independent simulations. For Pe < 30, 〈Nc〉 � 0 for all values
of δ. However, for larger Pe, 〈Nc〉 reaches a steady nonzero
value for a range of δ. In Fig. 2 we show the 〈Nc〉 averaged
over the steady-state values, as a function of δ for different
Pe. We find that for δ � 1.5, 〈Nc〉 saturates at a large value
(0.55–0.7), with more than half of the ABPs becoming a part
of the dense-phase. A qualitative examination reveals that the
aggregate on the wall forms a CDP at this range of δ, where
〈Nc〉 saturates at a large value. However, for δ � 1.55, 〈Nc〉
abruptly decreases to a lower value. At this range of δ, instead
of decreasing monotonously to zero, 〈Nc〉 shows a second
plateau, where we qualitatively observe the formation of lo-
calized clusters. When δ > 1.9, Nc decreases rapidly again,

FIG. 2. The average fraction of ABPs in the dense-phase 〈Nc〉,
as a function of the porosity δ at R = 64. Different curves repre-
sent different Pe. From the bottom to the top, Pe = 120 (black),
Pe = 150 (red), Pe = 180 (blue), Pe = 210 (green), and Pe = 240
(orange). The symbol � denotes continuous dense-phase, � denotes
localized dense-phase, and � represents negligible cluster formation.
The averages are taken for steady-state values, for five independent
simulations.

indicating negligible dense-phase formation on the wall with
〈Nc〉 � 0.

To draw a quantitative distinction between different dense-
phase morphology, we calculate the normalized angular
spread, �θ/2π [Fig. 2] of the dense-phase on the circular
wall. To calculate this quantity, we identify the largest clus-
ter using the cluster definition defined previously and locate
the edges of the cluster on the wall where the cluster thick-
ness drops to zero. Such edges do not exist for CDP, hence
�θ = 2π . In Fig 3(a) we plot �θ/2π as a function of δ for
different Pe. When δ < 1.6, the dense-phase form a CDP on
the circular wall, where �θ/2π � 1 for large enough ABP
motility (Pe > 30). Around δ � 1.6, we observe a transition
from CDP to LC where �θ/2π decreases abruptly from 1 to
a lower value [Fig. 3(a)]. In this regime, the angular spread
is 0.2 to 0.4. This transition is consistent with the quantitative
estimation of Nc in Fig. 2. Further increasing the pore size δ >

1.85, we find that the previously observed single large cluster
disappears with �θ/2π � 0.2 and the ring circumference is
covered with several small clusters of rapidly fluctuating sizes.
We also note, as previously mentioned, that for a very low
value of Pe = 30, the system does not show significant phase
separation as Nc < 0.1 for all values of δ. However, at this
parameter value, we observe a large number of local, transient
clusters forming on the wall. These fluctuating clusters man-
ifest as a nonzero �θ and a weak nonmonotonicity with the
change in δ

We also calculate the local ABP density as a function of
the radial distance r from the center of the circle, φ(r) =
N (r)/{4π [(r + �r)2 − r2]}, with N (r) being the number of
particles in the shell between r and r + �r. In in Fig. 3(b)
we show φ(r) for three values of δ, which show distinct
aggregation properties at Pe = 150. For all these values of
δ, we observe φ(r) reaches a maximum as r → R. The peak
value of φ is highest for the smallest wall porosity, where
the aggregate form a CDP. In this regime, there is a dip
in φ(r) at r = R, since a less porous wall does not permit
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FIG. 3. (a) The angular spread of the dense-phase, �θ/2π on
the wall as a function of δ for different values of Pe. �θ/2π � 1
indicates the formation of CDP. The schematic represents the def-
inition of �θ . The error bars are standard deviation, which have
larger values near CDP-LC transition points. (b) Local ABP density
as a function of the radial distance, φ(r), from the center of the
circle, shown for three different aggregation behavior corresponding
to different wall porosity at Pe = 150. The radius of the ring, R = 64
for both the figures. The quantities are averaged for steady-state
configurations for five independent simulations.

any ABPs along the circle. For higher porosity (δ = 1.75),
φ(r) shows a relatively broader distribution, while its peak
becomes significantly smaller. This can be understood as for
the LC, the radial width of the aggregate is higher compared to
the clusters in the CDP phase, as evident from the comparison
between Figs. 1(a) and 1(b). Also, we note that more ABPs
are part of the dense-phase in CDP form, in comparison to
LC, as evident from Fig. 2. Therefore, the density away from
the wall is also relatively higher in the case of LC, as it
reflects a larger number of ABPs in the vapour phase. Beyond
δ = 1.95, the local density is nearly constant with a small
peak at r = R. As noted from Fig. 3(b) with only a small
number of particles in clusters, the localized distribution of
particles φ(r) is more evenly distributed. In Figs. 4(a) and
4(b), we summarize different aggregate morphology observed
in the parameter space defined by δ and Pe. In Fig. 4(a) we
quantify the simulations in the parameter space with 〈Nc〉
to distinguish the regions where significant wall aggregation
is observed. For Pe � 30 and δ � 2.0, we do not observe
significant aggregation where 〈Nc〉 � 0.1. When δ � 1.95,
we observe a range of large Pe where the aggregation takes

FIG. 4. State diagram as a function of porosity δ, and activity
Pe. The color coding in panel (a) indicates the cluster fraction 〈Nc〉,
while in panel (b) depicts the fraction of angular spread of the
largest cluster, �θ/2π . The diagrams mark CDP (•), LC (�), and
negligible clusters (�). Each points are averaged over steady state
configurations, for five independent simulations.

place. Further, to distinguish different morphological states
within the aggregate quantitatively, we use the angular spread
�θ/2π in Fig. 4(b). If �θ/2π < 0.9 we classify the cluster to
be CDP. With this measure, we observe the formation of CDP
at δ � 1.55 for a range of Pe. Around this δ (near the transition
regime) there is a tendency to form LC at higher Pe. However,
for δ � 1.45 we observe only CDP at large Pe. The aggregates
form LC in regions between 1.55 � δ < 2.0 at large Pe, as
�θ/2π displays a sharp decrease at these values. This region
is clearly demarcated in the state diagram [Fig. 4(b)] with a
distinctly smaller value of �θ/2π .

B. Time-evolution of the angular location of LC

Since the dense region is a nonequilibrium state, parti-
cles continuously join and escape at its boundary. Also, the
particles inside the dense region show interesting dynamical
behavior [3]. Due to these effects, we expect a phase-separated
dense region to be nonstationary at large timescales, even
though the system is in a steady-state in terms of Nc. However,
in this particular system, the aggregates are confined only
on the wall, and its overall movement, if at all possible, is
constrained. Due to this property, the cluster translation is not
observable for CDP on static walls. But in the case of LC, it
may still be possible to observe a long-time translation of the
aggregates along the wall. To study this dynamics, we calcu-
lated the angular displacement of the mean angular position
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FIG. 5. (a) Variation of mean angular position θc with time. The
gray lines are for the ten independent runs for δ = 1.75 and Pe =
150, while the blue line indicates a typical time evolution behavior of
θc. (b) Autocorrelation, Cp of the polarity vector (p = {cos θc, sin θc})
of θc of the localised cluster for δ = 1.75 and Pe = 150, averaged
over ten independent runs (red filled circle). The black dotted line
indicates the fit with a function f (t ) = exp(−t/τ0). We obtain the
relaxation times, τ0 = 2930 is much larger compared to the observa-
tion time (t = 1000).

θc(t ), indicating the midpoint of the aggregate. In Fig. 5(a)
we plot the time-evolution of θc. Although, θc(t ) displays
significant short-time fluctuations, it does not show a system-
atic drift over long time. Thus, the cluster dynamics is similar
to fluctuations about a mean value. We further analyze this
dynamical behavior by calculating the autocorrelation of the
radial vector p = {cos θc, sin θc}. In Fig. 5(b), we plot Cp(t ) =
〈p(t0).p(t0 + t )〉t0 , averaged over ten independent simulations.
The correlation function fits poorly to a single exponential
decay; however, it provides a decay rate τ0 � 2930, which is
much larger than the observation time. The time evolution of
θc suggests an absence of a large angular translation of LC
on the circular wall, at least within the observed simulation
time. However, the dynamics of the cluster is entirely reflected
in the small timescale fluctuations in its angular position.
The absence of large time displacement of LC indicates the
importance of initial clustering at the wall due to the clogging
of particles that move across the wall from both sides. Once
the small cluster grows into a phase-separated region, the
reduction of overall particle density outside the dense region
prevents the formation of new clogged locations. We also
note that the single exponential decay may not describe the
dynamics of cluster on the wall, which may involve multiple
timescales. However, τ0 provides a rough estimate of the rel-
evant timescale of the cluster dynamics. We also note that, a
more detailed analysis of this property requires much longer
simulations.

C. Stress distribution

The change in morphology of ABP dense-phase around
δ � 1.6 is similar to the CDP-droplet transition, which we
have reported in a different system with planar walls [77].
There, the transitions are rationalized by calculating the stress
distribution across the wall and the interfaces, from the local
pressure tensor components. In this particular active sys-
tem, the pressure tensor has three contributions. The “swim
pressure” originating from self propulsion of the ABPs is
given by

p(s)
αβ (h) = 1

2Ah

〈∑
i∈Ah

jiαviβ

〉
, (2)

where 〈.〉 indicates time-average within the area element Ah

located at a distance h from the wall and α, β indicate Carte-
sian components of the tensor. The active impulse ji is defined
as v0êi/βDDr [27,80]. Another major contribution comes
from the interparticle interaction Fi j , called the interaction
pressure,

p(I )
αβ (h) = 1

2Ah

〈 ∑
(i/ j)∈Ah

Fi jαri jβ

〉
, (3)

Similarly, the particle-wall interaction Fiw contributes via the
wall pressure,

p(w)
αβ (h) = 1

Ah

〈∑
i

Fiwαriwβ

〉
, (4)

where riw is the distance between the particle i and the wall. At
the interface, the diagonal terms of the tensors can be defined
as pN and pT , namely, the normal and tangential components
to the interface. If all the interfaces are aligned parallel in a
simple planar geometry, then the total surface tension γtot can
be calculated from the integral across the interfaces [81,82],

γtot = 1

2

∫ ∞

−∞

{(
p(I )

N − p(I )
T

) + (
p(w)

N − p(w)
T

)
+ (

p(s)
N − p(s)

T

)}
dh. (5)

When the aggregates form CDP on circular walls, one can
define a local normal and tangent for both wall-liquid and
liquid-vapour interfaces. Thus, the integration in Eq. (5) needs
to be performed radially, where pN and pT becomes local
normal and tangent pressure components of the particular
location on the circle. However, for the LC state, the local
tangent to both the interfaces are not parallel. Moreover,
unlike the planar case, we do not observe an “unstable-
CDP,” where the CDP cluster destabilize after a finite time.
Therefore, making a direct comparison of stress distributions
between parameter regions that prefer different morpholog-
ical states becomes difficult in the case of circular walls.
Here we assume that the underlying reason for the different
morphological states is the same for both planar and circular
walls. Using the simplicity of a system with planar walls, we
demonstrate that the wall-liquid surface tension is different for
parameters which prefer different morphological states. In the
planar geometry, the wall is aligned parallel to x direction,
thus pN and pT become pyy and pxx, respectively. Similar
to the circular walls, we observe the formation of CDP for
δ < 1.6 and localized clusters for larger δ and at large Pe
[77]. However, for some parameters (δ = 1.85 and Pe = 180,
for example) we also observe formation of “unstable” CDP
which switches its morphological state within a finite time,
while a fraction of runs shows relatively stable CDP at the
same parameter values. Thus, we calculate the components
pN and pT of all three pressure contributions separately us-
ing Eqs. (2), (3), and (4) at δ = 1.25, where the aggregates
clearly prefer CDP, and δ = 1.85 at the same Pe (Pe = 180).
In Fig. 6, we compare the difference (pN − pT ) for these
two parameter values, as a function of the distance from the
wall. We find a significant difference in interaction and wall
pressure contributions, while the difference arising from the
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FIG. 6. Difference in normal and tangential components of
(a) interaction, (b) wall, and (c) swim pressure as a function of
vertical distance from wall, calculated for a system with planar walls
with N = 9900, and Pe = 180. The blue curve (�) is for δ = 1.25
(CDP state) and the red curve (•) is for δ = 1.85 (unstable CDP), for
Pe = 180. The simulations are run till t = 1000 for ten independent
runs. We took only CDP morphology at δ = 1.85 to calculate pres-
sure tensor. For δ = 1.25, the averaging is performed over steady
state values for ten independent simulation. For δ = 1.85 the aver-
ages were taken only for those configurations showing CDP (six out
of ten runs). The shaded region depicts the liquid-vapor interface.

swim contribution is negligible. Also, (p(I/w)
N − p(I/w)

T ) < 0 at
δ = 1.25 (CDP state) while it is positive at δ = 1.85. Since the
difference (p(s)

N − p(s)
T ) is not significant near the liquid-vapour

interface, one can calculate the wall-liquid interfacial tension,

γwl = 1

2

∫ L/2

−L/2

{(
p(I )

N − p(I )
T

) + (
p(w)

N − p(w)
T

)}
dy, (6)

which provides a negative value for γwl at δ = 1.25 (CDP
state, γwl � −184.5) and a positive value at δ = 1.85 (γwl �
165.4). This analysis hints the possibility that the inter-particle
interaction, controlled by the local density and particle orien-
tation, plays a crucial role determining the morphology of the
ABP aggregate.

D. Effect of wall radius R and system size L

In the case of moderate porosity 1.6 < δ < 2.0, the aggre-
gation at the wall takes place when particles from both sides
of the wall meet at each pore, blocking each others passage.
This mechanism requires an adequate number of particles
both inside and outside the ring. Since the absolute number
of particles inside the ring is proportional to the ring area, the
aggregate properties can vary with R, even if all the other pa-
rameters are kept constant. Here, we examine the effect of the
ring radius by analyzing the aggregation properties by varying
R from 16 to 64. In Fig. 7(a) we show the angular spread
�θ of the dense-phase for different R, for a fixed particle
motility (Pe = 150), as a function of δ. In the CDP regime
(δ < 1.6), �θ is independent of δ. Here, we do not observe
any qualitative change in cluster morphology with a change in
R. However, in the LC regime (1.65 < δ < 1.9), we observe
a reduction in �θ when R < 22, indicating a sensitivity to the
value of R.

To further analyze this, we fix the wall porosity at a moder-
ate value δ = 1.75 (LC regime) and vary the Pe. As shown in

FIG. 7. The angular spread on the wall �θ/2π for various R
(a) as a function of δ at constant Pe = 150 (b) as a function of Pe
at a moderate porosity, δ = 1.75. Below a critical radius we observe
clustering to disappear for the localized clusters. The averages are
performed over the steady-state values, for five independent runs.

Fig. 7(b), the behavior of �θ as a function of Pe qualitatively
changes for R < 22. In the cases of larger R (R > 22), �θ

increases monotonically with Pe, which is not the case for
smaller rings [Fig. 7(b)]. The low value of �θ for small R
and at large Pe indicates negligible dense-phase formation
near the wall. This disappearance of dense-phase is expected,
since φ for the entire system is constant and initially uniform
in space, the number of particles inside the ring decreases as
R−2 whereas the maximum number of particles in contact with
the wall decreases only as R−1 as R → 0. When R = R∗, the
interior of the circle has a sufficient number of particles to
block the pores, such that nφπR∗2 = 2πR∗, where n is a con-
stant indicating the fraction of particles attached to the wall
in the steady state. For R∗ = 22 we observe n ≈ 0.3 which is
comparable to the value of Nc, the fraction of total ABP part
of the dense-phase. Increasing Pe increases the penetration of
the ABPs, leading to less clogging at the wall.

However, at δ � 1.55 (CDP formation), the ABP pene-
tration through the wall is always very low, and therefore
particles can accumulate on both sides independently. Thus,
the clustering still occurs even at a small R (analyzed here till
R = 16). In Fig. 8(a), we plot the radial density distribution
φ(r) for δ = 1.25 and Pe = 150 for different values of R. We
maintain a fixed ratio of the ring radius to the box size with
R/L = 0.15 in our simulations, to ensure a consistent ratio
of ABPs inside and outside the ring. For large values of R,
we observe that the density outside, far away from the wall
approaches a constant value, while the φ(r) peaks as r → R
in all cases. However, for R � 24, φ(r ≈ 0) is almost zero,
since the majority of the particles inside the ring accumulate
on the inner side of the ring.

FIG. 8. (a) The variation of radial density distribution φ(r) of
ABPs as a function of the ring radius r for δ = 1.25 and Pe = 150.
(b) The effect of system size in radial density distribution, at δ =
1.25, Pe = 150, R = 16, plotted for different box-length L.
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FIG. 9. (a) The fraction of ABPs outside (red) and inside (blue)
the ring as a function of time (t). The dashed lines indicate the time-
averaged value of these quantities. (b) The relative difference (Nout −
Nin )/N in the number of particles inside and outside the ring for five
individual runs. The number of particles on the outer wall exceeds the
number of particles in the inner wall at most times. These simulations
are done for δ = 1.75 and Pe = 150.

We have also varied the simulation box size L for a fixed
value of R = 16, δ = 1.25 and φ = 0.3, to analyze the effect
of finite system-size. As seen in Fig. 8(b), the ABP density
profile inside the ring remains constant for all values of L,
as the total number of particles contained within the ring
remains constant. However, an increase in the simulation box
size leads to an increase in the aggregated particles in the ring
exterior, leading to a concomitant increase in φ(r) at r > R.

E. Asymmetry in aggregate deposition

In our simulation, it is straightforward to examine the frac-
tion of the total number of particles which aggregate on the
inner and the outer surface of the circle. For a less porous
ring, ABPs are confined to their respective regions inside and
outside the boundary. Therefore, for a constant φ, this distri-
bution is a function of the ratio of the area of the two regions.
This property is evident in Fig. 8(b), where the value of φ(r) is
higher outside the wall at larger values of L. The situation for
a porous wall is more interesting, in which case the particles
cross from inside of the ring to outside and vice versa. In
Fig. 9, we plot separately the number of ABPs inside and out-
side the ring at Pe = 150 and δ = 1.75, where the aggregate
is in LC form. We observe an asymmetry in the number of
ABP deposition since most of the time, a larger number of
particles are deposited on the outer surface. This property is
more clear in the time-averaged number of particles on the
outer, as well as on the inner surface of the wall [Fig. 9(a)].
In Fig. 9(b) we plot the difference (Nout − Nin )/N for five
independent simulations, which reaffirms the larger number of
aggregates on the outer surface of the wall. This observation
is significant as it implies that there is a net imbalance in the
active force applied by the adhered particles on the wall, as
every particle has the same propulsion speed.

IV. DYNAMICS OF THE MOVING RING

Our analysis shows that there is an imbalance in the num-
ber of particles that adhere to inside and outside of the circular
ring. This imbalance can result in a nonvanishing net force
when the dense-phase forms LC. When the circular ring is
not restricted to move, the nonzero net force can cause its
directed locomotion. Here we examine the possibility of using
the aggregation anisotropy as a propulsion mechanism of a

FIG. 10. (a) Typical trajectories of the ring for different ABP
aggregation on the circumference for Pe = 150. The connected dense
phase corresponding to δ = 1.25 (blue), shows a more diffusive
motion for the ring, whereas the localized cluster corresponding to
δ = 1.75 (red), show directed motion at long timescale. (b) The
mean-squared-displacement (〈�r2(τ )〉 ∼ τα) of the center-of-mass
of the ring for different wall porosity for Pe = 150. (Inset) the
exponent α(τ ) from the mean-squared-displacement plot indicating
diffusive behavior (α � 1) for the connected dense phase and near
ballistic behavior for the localized cluster (α � 2).

passive ring. The ring displaces as a rigid body due to the net
force acted on its wall particles, using the method described
in Sec. II. Keeping the radius constant at R = 64 and activity
Pe = 150, we study the dynamics of the ring for δ ranging
from 1.25 to 1.95. In the case of static walls, we observe
CDP for δ < 1.65 and LC for higher values less than 1.95.
In Fig. 10(a), we plot the trajectory of the center-of-mass of
the ring up to time t = 4500 and compare it for δ = 1.25
and δ = 1.75. Although the propulsion speed and the total
number of ABPs are identical for both the cases, the ring
with higher porosity covers a much larger distance at a given
time. This difference in trajectories indicates that there exists
a propulsion mechanism of porous rings when the dense phase
forms LC.

The difference in the dynamics of the ring for different δ

is more evident when we compare mean-square-displacement
(〈�r2〉) of the center-of-mass of the ring, where 〈�r2(τ )〉 =
〈(rcm(t + τ ) − rcm(t ))2〉, 〈.〉 indicates both time and ensem-
ble average [Fig. 10(b)]. When the dense-phase form CDP
(δ = 1.25, for example), the 〈�r2〉 ∼ t , shows a diffusive
dynamics, indicating the lack of long-term correlation in net
forces acting on the ring. However, in the case of LC (for
example, δ = 1.75), the mean-square-displacement behavior
is qualitatively different. In this case, we observe a diffusive
behavior at low timescale, as in the case of CDP. However,
at later times we observe a cross-over to a nearly ballistic dy-
namics (〈�r2〉 ∼ t2), indicating a more correlated force acting
on the ring. This behavior is more evident from the exponent
α = ∂ ln(〈�r2〉)/∂τ [Fig. 10(b)]. This type of cross-over from
a diffusive to a near-ballistic dynamics is observed in different
types of active systems, as well as passive tracer particles
immersed in an active bath [55–59]. Though the wall-particles
are themselves not self-propelled, the coordinated behavior
of the aggregates in case of LC leads to directed behavior.
This behavior clearly indicates that it is possible to extract
useful work from the bath of ABPs without inducing any
shape anisotropy of the passive particle. We note that the
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self-propulsion is most effective when the dense-phase form
a LC on the surface, at moderate values of δ.

V. SUMMARY

We have studied the morphology of ABP aggregates on the
presence of circular porous walls and studied its variation with
wall porosity and particle mobility. We observe a qualitative
change in aggregate morphology as the wall porosity is in-
creased from a small to moderate value, from a continuously
spread cluster to a localized cluster. At high porosity, the
aggregation on the wall becomes negligible. We also show
that aggregation behavior depends on the radius of the ring,
especially at moderate porosity values when localized clusters
are formed. At this range, the aggregation disappears when the
ring radius is smaller than a critical value. We also observe
an imbalance in the number of ABPs aggregated outside and
inside of the ring in a localized cluster state. This imbalance
causes a net nonvanishing force on the ring. We show that it
is possible to make use of this net nonvanishing force on the
ring to induce a directed motion and thereby extract useful
work out of the system.

Our numerical study is significant in understanding the
collective spreading of self-propelled elements on substrates.
The transition from a connected dense-phase to localized clus-
ters is already reported in planar, porous walls in a previous

study [77]. The current study shows that such a transition
also exists in the case of curved substrates. We also show
that the effect of the wall radius in dense-phase behavior
is significant. However, to obtain a detailed understanding
of morphological transition and to understand the origin of
macroscopic length-scales in such systems, further analysis is
required using combination of continuum and discrete mod-
els. Knowledge of such spreading behavior will be useful
to design geometries that prevent the spreading of microbes,
especially in the context of recent studies showing the sig-
nificance of MIPS in microbial adhesion on substrates [21].
Interestingly, our study reveals the possibility of utilizing
the aggregate geometry to extract useful work from a col-
lection of self-propelled particles. So far, the focus of such
studies is to determine optimal shapes to maximize useful
work that can be extracted. We show the additional possibility
of tuning the wall-particle interaction along with the wall
geometry.
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