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Universality in incompressible active fluid: Effect of nonlocal shear stress
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Phase transitions in active fluids attracted significant attention within the last decades. Recent results show [L.
Chen et al., New J. Phys. 17, 042002 (2015)] that an order-disorder phase transition in incompressible active
fluids belongs to a new universality class. In this work, we further investigate this type of phase transition and
focus on the effect of long-range interactions. This is achieved by introducing a nonlocal shear stress into the
hydrodynamic description, which leads to superdiffusion of the velocity field, and can be viewed as a result
of the active particles performing Lévy walks. The universal properties in the critical region are derived by
performing a perturbative renormalization group analysis of the corresponding response functional within the
one-loop approximation. We show that the effect of nonlocal shear stress decreases the upper critical dimension
of the model, and can lead to the irrelevance of the active fluid self-advection with the resulting model belonging
to an unusual long-range Model A universality class not reported before, to our knowledge. Moreover, when the
degree of nonlocality is sufficiently high all nonlinearities become irrelevant and the mean-field description is
valid in any spatial dimension.
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I. INTRODUCTION

In recent years, many biological systems received signif-
icant interest because of their rich nonequilibrium statistical
physics properties [1,2]. One of the current challenges is
to describe the behavior of a large number of active parti-
cles, such as fish, birds, bacteria, etc. The main distinction
of active matter systems from their passive counterparts is
the ability of their particles to extract the energy from the
smallest spatial scales, e.g., consume food resources in an
ambient environment, and utilize it for the self-propulsion.
Such nonequilibrium systems can exhibit intriguing macro-
scopic collective behavior, which might be observed in almost
every realm in nature [3–9]. Whereas biologists tend to build
detailed representations of a particular case, the ubiquity of
the phenomenon suggests underlying universal features and
thus gives weight to the bottom-up modeling approach usually
favored by the physics community.

The theoretical study of active systems was pioneered three
decades ago by the work of Vicsek et al. [10], on the flocking
behavior. Using numerical simulations, a continuous order-
disorder phase transition was claimed to be found in the two-
dimensional system of self-propelled particles with alignment
interactions. It was later shown that the precise origin of the
phase transition is very sensitive to details of the simulation:
For example the system size or different protocols for velocity
update might change the type of phase transition from second
to first order [11–15]. Nevertheless, the Vicsek model brought
about a new and fruitful direction in the active matter research.

*viktor.skultety@ed.ac.uk

Since then, various theoretical and experimental active sys-
tems were studied, from the polar ordered active matter [3]
and systems with motility inducted phase separation [16] to
molecular motors [17], light activated colloids [18], birds and
fish swarms [19–22]. Marchetti et al. [1] recently classified
active systems into two classes depending on the interaction
between particles, dry and wet active matter. In the first case,
particles interact mainly with the surrounding medium via
effective friction force, such as Viscek-like particles [15,23],
while the latter is dominated by the long-range hydrodynamic
interactions between particles [24–27].

Historically, the first studied continuous model was a dry
active matter system introduced by Toner and Tu [28]. They
introduced the coarse-grained hydrodynamic equation for the
active medium using phenomenological and symmetry con-
siderations. The hydrodynamics is described by a Navier-
Stokes-like equation with violated Galilean invariance, which
can be interpreted as a direct consequence of the lacking
momentum conservation. The order-disorder phase transition
was extensively investigated by the means of renormalization
group (RG) method [3,28–30]. However, it was later realized
that the ordered state is actually unstable to any density
perturbations along the mean velocity field [31,32]. This led
Chen et al. [33] to analyze the incompressible version of
Toner-Tu model. They showed that its order-disorder tran-
sition belongs to a new universality class. One should note
that the fluid’s incompressibility cannot only be simulated
[7,34], but it has also been reported to arise in various exper-
imental situations, such as dense systems with strong repul-
sive short-range interactions [7] or systems with long-range
interactions [35,36]. Moreover, experimental findings show
very small speed fluctuations in starling flocks [37,38]. At
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last, the incompressible Tonner-Tu model is not only limited
to description of flocks and swarms, but its edge instability
has also been considered to describe tissue regeneration in
plants [39].

Despite the appearance of the long-range interactions in
some active systems, the original incompressible Toner-Tu
model does not assume any nonlocal interaction apart from the
incompressibility condition. This motivates the present work,
in which we propose a modification of active fluid equations,
by inclusion of nonlocal shear stress into the hydrodynamic
equations of motion. As we will show, the nonlocal shear
stress results in the superdiffusion of the velocity and the
vorticity field. The origin of this behavior can be linked to
the active particles performing Lévy walks [40,41], or sensing
perturbations of in the velocity over longer distances [35].
In fact, superdifussive Lévy walks have been reported in
several recent experiments [42–45]. Furthermore, our minimal
extension of the original model is the most convenient for
practical calculations, since it leads to the appearance of the
fractional Laplace operator, whose renormalization is well
understood in field theories [46–48].

Recently, there has also been an increased interest in dense
active matter systems that might display glassy-like behavior
[49–53]. In particular, the closely related aging phenomenon
is gaining more and more attention. A necessary condition
for aging is a presence of broken time invariance, e.g., by
preparing a system with special initial conditions [53,54].
However, in this work our aim is to study steady state and
therefore we choose such formulation of model in which time
translation invariance is preserved.

This work is divided into three sections and two appen-
dices. In Sec. II we introduce the incompressible dry active
matter model analyzed by Chen et al. [33]. The model is
then recast into the De Dominicis-Janssen response func-
tional formalism and the perturbation theory is described.
The analysis of the ultraviolet (UV) divergences is performed
and the renormalization process is carried out within the
leading one-loop approximation by the means of dimensional
regularization and subsequent ε expansion, consistent with the
former calculations [33]. In Sec. III we introduce the nonlocal
shear stress into the hydrodynamic description of the model
and briefly discuss its interpretation, and implication on the
energy dissipation. We then discuss the nonlocal modification
of the response functional formalism and carry out the renor-
malization procedure once more, however, in different way by
the combined analytic-dimensional renormalization scheme.
We finalize our field-theoretic analysis with the calculation of
fixed points, their stability and corresponding critical expo-
nents. Final remarks are reserved for Sec. IV. The details of
the actual calculations and explicit results of RG functions can
be found in the Appendices A and B, respectively.

II. CLASSICAL INCOMPRESSIBLE ACTIVE FLUID

A. Mesoscopic description

Let us stress once again that in this work we employ
field-theoretic RG method with dimensional regularization of
Feynman diagrams. This presupposes use of space dimension
d as a complex variable [55,56]. Hence, whenever necessary

we retain and write the d dependence explicitly. For future
convenience we also abbreviate spatiotemporal coordinates in
the following way x ≡ (t, x) = (t, x1, . . . , xd ).

The coarse grained description of the incompressible polar
dry active fluid is based on general hydrodynamic consider-
ations [7,8,57,58]. These are based on a proper identification
of slow variables and symmetries present in the model. The
starting point is the generalized stochastic equation of motion,
which takes the following form:

∂tvi + v j∂ jvi = ∂ jE ji − ∂i p + Fi + fi, (1)

∂ivi = 0, (2)

where ∂t ≡ ∂/∂t is time derivative, ∂ j ≡ ∂/∂x j is spatial
derivative, vi ≡ vi(x) is ith component of the velocity field
v = (v1, . . . , vd ). In contrast to the original Toner-Tu model
[28,29,59], we assume that the system is incompressible,
which leads to Eq. (2). The parameter λ0 not present in
the Navier-Stokes equation is allowed in the convective term
in Eq. (1), because the model is not Galilean invariant and
is valid only in a special coordinate system in which the
background environment is fixed. Hence, in general we have
λ0 �= 1.

Further, Ei j stands for the strain rate tensor, and p ≡ p(x)
is the pressure field which acts as a Lagrange multiplier
that enforces the incompressibility condition. Since we are
interested in the dry active fluid the total momentum is not
conserved. The simplest choice for the force Fi in accordance
with the symmetries is to introduce it in the following way:

Fi = − δ

δvi
U [v], U [v] = 1

2
τ0|v|2 + 1

4!
g10|v|4, (3)

where U [v] is akin to Landau potential in critical dynamics,
parameters τ0 and g0 are the mesoscopic deviation from the
criticality and the coupling constant, respectively.

The above force Fi might be interpreted as a friction
force of the environment acting on the active particles. On
the other hand, the random force fi is responsible for the
continuous energy supply from the microscopic spatial scales
and mimics the inherent stochasticity of the process. As usual,
fi is assumed to obey Gaussian statistics with zero mean and
two point correlator

〈 fi(x) f j (x
′)〉 = δ(t − t ′)

∫
dd k Dv

i j (k)eik·r, (4)

where r = x − x′ and the kernel function Dv
i j takes the follow-

ing form:

Dv
i j (k) = ν0Pi j (k). (5)

Hereinafter, Pi j (k) = δi j − kik j/k2 denotes the transversal
projection operator in the momentum representation intro-
duced because any longitudinal component of the random
noise fi can be eliminated by the redefinition of the pressure
field.

In accordance with previous works [8,33] we postulate
components of the modified strain rate tensor to be

Ei j = ν0εi j + S0Qi j, (6)

where εi j = (∂iv j + ∂ jvi ) is the classical strain rate tensor,
Qi j = viv j − δi j |v|2/d is the active nematic stress tensor
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[58,60] and ν0, S0 are the microscopic viscosity and the mi-
croscopic amplitude. The ensuing incompressible Toner-Tu
model takes the following form [33]:

∂tvi + λ0v j∂ jvi =ν0∂
2vi − (τ0 + g10|v|2/3!)v j − ∂i p̃ + fi,

(7)

∂ivi = 0, (8)

where λ0 = 1 − S0 and p̃ = p + (S0/d )|v|2 is the modified
pressure term, which does not affect the universal properties
of the system due to the incompressibility condition.

In contrast to incompressible fluid the energy balance
equation for the active fluid contains two additional terms

∂t E = −2ν〈〈ω2〉〉 − 2τ0E − 1

3!
g10〈〈v4〉〉 + 〈〈 fivi〉〉, (9)

where E = 〈〈v2/2〉〉 is the total kinetic energy, ωi = εi jk∂ jvk

is the vorticity and 〈〈. . . 〉〉 stands for an integration over
spatial variable x, i.e.,

〈〈. . .〉〉 ≡
∫

dd x . . . . (10)

In the disordered phase the parameter τ0 takes on positive
values, and only the random force is responsible for the energy
input. In the case of stationary flow ∂t E = 0, the random force
has to compensate not only for the dissipation of the energy
caused by the viscous forces, but by the “friction forces” as
well.

B. Field-theoretic formulation

Following standard procedures [61,62], we derive the De
Dominicis-Janssen response functional for the incompressible
dry active fluid

SSR[v′, v] = v′
i{∂t + ν0(−∂2 + τ0)}vi

+ ν0v
′
i (λ0v j∂ j + g10|v|2/3!)vi

− v′
iD

v
i jv

′
j/2, (11)

where we have rescaled the parameters as

τ0 → ν0τ0, g10 → ν0g10, λ0 → ν0λ0, (12)

due to the dimensional reasons. Note, that the modified pres-
sure term has disappeared from Eq. (11) due to the transver-
sality of the response field v′. We have also used a condensed
notation, in which integrals over the spatial variable x and the
time variable t , as well as summation over repeated indices,
are implicitly assumed. For instance, the second term on
the right hand side of Eq. (11) corresponds to the following
expression:

v′
i∂tvi =

∫
dt

∫
dd x

d∑
i=1

v′
i (x)∂tvi(x). (13)

To finalize the theoretical setup we further assume that fields
vi and v′

i vanish in the limits t → −∞ and r = |r| → ∞ for
any time instant t = const. This corresponds to a standard
formulation of initial conditions in critical dynamics [61,62]
and facilitates use of the field-theoretic approach. In principle,
it would be possible to generalize the model to account for
broken time invariance [54]. However, this would lead to

much more involved technical difficulties and such a problem
is left for future.

The field-theoretic formulation implies, that all the cor-
relation and response functions can be calculated from the
generating functional

Z[A] =
∫

Dϕ exp{−S[ϕ] + ϕA}, (14)

ϕ ≡ {v′, v}, A ≡ {Av′
, Av}, (15)

by taking appropriate variational derivatives with respect to
the corresponding source field A. For example, the linear
response function is obtained as follows:

〈vi(x)v′
j (x

′)〉 = δ2Z[A]

δAv′
i (x)δAv′

j (x′)
. (16)

The last term in exponential of Eq. (14) should be interpreted
as scalar product between corresponding terms, i.e.,

ϕA ≡ v · Av + v′ · Av′
.

In general, interacting field-theoretic models such as Eq. (14)
are not exactly solvable and one may treat them within
some perturbation scheme. Here, we utilize perturbative RG
approach. For its effective use it is advantageous to work
with the effective potential 
, which is defined by means of a
functional Legendre transformation [55,61] of the generating
functional (14)


[�] = lnZ[A] − A�, �(x) = δ lnZ[A]

δA(x)
. (17)

It can be shown [55,61] that action functional and effective
potential are related by the following relation:


[�] = −S[�] + (loop corrections). (18)

The effective potential 
 also serves as a generating functional
for vertex (one-particle irreducible) functions. These can be
obtained by taking sufficiently many variational derivatives of

, i.e.,


(N�,N�′ )({xi}, {x′
j}) = − δN�+N�′S[�]

δ�(x1) · · · δ�′(x′
1) · · ·

+ loop diagrams. (19)

Here, Nφ is a number of all fields appearing in one-particle
irreducible function, whereas N�′ is a number of all response
fields. The remaining term in Eq. (19) comprises of all one-
irreducible Feynman diagrams that can be constructed us-
ing corresponding Feynman rules. As usual in field-theoretic
models [62], the propagators are read off from the free
(quadratic) part, and the vertex factors from the interaction
part of the response functional (11). The exact form of propa-
gators and interaction vertices is the following:

〈viv
′
j〉0(k, ω) = Pi j (k)

−iω + ν0(k2 + τ0)
, (20)

〈viv j〉0(k, ω) = ν0Pi j (k)

ω2 + ν2
0 (k2 + τ0)2

, (21)

V III
v′

i (p)v jvk
= iλ0ν0Ti jk (p), (22)

V IV
v′

iv jvkvl
= −g10ν0Fi jkl , (23)
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FIG. 1. Feynman rules for the incompressible active fluid model.

where two tensor quantities

Ti jk (p) = p jδik + pkδi j, (24)

Fi jkl = 1
3 (δi jδkl + δikδ jl + δilδ jk ), (25)

were introduced. A graphical representation of perturbation
elements is displayed in Fig. 1. From a formal point of view,
model (11) represents an appealing combination of φ4 and
∂φ3 theory.

C. Renormalization

The perturbative RG analysis is based on the analysis of
the canonical dimensions of the model [55,61,62]. As a rule,
dynamical models necessarily exhibit two-scale dependence,
one temporal scale and another spatial scale. Due to this
observation total canonical dimension dQ for a quantity Q is
introduced

dQ = dk
Q + dωdω

Q, (26)

where dk
Q and dω

Q are the momentum and frequency scal-
ing dimensions, respectively. Parameter dω is usually chosen
according to the assumed dispersion law of the free theory
ω ∼ kdω , which in our case corresponds to dω = 2. In order
to obtain a renormalizable model, we have to eliminate all di-
vergences arising in vertex functions (19) with a non-negative
value of UV exponent

d
 = dc + 2 −
∑
�

d�n�, (27)

where dc is the upper critical dimension of the model (in the
present case dc = 4), d� is the total canonical dimension of
the field �, and n� is the total number of the field � appearing
in a given function 
, all calculated at d = dc. All canonical
dimensions for the active fluid model can be found in Table I.
The degree of divergence of any vertex function 
 for model
(11) is then given by the formula

d
 = 6 − Nv − 3Nv′ . (28)

It should be noted that due to appearance of closed loops of
retarded propagators all nonvanishing one-irreducible func-
tions must have at least one field argument v′, i.e. Nv′ � 1.

TABLE I. Canonical dimensions of the bare fields and bare
parameters for the active fluid model. The parameter ε = 4 − d .

Q v v′ √
τ , μ, 
 ν0, ν g10, g20 = λ2

0 λ, g1, g2

dk
Q

d
2 − 1 d

2 + 1 1 −2 ε 0
dω

Q 0 0 0 1 0 0
dQ

d
2 − 1 d

2 + 1 1 0 ε 0

Taking this into account and relation (28) we find that ultravi-
olet divergences are present in the following one-irreducible
functions:


v′v : with counterterms v′∂tv, v′∂2v, τv′v, (29)


v′vv : with counterterm v′(v∂ )v, (30)


v′vvv : with counterterm v′vvv, (31)


v′v′
: with counterterm v′v′. (32)

In order to eliminate all divergences it is sufficient to
renormalize fields according to prescription

vi → viZv, vi → v′
iZv′ , (33)

and parameters of the model in the following way:

g10 = μεg1Zg1 , g20 = μεg2Zg2 , λ0 = με/2λZλ, (34)

τ = Zτ τ0 + τc, ν = ν0Zν . (35)

Here, g20 = λ2
0 stands for the expansion parameter of the

perturbation theory and μ is the renormalization mass scale,
an arbitrary parameter that appears in the renormalization
process [55,61]. Universal quantities and properties are inde-
pendent of μ. The parameter τc is required due to the additive
renormalization of the mass parameter τ0, but its correc-
tions are not captured within the dimensional renormalization
method employed in this paper. The renormalized response
functional finally takes the form

SSR
R [v′, v] = v′

i{Z1∂t + ν(Z2(−∂2) + Z3τ )}vi

+ νv′
i (Z4λμε/2v j∂ j + Z5g1μ

ε|v|2/3!)vi,

− Z6ν0v
′
iPi jv

′
j/2, (36)

which is augmented with the following renormalization of the
kernel function:

Dv
i j (k) = Z6νPi j (k). (37)

In Eqs. (36) and (37) we have introduced the following short-
hand notation for renormalization constants:

Z1 = ZvZv′ , Z2 = Z1Zν, Z3 = Z2Zτ ,

Z4 = Z2ZλZv, Z5 = Z2Zg1 Z2
v , Z6 = ZνZ2

v′ . (38)

The inverse relations are readily found

Zλ = Z−1/2
1 Z−3/2

2 Z4Z1/2
6 , Zτ = Z3Z−1

2 ,

Zv = Z1/2
1 Z1/2

2 Z−1/2
6 , Zv′ = Z1/2

1 Z−1/2
2 Z1/2

6 ,

Zg1 = Z−1
1 Z−2

2 Z5Z6, Zν = Z2Z−1
1 , Zg2 = Z2

λ . (39)
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In order to renormalize the model to the one-loop order we
have to analyze following expansion of vertex functions (19):

Γv′
ivj

= iΩZ1 − νk2Z2 − ντZ3 +

+
1
2

,
(40)

Γv′
i(p)vjvk

= iλμε/2νZ4Tijk(p) +

+ 2 + + 2 ,

Γv′
ivjvkvl

= −g1μ
ενZ5Fijkl + 3

+ 3 + 6 ,

(41)


v′
iv

′
j
= νZ6Pi j (k), (42)

with higher order corrections neglected. The approach for cal-
culating Feynman diagrams and the resulting normalization
constants can be found in Appendices A and B. Let us remark
that there is no contribution to the renormalization of the
random force correlator within the one-loop approximation
as in the classical compressible Navier-Stokes equation in the
vicinity of d = 4 due to the transversality of the velocity field
v [63]. However, this situation will change in the two-loop
approximation (where corrections appear due to presence of
the quartic vertex), and therefore no exact relations between
scaling exponents can be derived in general.

D. Critical scaling

The investigation of the large spatial and long temporal
properties requires a thorough analysis of the Green’s func-
tions at different scales [55,61,62]. The fundamental relation
between renormalized and bare Green’s functions takes form

G(Nv ,Nv′ )
0 ({ki}, e0) = ZNv′

v′ (g)ZNv

v (g)

× G(Nv,Nv′ )({ki}, e, μ), (43)

where {ki} = {(ki, ωi )}Nv+Nv′
i=1 is meant as a short-hand for

all external frequencies and momenta entering a Green’s
function, e0 ≡ {g0, ν0, τ0} is the set of all bare parameters,
e = e(μ) are their renormalized counterparts at the scale μ,
g = g(μ) ≡ {g1, g2} is the set of all renormalized charges, Nv

is the number of fields v entering the function G0, and Nv′ is
the number of corresponding response fields v′.

We define differential operators Dx = x∂x|e and D̃x =
x∂x|e0 to be logarithmic differential operators with respect
to the renormalized parameters and bare parameters fixed,
respectively. The investigation at different scales requires
performing the logarithmic partial derivative with respect to
the μ while holding bare parameters e0 fixed. This yields

TABLE II. Fixed points with their regions of stability.

FP/g∗
i |λi g∗

1 g∗
2 λ1 λ2

FP0 - Gaussian 0 0 −ε −ε

FPI - Navier-Stokes 0 8
3 ε − 1

3 ε ε

FPII - Model A 24
17 ε 0 ε − 31

51 ε

FPIII - Active Fluid 72
113 ε 248

113 ε ε 31
113 ε

fundamental RG equation

{Dμ + βg∂g − γνDν − γτDτ + Nvγv + Nv′γv′ }
× G({ki}, e, μ) = 0, (44)

with

βg = D̃μg, γx = D̃μ ln Zx, (45)

being the corresponding beta function βg of charge g and
anomalous dimension γx of quantity x. We calculate the latter
from the renormalization constants by means of an approxi-
mate relation

γx = (βg1∂g1 + βg2∂g2 ) ln Zx, (46)

� −ε(Dg1 + Dg2 ) ln Zx. (47)

Relations between various anomalous dimensions can be then
found from the relations between the renormalization con-
stants (39), from which we infer

γv = γ1 + γ2 − γ6

2
, γv′ = γ1 − γ2 + γ6

2
, (48)

γg1 = γ5 + γ6 − γ1 − 2γ2, γg2 = 2γλ, (49)

γλ = 2γ4 − γ1 − 3γ2 − γ6

2
, (50)

γτ = γ3 − γ2, γν = γ2 − γ1. (51)

The explicit form of the anomalous dimensions is given in
Appendix B. The general form of beta functions is βg =
−g(dg + γg) and for the present model we have

βg1 = −g1

(
ε − 17g1

24
− g2

4

)
, (52)

βg2 = −g2

(
ε − 5g1

18
− 3g2

8

)
. (53)

At the fixed point g∗ both beta functions identically vanish,
i.e., βg1 (g∗) = βg2 (g∗) = 0 The stability of a given fixed point
is determined by the eigenvalues λ of the matrix

�i j = ∂giβg j , (54)

where Re[λ] > 0 for a stable fixed point. All fixed points and
the corresponding eigenvalues of stability matrix are listed in
Table II.

The first fixed point FP0 represents the Gaussian fixed
point, for which all interactions are infrared irrelevant. This
fixed point is infrared (IR) stable for ε < 0 or d > 4 as ex-
pected. The following two fixed points FPI and FPII represent
the Navier-Stokes and the transversal Model A universality
class. Both of these fixed points are unstable for any value
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of the exponent ε. The last fixed point FPIII represents a
new universality class of incompressible active fluid already
reported recently in Ref. [33].

In statistical physics, we are mainly interested in the
macroscopic behavior of the two-point correlation function

G(2,0)(k, ω) = k2�v−d−�ω G(2,0)
±

( τ

k�τ
,

ω

νk�ω

)
, (55)

where ± denotes behavior above and below the phase tran-
sition, respectively. The critical exponents η, 1/ν and z, are
found by solving the differential RG equation (44) at the
fixed point. This can be achieved in a straightforward manner
[61,62], and, in principle, the general scaling formula for
a connected Green’s functions can be written down. Let us
note that the total scaling dimension of any quantity Q is
introduced as follows [61]:

�Q = dk
Q + �ωdω

Q + γ ∗
Q, �ω = 2 − γ ∗

ν , (56)

with dk
Q and dω

Q being the momentum and frequency canonical
dimensions from Table I. Critical exponents are then tradition-
ally defined as

η = 2 − d + 2�v, 1/ν = �τ , z = �ω. (57)

For the FPIII we thus obtain the following prediction for
critical exponents:

η = 31

113
ε, 1/ν = 2 − 58

113
ε, z = 2 − 31

113
ε, (58)

which is in agreement with the original results by Chen
et al. [33].

III. THE EFFECT OF NONLOCAL SHEAR STRESS

A. Mesoscopic description

In this section we assume that shear stress of the active fluid
is non-local in nature, i.e., active particles can feel “long-range
friction forces”. This leads to superdiffusive properties of the
velocity field, which can be also viewed as the consequence of
active particles performing Lévy flights [40,41]. As a result,
nonlocal shear stress increases kinetic energy dissipation,
which reduces the correlations in the system. We will first
formulate the hydrodynamic model, and leave the detailed
discussion about its relation to microscopic features of the
matter at the end of this section.

In order to study nonlocal effects, we modify the strain rate
tensor [64] in the following way:

εi j (x) → εi j (x) +
∫

dd y εi j (y)κ (|y − x|). (59)

The first term on the right hand side represents the classical
local strain stress, and the second term represents the non-
local contributions. The kernel function κ (|r|) weights the
contributions from the long-distance points and by taking into
account the isotropy of the system, we expect it to follow an
ordinary power law κ (|r|) ∼ 1/|r|d−2α . Using the definition of

the Riesz fractional integrodifferential formula [65]

[I2αεi j](x) ≡
∫

dd y

C2α

εi j (y)

|x − y|d−2α
→ ( − ∂2

x

)−α
, (60)

Cα = 2απd/2 
(α/2)


((d − α)/2)
, (61)

where 
(. . .) is the Gamma function, the Toner-Tu model with
long-range interactions takes the following form:

∂tvi + λ0v j∂ jvi = ν0∂
2vi − w0(−∂2)1−αvi − ∂i p̃

− (τ0 + g10|v|2/3!)v j + fi, (62)

∂ivi = 0, (63)

where w0 is a mesoscopic amplitude. For the completeness we
also mention the vorticity equation for the nonlocal Toner-Tu
theory

∂tωi = ν0∂
2ωi − w0(−∂2)1−αωi

− τ0ωi + fi + O(v2). (64)

Equations (62) and (64) imply that both velocity and vortic-
ity field undergo fractional diffusion process, which implies
that any perturbation to the velocity and vorticity field will
smooth out much faster that in the local case α = 0. This
indicates much weaker correlations in the present nonlocal
theory, which can be already seen from the real-space rep-
resentation of the equal-time correlation function (in the limit
ν0 = τ0 = 0)

〈vi(x, t )v j (y, t )〉0 ∝ 1

|x − y|d−2(1−α)
. (65)

The origin of this phenomenon can be found in the energy
balance equation (9), which is in the case with long-range
(LR) interactions modified as

∂t E = −2ν0〈〈ω2〉〉 − 2w0〈〈ωi(−∂2)−αωi〉〉−

− 2τ0E − 1

3!
g0〈〈v4〉〉 + 〈〈 fivi〉〉, (66)

where

〈〈ωi(−∂2)−αωi〉〉(t ) =
∫

dd xdd y
ωi(x, t )ωi(y, t )

|x − y|d−2α
. (67)

Equation (66) implies larger energy dissipation, where
the additional losses are caused by the LR interactions
of the vorticity vector with the weight function determined
by the exponent α. In addition, the parameter w0 can be
interpreted as a “long-range viscosity” in this system. At this
point it is natural to expect, that for the values of α high
enough, any kind of perturbation will be immediately smooth
out and this type of decorrelation will eventually lead to the
mean-field description. These predictions are confirmed by
the RG analysis below.

Let us now discuss how to relate the nonlocal shear stress
(60) with the microscopic features of the matter. As mentioned
in the introduction, one way how to think about it is that it
describes the ability of active particles to sense perturbations
in the velocity field over longer distances. Moreover, recent
experiments on starling flocks show, that the interactions be-
tween individual particles are ruled by the topological rather
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than metric distances [66]. One may speculate, that this type
of “long-range” interactions may be effectively captured by
the expression (60), where the precise value of α would
have to be determined from the statistical properties of inter-
particle distances measured in an experiment.

The more experimentally appealing interpretation of the
nonlocal shear stress is the result of active particles perform-
ing Lévy flights. However, It should be noted that our model
(62) differs from the “Active Lévy Matter” model derived by
the means of the Boltzmann’s approach due to the absence
of certain nonlocal terms [40,41]. In the present work, the
mesoscopic hydrodynamic equation (62) has been derived
using solely phenomenological ideas in order to capture the
superdiffusive properties of the velocity field, and to keep the
RG analysis simple. In order to quantify the relation between
the nonlocal shear stress (62) and “Lévy properties” of active
fluids, the relation between the parameter α and dynamical
properties of individual particles is needed.

The effect of anomalous dispersion on diffusion is, how-
ever, a complex problem of itself and requires modeling of
transport of a scalar field in the velocity field, which we have
not done explicitly. A similar problem has been studied in
detail in the case of non-Galilean invariant synthetic velocity
field with anomalous dispersion law [67–69], where it has
been found that it may change diffusion of the scalar quan-
tities. As one may expect, the solenoidal part of the velocity
field enhances diffusion, whereas the potential part tends to
slow it down.

Since the current model (62) is purely solenoidal, we
expect that the nonlocal shear stress (60) is related to the
enhanced diffusivity of the particles. The nontrivial calcula-
tion of the exact quantitative relation for all values of α is,
however, beyond the scope of this work, which we hope to
carry out in the near future.

B. Field-theoretic renormalization

The De Dominicis-Janssen response functional for the
incompressible active fluid with LR interactions has the fol-
lowing form:

SLR[v̄′, v̄] = v̄′
i{∂t + ν̄0(−∂2 + w̄0(−∂2)1−α + τ̄0)}v̄i

+ ν̄0v̄
′
i (λ̄0v̄ j∂ j + ḡ10|v̄|2/3!)v̄i

− ν̄0v̄
′
iPi j v̄

′
j/2, (68)

where we have again rescaled parameters with viscosity due
to the dimensional reasons (with w0 → ν̄0w̄0) and we have
relabeled all parameters with bar in order to distinguish
parameters with their short-range (SR) counterparts. Note
that the nonlocality appears only in the quadratic part of
the response functional, while the interaction terms remain
unchanged.

In the following considerations we may apply the same
field-theoretic methods as have been used in Sec. II. There
are, however, certain important issues that are needed to be
discussed. Let us note that for α > 0, the SR diffusion term
is IR irrelevant in comparison to the LR diffusion. One might
think that the SR term can be neglected in our analysis, i.e.,
study only the limit w̄0 → ∞. This approach may however
lead to discontinuities in critical exponents between α < 0

TABLE III. Canonical dimensions of the bare fields and bare
parameters for the active fluid model with nonlocal shear stress.

Q v̄ v̄′ √
τ̄ , μ, 
 ν̄0, ν̄ ḡ10, ḡ20 = λ̄2

0 w̄0 w̄, λ̄, ḡ1, ḡ2

dk
Q

d
2 − 1 d

2 + 1 1 −2 ε α 0
dω

Q 0 0 0 1 0 0 0
dQ

d
2 − 1 d

2 + 1 1 0 ε α 0

and α > 0 regimes [47]. The point is that even if the SR
term in initially discarded, it is generated by renormalization
and acquires an anomalous scaling dimension of its own.
Therefore, the total scaling dimension of the SR term may
well be less than the canonical dimension 2. In order to resolve
this problem, one has to study the model in the region in which
the Fisher exponent of the SR model (given by the anomalous
dimension of the basic field: η = 2γ ∗

v ) is of the same order as
that of the LR model (the latter has a fixed value ηLR = 2α),
i.e., consider the model with both SR and LR interactions with
α ∼ γ ∗

v [46]. The model is renormalized in the sense of the
double-expansion scheme, where from the practical point of
view the ray scheme α ∝ ε is often employed [70].

The Feynman diagrammatic structure discussed in Sec. II
does not exhibit substantial differences of topological struc-
ture. However, the propagators attain the following form:

〈v̄iv̄
′
j〉0(k, ω) = Pi j

−iω + ν̄0(k2 + w̄0k2(1−α) + τ̄0)
, (69)

〈v̄iv̄ j〉0(k, ω) = ν̄0Pi j

ω2 + ν̄2
0 (k2 + w̄0k2(1−α) + τ̄0)2

. (70)

In order to obtain the large-scale properties, we have to
again analyze canonical dimensions of the model. There is,
however, a delicate point to deal with. The very notion of
unambiguous canonical dimensions relies on the generalized
homogeneity of the propagators under simultaneous scaling
of the frequency and wave number. This property is ab-
sent in Eqs. (69) and (70). To fix canonical dimensions the
quadratic term in the response functional (68) corresponding
to one of the wave-number dependent terms in the propagator
denominators may be treated as a part of the interaction.
Practically it is convenient to include the nonlocal term in
the interaction part so that, as it can be seen from the list
of canonical dimensions listed in Table III, the model has
the same canonical dimensions as its SR counterpart (with
additional parameter w̄0).

At this point it is instructive to recall the degree of diver-
gence in its generic form

d
 = d + 2 − 2αV2 +
(

d

2
− 2

)
V3 + (d − 4)V4 (71)

−
(

d

2
− 1

)
Nv −

(
d

2
+ 1

)
Nv′ . (72)

Here, V2, V3, and V4 are the numbers of two-, three- and four-
point vertices, respectively, in the one-irreducible graph. It is
seen that coefficients of all Vi’s vanish, when d = 4 and α = 0
giving rise to a logarithmic model with natural UV regulators
ε = 4 − d and α in a analytic-dimensional renormalization
scheme.
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Since the nonlocal terms do not renormalize, relation (71)
leads to the same divergent vertex functions as in the SR
model. In order to eliminate these divergences, we renormal-
ize all parameters of the theory as follows:

ḡ1 = μεḡ10Z̄ḡ1 , ḡ20 = μεḡ2Z̄ḡ2 , w̄ = μ2αw̄0Z̄w̄, (73)

λ̄ = με/2λ̄0Z̄λ̄, τ̄ = τ̄0Z̄τ̄ + τ̄c, ν̄ = ν̄0Z̄ν̄ , (74)

with v̄′ → v̄′Z̄v̄′ , v̄ → v̄Z̄v̄ . The renormalized action func-
tional takes then form

SLR
R [v̄′, v̄] = v̄′

i{Z̄1∂t + ν̄(Z̄2(−∂ )2

+ w̄μ2α (−∂2)1−α + Z̄3τ̄ )}v̄i

+ ν̄v̄′
i (Z̄4λ̄με/2v j∂ j + Z̄5ḡ1μ

ε|v̄|2/3!)v̄i

− Z̄6ν̄v̄′
iPi j v̄

′
j/2, (75)

where the short-hand notation for the renormalization con-
stants with bar above is the same as in Eq. (38)–(39). Ac-
cording to the general RG considerations [61] the nonlocal
term in the action (75) is not renormalized, which results in
the relation Z̄w̄ = Z̄−1

2 . The following vertex functions require
renormalization


v̄′
i v̄ j = i�Z̄1 − ν̄k2Z̄2 − ν̄μ2αw̄k2(1−α) − ν̄τ̄Z3 + · · · , (76)


v̄′
i (p)v̄ j v̄k = iλ̄με/2ν̄Z̄4Ti jk (p) + · · · , (77)


v̄′
i v̄ j v̄k v̄l = − ḡ1μ

εν̄Z̄5Fi jkl + · · · , (78)


v̄′
i v̄

′
j
= ν̄Z̄6Pi j (k) + · · · , (79)

and diagrammatic corrections display analogous perturbative
structure as has been found in the SR model, but with propa-
gators (69) and (70) and all quantities Q replaced with the LR
quantities Q̄ (with bar).

C. Asymptotic behavior

As in the case of the model with SR interactions, we
need to investigate the properties of the Green’s functions at
different scales

G0({ki}, ē0) = ZNv̄′
v̄′ (ḡ)ZNv̄

v̄ (ḡ)G({ki}, ē, μ), (80)

where now we have ē = {ḡ, ν̄, τ̄ }, ḡ = {ḡ1, ḡ2, w̄}. Relations
between anomalous dimensions if the LR model are the
same as in the case of SR model (48)–(51), with additional
constraint γw̄ = −γ2. Beta functions then follow in a straight-
forward manner

βḡ1 = − ḡ1

(
ε − 17ḡ1

24(1 + w̄)2
− ḡ2

4(1 + w̄)2

)
, (81)

βḡ2 = − ḡ2

(
ε − 5ḡ1

18(1 + w̄)2
− 3ḡ2

8(1 + w̄)2

)
, (82)

βw̄ = − w̄

(
2α − ḡ2

8(1 + w̄)2

)
, (83)

where βḡ = 0 at the fixed point, and the stability is determined
by the eigenvalues λ of the matrix

�i j = ∂ḡiβḡ j , (84)

where Re[λ] > 0 for a stable fixed point.

TABLE IV. Canonical dimensions of the bare fields and bare
parameters for AF model. Note that in this case zα = 2(1 − α).

Q ṽ ṽ′ μ, 
 τ̃0, τ̃ ν̃0, ν̃ g̃10 g̃20 = λ̃2
0 λ̃, g̃1, g̃2

dk
Q

d−zα
2

d+zα
2 1 zα −zα ε − 4α ε − 6α 0

dω
Q 0 0 0 0 1 0 0 0

dQ
d−zα

2
d+zα

2 1 zα 0 ε − 4α ε − 6α 0

It turns out that the actual expansion parameters of the
perturbation theory are

ḡ′
i = ḡi

(1 + w̄)2
, i = 1, 2. (85)

The transformation into these new variables is not necessary
in order to obtain results for finite w̄. However, the above set
of equations (81)–(83) does not possess a fixed point with
nonzero value of w̄∗. Therefore, all fixed points belong to
the universality classes already found in the model with SR
interactions: SR Gaussian, SR Navier-Stokes, SR Model A,
and SR active fluid models. However, as seen from Table V,
all SR fixed points are unstable to the long-range interaction,
when the LR Fisher exponent is larger than the SR Fisher
exponent: 2α > 2γ ∗

v . Therefore, an analysis of the model
without the local term is called for.

D. The pure long-range limit

In order to study the limit w̄ → ∞, i.e., to study the pure
LR limit (PLR), we perform the following substitution:

ṽ′ = v̄′/w̄1/2
0 , ṽ = v̄w̄

1/2
0 , ν̃0 = ν̄0w̄0, (86)

τ̃0 = τ̄0/w̄0, g̃10 = ḡ10/w̄
2
0, λ̃0 = λ̄0/w̄

3/2
0 , (87)

g̃20 = ḡ20/w̄
3
0, (88)

and the bare response functional takes the following form:

S[ṽ′, ṽ] = ṽ′
i{∂t + ν̃0((−∂2)1−α + τ̃0)}ṽi

+ ν̃0ṽ
′
i (λ̃0ṽ j∂ j + g̃10|ṽ|2/3!)ṽi,

− ν̃0ṽ
′
iPi j ṽ

′
j/2. (89)

An important remark is now in order. Since the original LR
coupling constant scales as w̄0 ∼ 
2α , the parameters and
fields in the above rescaled response functional (89) attain
different canonical dimensions, see Table IV. Note that from
the rescaled response functional we deduce following relation:

dω = 2(1 − α). (90)

Another relevant fact is that parameters g̃10 and g̃20 have no
longer the same canonical dimensions, as can be readily seen
from the expression for the degree of divergence

d
 = d + 2(1 − α) +
(

d

2
− 2 + 3α

)
V3 + (d − 4 + 4α)V4

−
(

d

2
− 1 + α

)
Nv −

(
d

2
+ 1 − α

)
Nv′ . (91)

The upper critical dimension is determined by setting the
coefficient of V4 equal to zero, which leaves V3 with the
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TABLE V. Fixed points with their stability eigenvalues, and the corresponding critical exponents. For convenience we have defined A(α) =
(3 − 2α)2/(17 − 18α + 4α2), and introduced following abbreviations SR - short-range, PLR - pure long-range. For pure long-range fixed
points FPIV and FPV only one eigenvalue can be determined. Abbreviation then ND stands for Not Determined. Note, that the small expansion
parameter for PLR fixed points is ε̃ = 4(1 − α) − d , rather than ε = 4 − d , as in the case of SR fixed points.

FP/ḡ∗
i |λi ḡ∗

1|g̃∗
1 ḡ∗

2|g̃∗
2 w̄∗ λ1 λ2 λ3 η 1/ν z

FP0 - Gaussian 0 0 0 −ε −ε −2α 0 2 2

FPI - SR Navier Stokes 0 8
3 ε 0 − 1

3 ε ε 1
3 (ε − 6α) 1

3 ε 2 − 1
3 ε 2 − 1

3 ε

FPII - SR Model A 24
17 ε 0 0 ε − 31

51 ε −2α 0 2 − 9
17 ε 2

FPIII - SR Active Fluid 72
113 ε 248

113 ε 0 ε 31
113 ε 1

113 (31ε − 226α) 31
113 ε 2 − 58

113 ε 2 − 31
113 ε

FPIV - PLR Gaussian 0 0 ∞ −ε̃ ND ND 2α 2(1 − α) 2(1 − α)

FPV - PLR Model A 24(1−α)(3−2α)
(3−4α)(17−18α+4α2 )

ε̃ 0 ∞ ε̃ ND ND 2α 2(1 − α) − A(α)ε̃ 2(1 − α)

positive coefficient α. This means that graphs with the three-
point interaction are IR irrelevant and are thus discarded in the
subsequent RG analysis. With only the four-point interaction
left we arrive at a modification (due to the incompressibility
condition) of the dynamical model A with a long-range inter-
actions.

The degree of divergence at the upper critical dimension
dc = 4(1 − α)

d
 = 6(1 − α) − (1 − α)Nv − 3(1 − α)Nv′ , (92)

contains a real parameter α, therefore only divergences with
zero degree of divergence affect the asymptotic behavior. This
condition is directly met by vertex functions 
v′v′

and 
v′vvv .
The function 
v′v has the degree 2(1 − α), but it should be
noted that the derivatives of this function with respect to fre-
quency and the temperature parameter τ possess a zero degree
of divergence and thus give rise to nontrivial renormalization.

In what follows we will skip most of the details, as they are
analogous to the SR and LR case discussed above. Based on
the UV analysis above, the one-loop corrections to the vertex
functions have in the present case a much simpler form

Γṽ′
iṽj

= iΩZ1 − ν̃k2(1−α) − ν̃τ̃Z3 +
1
2

,
(93)

Γṽ′
iṽj ṽkṽl

= −g̃1μ
ε−4αν̃Z5Fijkl + 3 ,

(94)


ṽ′
i ṽ

′
j
= ν̃Z6Pi j (k), (95)

with the renormalization constants

Z1 = ZṽZṽ′ , Z3 = Z1Zτ̃ ,

Z5 = Zg̃1 Z2
ṽ , Z6 = Z2

ṽ′ , (96)

which can be found in Appendix B.
The β function for this model is

βg̃1 = −g̃1

(
ε̃ − (3 − 4α)

(
17 − 18α + 4α2

)
24(1 − α)(3 − 2α)

g̃1

)
. (97)

It should be noted that the small parameter here is ε̃ = dc −
d = 4 − d − 4α = ε − 4α, not ε and α separately.

The stability region of the single nontrivial fixed point
(PLR Model A) is given by the condition 4 − d − 4α > 0.
The opposite inequality gives the stability condition of the

Gaussian fixed point. The summary of all fixed points is
reported in Table V. In this case, we have found only two new
fixed points, PLR Gaussian and PLR Model A fixed point. It is
interesting that in the one-loop approximation there is no PLR
active fluid nor PLR Navier-Stokes fixed point. As mentioned
before, the absence of the latter might be due to lower scaling
dimension of g̃1 than g̃2 for α > 0. The physically most realis-
tic is the three-dimensional case ε = 1(d = 3). In this case for
sufficiently small α the model belongs to the universality class
of SR active fluid. However, at larger values α > 31/226 ≈
0.137 there is a crossover to the PLR Model A universality
class. Finally, for α > 0.25 the effect of nonlocality becomes
so pronounced that all nonlinearities become IR irrelevant
and the mean-field approximation becomes valid. The phase
diagram for this system is depicted in Fig. 2.

Critical exponents for all universality classes calculated
according to Eqs. (56) and (57) are shown in Table V. The

FIG. 2. Phase diagram for different regimes. SR G, Short- range
Gaussian fixed point; SR AF, Short-range active fluid; PLR G, Pure
long-ange Gaussian fixed point; and PLR MA, Pure long-range
model A.
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overall analysis of fixed points FP0-FPIII is in accordance
with the former results [33], and although FPIV belongs to
a standard Lévy diffusion universality class, the FPV repre-
sents a rather unusual long-range model A universality class,
due to irrelevance of the short-range diffusion term and the
incompressibility condition which remains valid even after
the self-advection becomes irrelevant. To the best of our
knowledge, a such fixed point has not been reported in the
literature. One should also note, that at the boundary between
the SR active Fluid and PLR Model A regimes, i.e., for α =
31ε/226, the independent critical exponents η, ν, and z change
continuously for ε > 0.

IV. DISCUSSION AND CONCLUSION

In this work, we have been studying the effect of long-
range interactions on the order-disorder phase transition in the
incompressible dry active fluid. Starting from the incompress-
ible Toner-Tu theory, we have extended the model by includ-
ing nonlocal shear stress into the hydrodynamic description of
the system, which led to appearance of the fractional viscous
of a form ∼ ∂2(1−α). This term is in general responsible for the
nonlocal energy dissipation and leads to superdiffusive prop-
erties of the velocity field similar to the one observed in sys-
tems with Lévy flights. Using a standard approach, we have
obtained the De Dominicis-Janssen response functional. The
RG procedure, based on the analysis of the UV divergences
of the corresponding model was carried out. The analysis of
the RG flow equations revealed six fixed points corresponding
to six different universality classes. In the case of d = 3, we
found that although for small values of α the system belongs
to the universality class of the incompressible active fluid,
for α � 0.137 the self-advection becomes irrelevant and a
crossover to the universality class of the transversal model
A with long-range (diffusion) interaction occurs. In addition,
for α > 0.25 the magnitude of the long-range interactions
destroys the relevance of the nonlinearities and the mean-field
approximation becomes valid.
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APPENDIX A: CALCULATION OF FEYNMAN DIAGRAM

1. Sunset diagram

For illustration purposes let us consider the sunset diagram

P12(p)
d − 1

× ,

(A1)

which in the frequency-momentum representation corre-
sponds to the algebraic expression

∫
k,ω

−λ̄2
0ν̄

3
0T135(p)P34(p − k)P56(k)T426(p − k)

[i(ω − �) + ν̄0(Ap−k + τ̄0)][ω2 + ν̄2
0 (Ak + τ̄0)2]

,

(A2)

where we have introduced the following abbreviations:∫
k,ω

≡ 1

(2π )d+1

∫
dd k

∫
dω, (A3)

Ak ≡ k2 + w̄0k2(1−α). (A4)

Let us note that for calculation purposes in expressions like
Eq. (A2) it is convenient to denote vector and tensorial indices
by numbers rather than letters. Further, the summation over
repeated indexes (numbers) in expression (A2) is implied.
Such an abbreviation rule is always applied in this work.
Since we are only interested in the transversal part of the
diagram (the longitudinal part vanishes due to the transver-
sality of the external propagators), we have contracted the
diagram with the expression P12(p)/(d − 1). Expanding the
tensor structure we immediately observe that the diagram is
already proportional to p, so we can set external frequency
� = 0. Performing the integration over internal frequency and
keeping only terms proportional to p2 we get

−ν̄0 p2ḡ20

4d (d + 2)

{∫
k

d2 − d − 2

(k2 + w̄0k2(1−α) + τ̄0)2

+ 2
∫

k

k2 + (1 − α)w̄0k2(1−α)

(k2 + w̄0k2(1−α) + τ̄0)3

}
, (A5)

where we have used the following formulas [61] for tensor
integrals: ∫

k
k1k2 f (|k|2) = δ12

d

∫
k

k2 f (|k|2), (A6)∫
k

k1k2k3k4 f (|k|2) = δ12δ34 + (2 perm.)

d (d + 2)

∫
k

k4 f (|k|2). (A7)

Now we can employ the Honkonen-Nalimov scheme [46]:
one-loop counterterms are produced in the form of poles
in α, ε and their linear combinations multiplied by regular
functions, therefore we can neglect any other dependence
on these parameters in the sense that the residues at poles
generate the leading contribution to the RG functions γ in α

and ε in the one-loop approximation. The result is then

− ν̄0 p2ḡ20

8

∫
k

Ak

(Ak + τ̄0)3
≈ − ν̄0 p2ḡ20

8

∫
k

1

(Ak + τ̄0)2
, (A8)

where the last step is valid because the integral is dominated
by its UV behavior. Note that the choice of Eq. (A8) is
justifiable since the integrals differ by a finite term, which
is basically arbitrary (in two loops, however, finite terms of
the one-loop subdiagrams have to be taken into account just
in the form chosen at the present stage in order to ensure
multiplicative renormalization [55,61]). In order to extract the
singular part in parameters α, ε of the resulting integral, we
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expand the denominator using the negative binomial series∫
k

ḡ20

(k2 + w̄0k2(1−α) + τ̄0)2
=

∑
l

(−2

l

) ∫
k

ḡ20w̄
l
0k2l (1−α)

(k2 + τ̄0)2+l

≈
∑

l

(−2

l

)
ḡ2w̄

l

ε + 2lα

(
μ2

τ̄

) ε
2 +lα

,

(A9)

where we have substituted Sd ḡ20/(2π )d → ḡ20, with Sd being
the surface of the d-dimensional sphere. We have also ex-
pressed bare parameters in terms of renormalized ones, which
is appropriate within the leading order. The last integral in
Eq. (A9) was evaluated using the well- known formula [61,62]∫

k

1

(k2 + τ0)ak2b
=

= Sd

(2π )d


(d/2 − b)
(a + b − d/2)

2
(a)
τ

d/2−a−b
0 , (A10)

where 
(. . .) stands for the Gamma function. The final form
of the diagram (A1) then reads

− ν̄p2ḡ2

8

∑
l

(−2

l

)
w̄l

ε + 2lα

(
μ2

τ

) ε
2 +lα

. (A11)

2. Three point vertex

This three point vertex contribution is calculated for the
case of SR interaction, the generalization to the LR system
is straightforward. We realize that every interaction vertex is
to be contracted with three other projection operators (three
connecting propagators),

= iλ0ν0P1′1(p + q)P2′2(−p)P3′3(−q)

× T1′2′3′(p + q),

(A12)

where T1′2′3′ is a vertex tensor structure (24). Expanding the
above structure, we obtain the following tensor X123(p, q):

X123(p, q) = P34(q)

[
δ12 p4 + p1 p4

p2(p2 + 2q2) + p2q2

p2(p + q)2

]

+ (2 ↔ 3, p ↔ q). (A13)

This means, that in order to find vertex contributions we have
to contract diagram results with three projection operators as
pointed out in Eq. (A12) and the result has to be proportional
to Eq. (A13). Let us therefore consider the following Feynman
diagram:

,
(A14)

whose symmetry factor is 1, but the corresponding multi-
plicity is actually 2. This corresponds to the following two
diagrams:

= [(d(d + 4) + 2)q3δ12

+ d(q(2)δ13 + q1δ23)]C, (A15)

= [d((d + 4)p(2)δ13 + p3δ12

+ p1δ23) + 2p2δ13]C,

(A16)

where C stands for the following expression:

C = iλμε/2ν
(1 − d )g1

12d (d + 2)ε

(
μ2

τ

)ε/2

. (A17)

Contracting the sum of diagrams (A15) and (A16) with three
transversal projection operators, we finally arrive at the result

2 = iνλμε/2
X123

g1

24ε

(
μ2

τ

)ε/2

.

(A18)

3. Four point vertex

The calculation of diagrams with four external lines pro-
ceeds in the same fashion as in the case of diagrams with three
external lines. All possible permutations of external points
have to be considered, for instance, the first diagram from
Eq. (41) reads

3 × =

+

+ .

(A19)

For illustration purposes we explicitly evaluate this diagram
in the PRL limit. The general structure of the diagram is

,

(A20)

where p is the sum of all external momenta flowing from the
left to the right. The momentum space representation of the
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diagram is given by the expression∫
k,ω

ν0ḡ10F1234P36(k)P45(k)F4567

[iω + ν̄0(Bk + τ̄0)][ω2 + ν̄2
0 (Bk + τ̄0)2]

, (A21)

where Bk = k2(1−α), and we have set the external momenta
and frequency to zero because the diagram is already log-
arithmically divergent at d = dc. Performing the frequency
integral, contracting indices and summing over permutations
of external indices as in Eq. (A19), we obtain

ν̄ḡ1F1278
(d − 1)(d2 + 10d + 12)

12d (2 + d )

∫
k

1

(Bk + τ̄ )2
, (A22)

where we have used formulas (A6) and (A7). In order to
evaluate the above diagram, the following formula is useful:

1

2Sd

∫
dd k f (|k|σ ) = 1

σS2d/σ

∫
d2d/σ k f (|k|2). (A23)

Using Eq. (A10) with Eq. (A23), the result finally reads

ν̄ḡ1F1278
(3 − 4α)

(
17 − 18α + 4α2

)
24(1 − α)(3 − 2α)ε̃

(
μ2(1−α)

τ̄

) ε̃
2(1−α)

,

(A24)

where ε̃ = 4(1 − α) − d , we have set d = 4(1 − α) every-
where apart of the pole, and again rescaled the charge accord-
ing to Sd ḡ1/(2π )d → ḡ1.

APPENDIX B: RENORMALIZATION CONSTANTS
AND ANOMALOUS DIMENSIONS

The explicit form of the renormalization constants for
the model of active fluid with the LR interactions in the
minimal subtraction scheme is the following (the SR model
corresponds to the case l = 0):

Z1 = Z6 = 1, (B1)

Z2 = 1 − ḡ2

8

∞∑
l=0

(−2

l

)
w̄l

ε + 2αl
, (B2)

Z3 = 1 + 3ḡ1

8

∞∑
l=0

(−2

l

)
w̄l

ε + 2αl
, (B3)

Z4 = 1 + 5ḡ1

36

∞∑
l=0

(−2

l

)
w̄l

ε + 2αl
, (B4)

Z5 = 1 + 17ḡ1

24

∞∑
l=0

(−2

l

)
w̄l

ε + 2αl
, (B5)

where g2 = λ2, and we have performed a substitution giS̄d →
gi, with S̄d = Sd/(2π )d and Sd being the surface of the d-
dimensional sphere.

The anomalous dimensions are obtained in a standard way
from Eq. (45)

γv̄ = −γv̄′ = ḡ2

16(w̄ + 1)2
, (B6)

γḡ1 = − 17ḡ1 + 6ḡ2

24(w̄ + 1)2
, (B7)

γḡ2 = −20ḡ1 + 27ḡ2

72(w̄ + 1)2
, (B8)

γw̄ = − ḡ2

8(w̄ + 1)2
, (B9)

γν̄ = ḡ2

8(w̄ + 1)2
, (B10)

γτ̄ = − 3ḡ1 + ḡ2

8(w̄ + 1)2
, (B11)

where the SR model corresponds to the case w̄ = 0.
In the PLR limit, i.e., Eq. (89), the only one loop contribu-

tions renormalize the mass term and the four-point interaction

Z1 = Z6 = 1, (B12)

Z3 = 1 + (3 − 2α)(3 − 4α)

24(1 − α)

1

ε̃
, (B13)

Z5 = 1 + (3 − 4α)
(
17 − 18α + 4α2

)
24(1 − α)(3 − 2α)

1

ε̃
. (B14)
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