
PHYSICAL REVIEW E 102, 032617 (2020)

Coarsening in the two-dimensional incompressible Toner-Tu equation: Signatures of turbulence
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We investigate coarsening dynamics in the two-dimensional, incompressible Toner-Tu equation. We show that
coarsening proceeds via vortex merger events, and the dynamics crucially depend on the Reynolds number Re.
For low Re, the coarsening process has similarities to Ginzburg-Landau dynamics. On the other hand, for high
Re, coarsening shows signatures of turbulence. In particular, we show the presence of an enstrophy cascade from
the intervortex separation scale to the dissipation scale.
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I. INTRODUCTION

Active matter theories have made remarkable progress in
understanding the dynamics of active suspension of polar
particles (SPP) such as fish schools, locust swarms, and bird
flocks [1–3]. The particle based Vicsek model [4] and the hy-
drodynamic Toner-Tu (TT) equation [5] provide the simplest
setting to investigate the dynamics of SPP. Variants of the TT
equation have been used to model bacterial turbulence [6,7]
and pattern formation in active fluids [8–12]. An important
prediction of these theories is the presence of a liquid-gas-like
transition from a disordered gas phase to an orientationally
ordered liquid phase [1,13,14]. This picture is dramatically
altered if the density fluctuations are suppressed by imposing
an incompressibility constraint. Toner and colleagues [15,16],
using dynamical renormalization group studies, showed that
for the incompressible Toner-Tu (ITT) equation the order-
disorder transition becomes continuous. The near ordered
state of the wet SPP on a substrate or under confine-
ment [16–18] belongs to the same universality class as the
two-dimensional (2D) ITT equation.

Investigating coarsening dynamics from a disordered state
to an ordered state in systems showing phase transitions has
been the subject of intense investigation [19–24]. In active
matter coarsening has been studied either in systems showing
motility-induced phase separation [13,25] or for dry aligning
dilute active matter (DADAM) [14,26–28]. A key challenge
in understanding coarsening in DADAM comes from the fact
that the density and the velocity field are strongly coupled to
each other. Indeed, Ref. [26] used both the density and the
velocity correlations to study coarsening in the TT equation.
The authors observed that the coarsening length scale grew
faster than equilibrium systems with the vector order param-
eter and argued that the accelerated dynamics are because of
the advective nonlinearity in the TT equation. However, how
nonlinearity alters energy transfer between different scales
remains unanswered.

The incompressible limit, where the velocity field is the
only dynamical variable, provides an ideal platform to in-
vestigate the role of advection. Therefore, in this paper, we
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investigate coarsening dynamics using the ITT equation [16]:

∂t u + λu · ∇u = −∇P + ν∇2u + f , (1)

where u(x, t ) is the velocity field at position x and time t , λ is
the advection coefficient, ν is the viscosity, f ≡ (α − β|u|2)u
is the active driving term with coefficients α, β > 0, and the
pressure P(x, t ) enforces the incompressibility criterion ∇ ·
u = 0. We do not consider the random driving term in (1) be-
cause we are interested in coarsening under a sudden quench
to zero noise. For λ = 0 and in the absence of the pressure
term, (1) reduces to the Ginzburg-Landau (GL) equation. On
the other hand, (1) reduces to the Navier-Stokes (NS) equa-
tion on fixing α = 0, β = 0, and λ = 1. Since most studies
of dry active matter are done on a substrate, we investigate
coarsening in two space dimensions.

By rescaling x → x/L, t → αt , u → u/U , and P →
P/αUL, we find that the Reynolds number Re = λUL/ν

and the Cahn number Cn = �c/L completely characterize the
flow (see Appendix A). Here U = √

α/β is the characteristic
speed, and �c = √

ν/α is the length scale above which fluctu-
ations in the disordered state u = 0 are linearly unstable.

We use a pseudospectral method [29,30] to perform direct
numerical simulation (DNS) of (1) in a periodic square box
of length L. The simulation domain is discretized with N2

collocation points. We use a second-order exponential time
differencing (ETD2) scheme [31] for time marching. Unless
stated otherwise, we set L = 2π and N = 2048. We initialize
our simulations with a disordered configuration, randomly
oriented velocity vectors drawn from a Gaussian distribution
with zero mean and standard deviation σ = U/3, and monitor
the coarsening dynamics. Our main findings are as follows:

(i) Coarsening proceeds via vortex mergers.
(ii) For low Re, advective nonlinearities can be ignored,

and the dynamics resembles coarsening in the GL equation.
(iii) For high Re, we find signatures of 2D turbulence,

and the coarsening accelerates with increasing Re. We also
provide evidence of a forward enstrophy cascade which is a
hallmark of 2D turbulence.

In the following sections we discuss our results on the
coarsening dynamics and then present conclusions in Sec. IV.
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FIG. 1. Pseudocolor plots of the vorticity field ω = ẑ · ∇ × u superimposed on the velocity streamlines at different times for (a) Re =
2π × 102 and (c) Re = 2π × 104 in the coarsening regime. Contour plots of the vorticity field ω showing the merger of two isolated corotating
vortices (vortex-saddle-vortex configuration) at (b) Re = 2π × 102 and (d) Re = 2π × 104.

II. RESULTS

In the following, we quantity how the vortex dynamics
controls coarsening. The pseudocolor plot of the vorticity field
in Figs. 1(a) and 1(c) shows different stages of coarsening at
low Re = 2π × 102 and high Re = 2π × 104. During coars-
ening, vortices merge, and the inter-vortex spacing continues
increasing. For low Re = 2π × 102 [see Fig. 1(a)], the dy-
namics in the coarsening regime resembles defect dynamics
in the Ginzburg-Landau equation [20,23,32]. On the other
hand, for high Re = 2π × 104, vorticity snapshots resemble
2D turbulence. In particular, similar to vortex merger events
in 2D [33–36], it is easy to identify a pair of corotating
vortices undergoing a merger and the surrounding filamen-
tary structure. Earlier studies [36–38] on the vortex merger
in two-dimensional Navier-Stokes equations showed that the
filamentary structures formed during the merger process lead

to an enstrophy cascade. Because the ITT equation structure
is similar to NS equations, we expect that the vortex merger at
high Re will also lead to an enstrophy cascade.

To further investigate the vortex merger, we perform DNS
of the isolated vortex-saddle-vortex configuration at various
Reynolds numbers. For these simulations we use N = 4096
collocation points. Furthermore, to minimize the effect of
periodic boundaries, we set α = −10 for r > 0.9L/2 and keep
α = 1 otherwise, where r ≡

√
(x − L/2)2 + (y − L/2)2. This

ensures that the velocity decays to zero for r � 0.9L/2. Note
that a vortex in the 2D ITT equation is a point defect with unit
topological charge and core radius �c (see Appendix B).

We observe that during the evolution of a vortex-saddle-
vortex configuration [see Figs. 1(b) and 1(d)] (i) similar to
defect dynamics in the GL equation [32,39,40], each vortex
gets attracted to the saddle due to the opposite topological
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FIG. 2. Plot of the energy dissipation rate ε(t ) vs time at var-
ious Reynolds numbers. The early time evolution of ε(t ) is well
approximated by (2) (solid black line). At late times, ε(t ) decays
as ε(t ) ∼ t−δ ln(t ) (black solid lines), with δ obtained using a least-
squares fit. Inset: Plot of Re vs δ and the fit δ ∼ −2.71 + 0.46 ln(Re)
for Re � 1. For Re → 0, consistent with Ginzburg-Landau scaling,
we obtain δ → 1.

charge, (ii) the two vortices rotate around each other, similar
to convective merging in NS [35,36], and (iii) the flexure
of the vortex trajectory depends on Re (see Appendix C).
Thus, a vortex merger event in the two-dimensional ITT equa-
tion has ingredients from both the NS and GL equations. In
Appendix C, we provide a more detailed investigation of the
vortex merger with varying Re.

To quantify coarsening dynamics, we conduct a series
of high-resolution DNSs (N = 2048) of the ITT equation
by varying Re while keeping Cn = 1/(100L) fixed. For en-
semble averaging, we evolve 48 independent realizations at
every Re. We monitor the evolution of the energy spectrum
Ek (t ) ≡ 1

2

∑
k−1/2�p<k+1/2〈|ûp(t )|2〉, and the energy dissipa-

tion rate (or, equivalently, the excess free energy) ε(t ) ≡
〈2ν

∑
k k2Ek (t )〉. Here ûk(t ) ≡ ∑

x u(x, t ) exp(−ik · x), i =√−1, and the angular brackets indicate the ensemble aver-
age [41].

A. Energy dissipation rate

The time evolution of the energy dissipation rate ε(t ) is
shown in Fig. 2. For the initial disordered configuration, be-
cause the statistics of velocity separation is Gaussian, we
approximate the fourth-order correlations in terms of the prod-
uct of second-order correlations to get the following equation
for the early time evolution of the energy spectrum [42]:

∂t Ek (t ) ≈ [2α − 8βE (t )]Ek (t ) − 2νk2Ek (t ), (2)

where E (t ) = ∑
k Ek (t ). In Fig. 2 we show that the early-time

evolution of the energy dissipation rate ε(t ) obtained from (2)
is in good agreement with the DNS.

For late times, coarsening proceeds via vortex (defect)
mergers. For GL equations in two dimensions, Refs. [39,43]
show that ε(t ) ∝ t−1 ln(t ). In our simulations, we find that
ε(t ) ∝ t−δ ln(t ), where δ is now Re dependent. For low Re,

FIG. 3. Plots comparing the time evolution of n(t ), L(t ), and
ε(t ) for (a) Re = 2π × 102, and (b) Re = 2π × 104. The curves
are vertically shifted to highlight identical scaling behavior [n(t ) ∝
L−2(t ) ∝ ε(t ) ln(t ) ∝ t−δ] in the coarsening regime.

where the effect of the advective nonlinearity can be ig-
nored, we recover GL scaling (δ → 1 as Re → 0). For high
Re, coarsening dynamics is accelerated with δ ∼ −2.71 +
0.46 ln(Re) (see Fig. 2, inset).

Energy dissipation rate and the coarsening length scale

We now discuss the relationship between the energy dis-
sipation rate, the defect number density, and the coarsening
length scale. The coarsening length scale [23,24,32,44,45]

L(t ) ≡ 2π

∑
k Ek (t )∑

k kEk (t )
(3)

has been used to monitor interdefect separation during the
dynamics.

We identify defects from the local minima of the |u| field
in our DNS of the ITT equation and define the defect number
density as n(t ) ≡ Nd (t )/L2, where Nd denotes the number of
defects at time t [46]. In Fig. 3, we show that in the coarsening
regime n(t ) ∝ L−2(t ) ∝ ε(t )/ ln(t ) for low Re = 2 × 102 as
well as high Re = 2 × 104. As discussed above, the energy
dissipation rate decays as ε(t ) ∼ t−δ ln(t ) in the coarsening
regime. Similar to GL dynamics, we find that n(t ) ∝ L−2(t )
even for the ITT equation. However, both n(t ) and L−2(t )
show a power-law decay (n ∝ L−2 ∼ t−δ) without any log-
arithmic correction.
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FIG. 4. (a) Plot of the radial distribution function g(r) for Re =
2π × 102 at time t = 40 and Re = 2π × 104 at time t = 10 in
the coarsening regime. The dashed black line indicates theoretical
prediction g(r) = 1 for uniformly distributed points. Plots showing
L(t )/R(t ) for (b) Re = 2π × 102 and (c) Re = 2π × 104. L(t )/R(t )
is fairly constant in the coarsening regime (shaded region).

A purely geometrical argument can be constructed to ex-
plain the observed relation between n(t ) and L(t ). As we
start our simulations from a disordered configuration, defects
are expected to be uniformly distributed over the entire sim-
ulation domain. In Fig. 4(a), we plot the radial distribution
function [47]

g(r) ≡ 1

2πrdrn(t )

∑
i �= j

δ(r − ri j ). (4)

Here ri j = |ri − r j |, ri are the defect coordinates, and dr is
the bin width used to calculate g(r). Consistent with our
assumption above, we find g(r) = 1, indicating defects are
uniformly distributed in the coarsening regime. Then follow-
ing Refs. [48,49] we get R(t ) = 1/2

√
n(t ), where R(t ) is the

average nearest-neighbor distance at time t . Consistent with
the dynamic scaling hypothesis [20], in Figs. 4(b) and 4(c) we
show that L(t ) ∝ R(t ) in the coarsening regime. Using this,
we get L(t ) ∝ 1/

√
n(t ) independent of Re.

For systems with topological defects, the energy dissipa-
tion rate (or the excess free energy) is proportional to the
defect number density n(t ) [20,39,40,43,50]. Thus, consistent
with Fig. 3, we get L(t ) ∝ 1/

√
ε(t ) (apart from the logarith-

mic factor).

B. Energy spectrum

The plots in Figs. 5(a) and 5(b) show the energy spectrum
Ek (t ) versus k at different times for low Re = 2π × 102 and
high Re = 2π × 104. In both cases, the energy spectrum in the
coarsening regime shows a power-law scaling Ek (t ) ∝ k−3.
We find that consistent with the dynamic scaling hypothesis

FIG. 5. Time evolution of the energy spectra for (a) Re = 2π ×
102 and (b) Re = 2π × 104. Inset: The scaled energy spectrum
kLEk (t ) versus k/kL shows an excellent collapse between wave
numbers kL and k�c (kd ) for Re = 2π × 102 (Re = 2π × 104), con-
firming the dynamical scaling hypothesis. The wave numbers k�c and
kd at different times are marked by vertical dashed lines (same colors
as the spectra).

[20], the scaled spectrum collapses between wave numbers
kL ≡ 1/L and k�c ≡ �−1

c for low Re. At high Re the collapse
is between kL and the dissipation wave number kd [see insets
in Figs. 5(a) and 5(b)].

The observed k−3 scaling for the energy spectrum can ap-
pear because of (i) the modulation of the velocity field around
the topological defects (Porod’s tail) [32] and (ii) the enstro-
phy cascade, similar to two-dimensional turbulence, due to the
advective nonlinearity in (1).

C. Enstrophy budget

To investigate the dominant balances between different
scales, we use the scale-by-scale enstrophy budget equation

∂tk (t ) + Tk (t ) = −2νk2k (t ) + Fk (t ), (5)

where k ≡ k2Ek is the enstrophy, Fk (t ) ≡ k2(û−k · f̂ k + ûk ·
f̂ −k ) is the net enstrophy injected because of active driving,
Tk ≡ dZk (t )/dt is the enstrophy transfer function, and Zk ≡∑N/2

|p|�|k| ω̂p · ̂(u · ∇ω)−p is the enstrophy flux.
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FIG. 6. (a) Plot of the enstrophy flux Zk (t )/Zm(t ) versus k at
Re = 2π × 104 for different times in the coarsening regime. Wave
numbers kL and kd are marked with vertical dashed lines (same
colors as the main plot). Inset: Time evolution of Zm(t ). (b) En-
strophy budget: Plot of the transfer function Tk ≡ dZk/dk, enstrophy
injection due to the active driving Fk , and the enstrophy dissipation
Dk = −2νk2k for Re = 2π × 104 and at time t = 7 in the coarsen-
ing regime. Inset: Plot of different terms in the enstrophy budget for
low Re = 2π × 102 and at time t = 25 in the coarsening regime.

The classical theory of 2D turbulence [51–56] assumes the
presence of an inertial range with constant enstrophy flux at
scales smaller than the forcing scale and larger than the dissi-
pation scale. Indeed, for high Re = 2π × 104, in Fig. 6(a) we
confirm the presence of a positive enstrophy flux Zk between
wave number kL ≡ 1/L, corresponding to the intervortex sep-
aration, and the dissipation wave number kd ≡ (8ν3/Zm)−1/6

for 2 � t < 30 in the coarsening regime. As the coarsening
proceeds, the region of positive flux becomes broader, and
kL shifts to smaller wave numbers, but the maximum value
of the flux Zm(t ) decreases [Fig. 6(a), inset]. In Fig. 6(b)
we plot different terms in the enstrophy budget equation (5).
We find that the active driving primarily injects enstrophy
(Fk > 0) around wave number kL but, unlike classical turbu-
lence, it is not zero in the region of constant enstrophy flux
(kL < k < kd ). Viscous dissipation is active only at small
scales k � kd . At late times t > 30, the enstrophy flux is
negligible [Fig. 6(a), inset].

For low Re, the enstrophy transfer Tk is negligible, and
the enstrophy dissipation Dk (t ) balances the injection because
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FIG. 7. Plot of the third-order velocity structure function S3(r, t )
scaled by the maxima of enstrophy flux Zm(r) for t = 5–9 in the
coarsening regime. The dashed black line shows the theoretical pre-
diction S3(r)/Zm(t ) = 1

8 r3 for comparison.

of the active driving Fk (t ) [see Fig. 6(b), inset]. Therefore,
the k−3 scaling in the energy spectrum [Fig. 5(a)] is due to
Porod’s tail.

D. Third-order velocity structure function

The real-space indicator of the enstrophy flux in 2D tur-
bulence is the following exact relation for the third-order
velocity structure function:

S3(r, t ) = 1
8 Zk∼1/rr3. (6)

Here S3(r, t ) ≡ 〈[δru]3〉, δru ≡ [u(x + r, t ) − u(x, t )] · r̂, and
the angular brackets indicate spatial and ensemble aver-
aging [57,58]. In the statistically steady turbulence, the
enstrophy flux Zk is constant in the inertial range and is equal
to the enstrophy dissipation rate. During coarsening in ITT,
we observe a nearly uniform flux Zk for kL � k � kd , albeit
with decreasing magnitude [see Fig. 6(a)]. Therefore, for ITT
we choose Zk∼1/r = Zm(t ) in (6). In Fig. 7, we show the
compensated plot of S3(r, t ) in the coarsening regime and
find the inertial range scaling to be consistent with the exact
result (6).

E. Effect of noise on the coarsening dynamics

To investigate the effect of noise on the coarsening dynam-
ics, we add a Gaussian noise η(x, t ) to the ITT equation [16],

∂t u + λu · ∇u = −∇P + ν∇2u + f + η, (7)

where 〈η(x, t )〉 = 0 and 〈ηi(x, t )η j (x′, t ′)〉 = Aδi jδ(x −
x′)δ(t − t ′), where A controls the noise strength. In Fig. 8,
we show that the evolution of the energy dissipation rate
ε(t ) for Re = 2π × 104, averaged over 16 independent
noise realizations, remains unchanged for different values of
A = 0, 0.1, and 0.01. Clearly, the presence of noise in the ITT
equation does not alter the coarsening dynamics.
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FIG. 8. Plot comparing the evolution of the energy dissipation
rate at different noise strengths for Re = 2π × 104. For ensem-
ble averaging, we evolve 16 independent realizations at A = 10−1

and A = 10−2.

III. COARSENING IN ITT VERSUS BACTERIAL
TURBULENCE

Bacterial turbulence (BT) refers to the chaotic spa-
tiotemporal flows generated by dense suspensions of motile
bacteria [6,59]. The dynamics of a turbulent bacterial suspen-
sion is modeled by the ITT equation, albeit with the viscous
dissipation in ITT replaced with a Swift-Hohenberg-type
fourth-order term to mimic energy injection due to bacterial
swimming [6,7,42,60,61],

∂t u + λu · ∇u = −∇P − ν∇2u + �∇4u + f , (8)

where ν > 0 and the parameter � > 0.
In contrast to BT (8), the ITT is a model of flocking

dynamics. Indeed, the homogeneous, ordered state is a stable
solution of the ITT (1) but not of BT (8). Furthermore, (8) and
its variants show an inverse energy transfer from small scales
to large scales, whereas during coarsening in ITT we observe
a forward enstrophy cascade from the coarsening length scale
L to small scales.

IV. CONCLUSION

In conclusion, we have investigated coarsening dynamics
in ITT equations. We find that at low Reynolds number the
dynamics is similar to coarsening in the Ginzburg-Landau
equation, whereas for high Reynolds numbers coarsening
shows signatures of 2D turbulence. Specifically, for high
Reynolds numbers, we showed the presence of an enstrophy
cascade which accelerates the coarsening dynamics and ver-
ified the exact relation for the structure function. Our results
would also be experimentally relevant to a dense suspension
of active polar particles that undergo a flocking transition,
such as suspensions of active polar rods [62,63].
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APPENDIX A: DIMENSIONLESS ITT EQUATION

Consider the incompressible Toner-Tu (ITT) equation

∂t u + λu · ∇u = −∇P + ν∇2u + (α − β|u|2)u.

By rescaling the space x′ → x/L, the time t ′ → αt , the pres-
sure P′ → P/αLU , and the velocity field u′ → u/U , the ITT
equation becomes

αU∂t ′u′ + λU 2

L
u′ · ∇′u′ = −αU∇′P′ + νU

L2
∇′2u′

+ (α − βU 2|u′|2)Uu′,

where U 2 = α/β. Ignoring the primed index for convenience,
we arrive at the dimensionless form of the ITT equation:

∂t u + ReCn2u · ∇u = −∇P + Cn2∇2u + (1 − |u|2)u.

Here Re ≡ λLU/ν is the Reynolds number, Cn ≡ �c/L is the
Cahn number, and �c = √

ν/α is the length scale above which
fluctuations in the homogeneous disordered state u = 0 are
linearly unstable.

APPENDIX B: VORTEX SOLUTION

Consider the radially symmetric velocity field of an iso-
lated unbounded vortex u(x, t ) ≡ f (r)θ̂ , where θ̂ is the unit
vector along the angular direction, f (0) = 0, and f ′(1) = 0.
Substituting in the ITT equation, we get the following equa-
tions: (

f ′′ + f ′

r
− f

r2

)
= 1

Cn2 ( f 2 − 1) f , (B1)

P = ReCn2
∫ r

0

f 2(r′)
r′ dr′, (B2)

where the prime indicates the derivative with respect to r.
Note that (B1) does not depend on Re and is identical to the
equation of a defect in the Ginzburg-Landau equation [32].
In Fig. 9 we plot the numerical solution of f (r) for different
values of Cn. For Cn � 1, a regular perturbation analysis
reveals that f (r) → Ar(1 − r2/8Cn2).
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FIG. 9. Plot of f (r) vs r for different values of Cn.

032617-6



COARSENING IN THE TWO-DIMENSIONAL … PHYSICAL REVIEW E 102, 032617 (2020)

(a)

(b)

(c)

(d)

(e)

FIG. 10. (a)–(e) Contour plots of the vorticity field ω at various times during the merger process for different values of the Reynolds
number Re = 0, 2π × 102, 2π × 103, π × 104, and 2π × 104.

APPENDIX C: VORTEX MERGER DYNAMICS

To investigate the merger of two corotating vortices, we
perform a DNS of an isolated vortex-saddle-vortex con-
figuration at various Reynolds numbers. We use a square

domain of area L2 = 4π2 and discretize it with N2 = 40962

collocation points. Furthermore, to minimize the effect of
periodic boundaries, we set α = −10 for r > 0.9L/2 and
keep α = 1 otherwise, where r ≡

√
(x − L/2)2 + (y − L/2)2.
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FIG. 11. (a) Plot of intervortex distance d (t ) vs time t at various Reynolds numbers. The time axis is scaled by the merger time t0.
(b) Log-log plot of d (t ) vs t for Re = 0; the black dashed line shows the 1/

√
t scaling. (c) Plot of merger time t0 versus Re. As Re increases,

merger time decreases.
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This ensures that the velocity decays to zero for r � 0.9L/2.
The initial condition constitutes a saddle at the center of
the square domain and two vortices placed at coordinates
[(L − 1)/2, L/2] and [(L + 1)/2, L/2]. As discussed in the
main text, it is important to note that (i) similar to the GL
equation [32,39], vortices in ITT have a topological charge
and (ii) similar to the NS equation [64], the ITT equation has
an advective nonlinearity and the presence of pressure leads
to nonlocal interactions.

In Figs. 10(a)–10(e), we plot vorticity contours during
different stages of the vortex merger for different Re. Since
the saddle is at an equal distance away from the two vor-
tices, its position does not change during evolution. For low
Re = 0, the vortex dynamics has similarities to the over-
damped motion of defects with opposite topological charge

in the Ginzburg-Landau equation. Vortices get attracted to
the saddle and move along a straight-line path. On increasing
Re � 2π × 102, similar to Navier-Stokes, advective nonlin-
earity in the ITT becomes crucial. Not only are the vortices
attracted to the saddle, but they also go around each other.

In Fig. 11(a) we plot the intervortex separation d (t ) versus
time for different Re. Because of long-range hydrodynamic
interactions due to incompressibility, the merger dynamics
is accelerated even for Re = 0. The intervortex separation
decreases as d (t ) ∼ 1/

√
t [see Fig. 11(b)], in contrast to

the much slower d (t ) ∼ √
t0 − t observed in the GL dynam-

ics [50,66]. On increasing the Re number, inertia becomes
dominant, vortices rotate around each other, and d (t ) de-
creases in an oscillatory manner. The time for the merger t0
decreases with increasing Re [see Fig. 11(c)].
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