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Particle shapes leading to Newtonian dilute suspensions
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It is well known that suspensions of particles in a viscous fluid can affect the rheology significantly, producing
a pronounced non-Newtonian response even in dilute suspension. However, it is unclear a priori which particle
shapes lead to this behavior. We present two simple symmetry conditions on the shape which are sufficient for a
dilute suspension to be Newtonian for all strain sizes and one sufficient for Newtonian behavior for small strains.
We also construct a class of shapes out of thin, rigid rods not found by the symmetry argument which share this
property for small strains.
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I. INTRODUCTION

The theoretical study of rigid particle suspensions dates
back to Einstein’s seminal work [1,2]. He showed that intro-
ducing a dilute suspension of spheres to a viscous solvent
increased the solvent’s viscosity from ηs to ηs(1 + 2.5nν),
where n is the number density and ν is the volume of each
sphere. Since then, a wide variety of systems have been
successfully modeled, from polymeric fluids [3] to active bac-
terial suspensions [4].

The rheology of a fluid is understood through the constitu-
tive equation relating the stress, σ , and the rate of strain tensor
κ . For a Newtonian fluid, the stress is linearly related to the
strain by a time independent 4th rank tensor. For isotropic,
incompressible fluids this tensor is isotropic and determined
solely by the fluid’s viscosity. For small strains, the stress in a
general fluid is characterized by the complex viscosity, η∗(ω).
This is defined such that the stress response to the oscillatory
shear, κxy = γ̇ Re(eiωt ), is given by σxy = γ̇ Re[η∗(ω)eiωt ],
where γ̇ is the shear rate and ω is the angular frequency.
The real and imaginary parts of η∗ represent the viscosity and
elasticity of the solution, respectively, both of which may be
dynamic. A fluid whose complex viscosity has both real and
imaginary parts is viscoelastic. The complex viscosity of a
Newtonian fluid is a real constant, independent of frequency.
Our results do not depend on the form of κ . We used oscilla-
tory shear as an illustrative example, as oscillatory rheology
is a common experimental technique.

The presence of particles can change the behavior of a
fluid, producing a non-Newtonian response. While the most
extreme phenomena occur at large concentrations or strains,
it has been shown that there exists a small viscoelastic effect
in dilute suspensions of certain particle shapes. This is not
the case for spheres. Notably, when their Brownian motion
is taken into account, rigid rodlike particles show a finite,
linear elastic response in dilute suspension [3]. Other parti-
cle shapes, such as spheroids [5] and propellerlike particles
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[6], have also been shown to behave similarly. Clearly, the
presence of elasticity in these suspensions depends on the
particles’ shape.

The magnitude of this effect is proportional to the con-
centration of particles, and is therefore very small in dilute
suspension. However, it is possible to measure this effect
through the intrinsic complex viscosity [3,7], defined as

[η∗(ω)] = lim
n→0

η∗(ω) − ηs

nηs
. (1)

If the suspension is Newtonian, then the intrinsic viscosity
will be independent of frequency.

While the methods for finding the stress in such systems are
well known [8,9], it is unclear a priori which particle shapes
will lead to a non-Newtonian response, without simulations or
cumbersome calculations.

In this paper, we aim to understand and characterize the
properties that a particle shape must have for a dilute suspen-
sion to be Newtonian. We determine two simple symmetry
conditions on the particle shape which, when both are satis-
fied, are sufficient for the suspension to be Newtonian. These
are derived by considering the symmetries of the particle,
without referencing its specific shape. As long as the parti-
cles’ positions remain uniformly distributed and interparticle
interactions are negligible, these hold for all strain sizes. In the
case of small strains, one of these two conditions is relaxed,
and there is only one sufficient condition for purely viscous
behavior. Examples of particle shapes with Newtonian dilute
suspensions are shown in Fig. 1(a); the underlined shapes
have a Newtonian response for all strain sizes. The conditions
presented here make this identification straightforward where
explicit calculations would be extremely difficult, e.g., for the
Archimedian solids.

The ability to predict the presence of a non-Newtonian
response for particles with arbitrary shapes has become highly
relevant given the emergence of sophisticated techniques
[10,11] to design the shape of nanoparticles. We specifically
reference DNA nanostars [12–14], constructed from linked
double stranded DNA sequences, which have recently been
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FIG. 1. (a) Examples of particle shapes which have Newtonian
dilute suspensions for small strains. Due to their symmetry, the
Platonic and Archimedean solids produce no elasticity. Some wire-
frame shapes share this property if the ratios of the rod lengths are
chosen correctly. The underlined shapes lead to Newtonian suspen-
sions for all strain sizes. (b) Examples of particle shapes which,
generally, lead to non-Newtonian dilute suspensions.

synthesized and studied for their potential biomedical and
nanoengineering applications.

We provide a general method for describing the rheology
of dilute suspensions of these particles, based on the Onsager
Principle [15,16], a powerful tool for describing the behavior
of a wide range of systems [17,18]. We use this approach to
demonstrate the predictions of the symmetry argument for
small strains for specific shapes, and construct a class of
shapes not found by the symmetry argument whose dilute
suspensions also have a purely viscous linear response.

Our results are only valid in dilute suspension where the ef-
fect of the particles is very small, and therefore less important
for practical applications. Nevertheless, they indicate some-
thing fundamental about the particles’ influence on the vis-
coelastic properties of the fluid. For particular particle
shapes, all non-Newtonian behavior is due to interparticle
interactions.

II. OVERVIEW FOR GENERAL SHAPES

We begin with a brief overview of the method for deter-
mining the viscoelasticity of a dilute suspension of particles
of general shape; a full description may be found in Makino
and Doi [6].

There are two contributions to the stress in these systems:
one arising purely from the hydrodynamics of the suspended
particles and the other from their Brownian motion. We as-
sume that the particle sizes, velocity, and viscosity of the fluid
are such that the Reynolds number may be taken to be small.
To describe the hydrodynamics in this regime, we only need
to consider one particle whose linear velocity, v, and angular
velocity, �, are linearly related to those of the fluid and the
rate of strain tensor of the flow via mobility matrices which
depend on the geometry and orientation of the particle [8,9].

The Brownian motion of the particle is included through
the effective potential UB = kBT lnψ , written in terms of the
distribution function of the particle, ψ . The orientation of
the particle is represented using a right-handed, orthonormal
set of three vectors u1, u2, and u3 fixed to the particle. The

viscoelastic properties are calculated by assuming no external
forces and that ψ is independent of the position of the particle.

Using this framework, the hydrodynamic stress per par-
ticle is

(SH )i j = Ki jklκkl (2)

and the Brownian stress per particle is

(SB)i j = hi jkRk (−kBT lnψ ), (3)

where K and h are mobility tensors and in the above equations
and henceforth all indices used indicate the laboratory frame
components, and repeated indices are summed unless other-
wise stated. We also used the rotational derivative operator,
R = uμ × ∂/∂uμ, where the index μ = 1, 2, 3 is summed.

In general the stress tensor for the system is written as

σ = −pI + 2ηsκ − n〈SB + SH 〉, (4)

where p is the pressure, I the 3 × 3 identity matrix, and ηs the
solvent viscosity. The angle brackets denote averaging over
the orientational distribution 〈· · · 〉 = ∫

du1du2 ψ (· · · ). All
viscoelastic properties follow from these expressions.

III. SYMMETRY CONDITIONS

A suspension of particles can be Newtonian if the Brow-
nian and hydrodynamic stresses satisfy certain conditions.
In the linear regime, the hydrodynamic stress contributes a
constant to the complex viscosity and is therefore always a
purely viscous, Newtonian contribution. The Brownian stress
depends implicitly on the strain, via ψ , and can be shown to
decay with time, contributing both real and imaginary parts to
the complex viscosity. Therefore, in the linear regime, if the
Brownian stress vanishes, the solution is purely viscous and
Newtonian.

We consider the particles to be suspended in an incom-
pressible fluid; therefore, the isotropic part of the fluid stress
tensor is determined solely by the external conditions and
is irrelevant for the viscoelasticity. As such, if the Brownian
stress tensor becomes isotropic, then it may be taken to van-
ish without loss of generality, and the suspension is purely
viscous.

For larger strains the hydrodynamic stress can produce
non-Newtonian stresses. However, if the mobility tensor, K , is
independent of the particle’s orientation then its average must
be independent of time and therefore 〈SH 〉 is purely viscous.
For K to be independent of the particles’ orientation in the
laboratory frame it must be an isotropic tensor, so that it is
invariant under all rotations from one orientation to another.

We therefore have two conditions which, if both are sat-
isfied, are sufficient for the rheology to be Newtonian for all
strain sizes: (I) the Brownian stress tensor must be isotropic
and (II) the mobility tensor K must be isotropic. These state-
ments are true assuming the particle distribution remains
uniform and interparticle interactions are negligible. If we
only require the suspension to be purely viscous in the linear
regime, then only the first condition needs to hold.

To determine which particle shapes satisfy these conditions
we consider the symmetry group, G, of the particle. This is a
set of 3 × 3 rotation matrices, R, which leave the orientation of
the particle unchanged. For example, consider a cubic particle
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whose faces and edges are all identical and whose density is
uniform. If we rotate this particle by π/2 about an axis passing
through the center of any one of its faces, the orientation of
the particle is outwardly the same. The only difference is the
definition of the unit vectors, u1,2,3.

Under the action of R, the vectors’ components transform
according to the standard rule,

uμ
i → (u′)μi = Raiu

μ
a , (5)

where the symbol uμ
i denotes the ith component of the

vector uμ.
The physical consequence of these symmetries is that by

applying the above transformation to the orientation vectors
and imposing the same background fluid flow, the response of
the particle would be the same as measured in the laboratory
frame. Specifically, SB and SH are preserved under the action
of the transformation (5).

Beginning with SB, we use Eq. (3) and write it in terms of
the transformed vectors u′,

(SB)i j = −RaiRb jRckhabcRdkRdUB, (6)

where we have taken into account that RUB and h transform
as a psuedovector and third rank tensor, respectively, and
|R| = 1.

We may then use the identity, RdkRck = δcd , to find that the
Brownian stress must satisfy

(SB)i j = (RT · SB · R)i j . (7)

This must hold for each member of the shape’s symmetry
group; therefore, the following commutation relations are
implied:

[SB, R] = 0, ∀ R ∈ G. (8)

We now make use of Schur’s First Lemma [19], which states
that if a matrix commutes with all members of an irreducible
representation of a group, then it is proportional to the iden-
tity matrix. An irreducible representation is one where each
member cannot be cast in block diagonal form by the same
similarity transformation [20].

Condition (I) can now be understood as a condition on the
particle shape; its symmetry group must have an irreducible
representation in 3 × 3 matrices. If it does, the relations (8)
and Schur’s First Lemma imply SB ∝ I.

To ensure that a dilute suspension of particles is Newtonian
for all strain sizes, condition (II) must be met. The relation
between the hydrodynamic stress and the strain via K is
mathematically the same as that between the stress, strain,
and elastic modulus for solids, with K playing the role of
the elastic modulus. The symmetry conditions needed for
the solid elastic modulus to be isotropic have been widely
studied [21,22]. By considering how the symmetries reduce
the number of independent components of the tensor K , it has
been shown that when K is invariant under a symmetry group
with an irreducible representation of degree five it is isotropic
[22]. This is true for spheres, icosahedra, and higher symmetry
shapes, but not for cubes or lower symmetry shapes. Since
shapes with icosahedral symmetry also satisfy condition (I),
they will be purely viscous and Newtonian for all strain sizes,
whereas shapes with cubic or tetrahedral symmetry will only
have this property in the small strain regime.

FIG. 2. (a) One of the wire-frame particles considered, with N =
4 in-plane legs and unequal lengths of the in and out of plane legs,
L‖ �= L⊥. (b) The “shish kebab” procedure as applied to the shape
from panel (a). The wire frame is replaced by spheres with diameter
b placed along each leg of the shape. The unit vectors el associated
with some of the legs are also indicated.

We can now understand why a dilute suspension of spheres
is purely viscous, whereas rigid, rodlike particles have a vis-
coelastic linear response in dilute suspension. The symmetry
group of a sphere, O(3), has a well known irreducible repre-
sentation in 3 × 3 matrices; hence the elasticity must vanish.
Rods, on the other hand, are rotationally symmetric about
their axis, chosen to align with u3, and are symmetric under
the inversion, u3 → −u3. These symmetries do not have an
irreducible representation in 3 × 3 matrices. Therefore, dilute
suspension of rods can have a finite viscoelasticity.

Figure 1(a) shows examples of shapes that produce purely
viscous dilute suspensions for all strain sizes and small strains.
Next, we construct a particular class of shapes not found
by this symmetry argument whose dilute suspensions have a
purely viscous stress response to small strains.

IV. WIRE FRAME PARTICLES

We consider shapes comprised of rigid, thin rods or legs.
Each leg is indexed by l and has a different length Ll . We call
these shapes “wire frames.” We only consider shapes where
legs meet at one point, see Fig. 2, but the formulas can be
easily modified when this is not the case.

These particles provide a simple way to test our predic-
tions and construct shapes of different symmetries within the
same framework. They are also presented as a model for
recently synthesized DNA nanoparticles [14]. Since double
stranded DNA is very rigid with a persistence length of ∼390
Å [23] and a typical aspect ratio ∼20, the approximation of
rigidity and large aspect ratios should be appropriate. We con-
struct a formulation, based on Onsager’s variational principle
[15–18], to describe these shapes in general, into which any
given shape may be specified.

The principle states that the linear and angular velocities
of the particle are those which extremize the Rayleighian, L,
of the system. The Rayleighian is defined as L = Ḟ + 1

2�,
where Ḟ is the time derivative of the Helmholz free energy
and � is the energy dissipation function.

To determine the Rayleighian we use a standard “shish
kebab” approach [3]. We place Nl spherical beads of radius b
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along each leg of the shape, such that they just touch, i.e., the
length of the lth leg is Ll = Nl b. Figure 2(b) shows this for a
particular wire-frame shape. The position vector and velocity
of the nth bead on leg l are written as

rl
n = r + nb el , vl

n = v + nb� × el , (9)

where n ∈ [0, Nl ] and the unit vector el points along the leg.
The velocities of all the beads are in general coupled

together by hydrodynamic interactions. This coupling is dif-
ficult to handle exactly, but a simple approximation can be
made. We assume that the rods are very long compared to their
width, such that the majority of beads on different legs are
very far apart. This allows the hydrodynamic interaction be-
tween beads on different legs to be neglected, which becomes
an accurate approximation in the limit of infinite aspect ratio,
Ll/b.

Using a textbook procedure [3,18] the Rayleighian for
a general wire-frame shape can be determined, providing a
complete description of its behavior (see Supplemental Ma-
terial [24]). We focus on the linear viscoelastic properties, so
we only consider terms containing the angular velocity. The
relevant terms in the Rayleighian are

L = 〈� · RkBT lnψ〉 + 1

2

〈∑
l

λl (� × el ) · (v − κ · r)

〉

+ 1

2

〈 ∑
l

μl (� × el )
2 − 2μl � · (el × κ · el )

〉
+ (· · · ),

(10)

where we have defined the friction constants λl and μl as

λl = 4πηsL2
l

ln(Ll/b)
, μl = 8πηsL3

l

3 ln(Ll/b)
. (11)

By appropriately choosing the unit vectors, el , we can de-
scribe any wire-frame shape.

We specifically consider shapes comprised of N evenly
spaced, coplanar legs of equal length with two antiparallel
legs pointing orthogonally out of plane, as shown in Fig. 2.
The lengths of the in and out of plane legs are L‖ and L⊥,
respectively. The in plane legs are separated by an angle
φ = 2π/N . The unit vectors parallel to the legs in plane are
denoted el = cos(lφ)u1 − sin(lφ)ul for 1 � l � N . For the
out of plane legs, e−1,0 = ±u3.

According to Onsager’s principle [15–18], the components
of the stress tensor are given by σi j = ∂L∗/∂κi j , where L∗ is
the Rayleighian (10) evaluated at the extremum value of �.
We find that the Brownian stress tensor as a function of time
is given by (see Supplemental Material [24])

(SB)i j = nkBT G
∫ t

−∞
dt ′ e−(t−t ′ )/τ κi j (t

′), (12)

where τ is a decay timescale and G is the elastic modulus

G = 6

(
N − 4γ

N + 4γ

)2

, (13)

with γ ≡ μ⊥/μ‖. The friction constants, μ‖ and μ⊥, are
calculated from (11) for the in- and out-of-plane legs, respec-
tively. This modulus is plotted in Fig. 3(b) for N = 4 and
N = 12.

FIG. 3. (a) Required ratio of leg lengths, x = L⊥/L‖, for the
elasticity to vanish plotted as a function of the number of in-plane
legs, 3 � N � 12, for aspect ratios, a = L⊥/b = 10 (triangles) and
a → ∞ (circles). These ratios are solutions to (14) for x, which
in the case a → ∞ are simply x = (N/4)1/3. The (dark) blue and
(light) orange lines indicate the solutions for N = 4 and N = 12,
respectively. Panel (b) shows the elastic modulus, G, as given in (13),
plotted as a function of γ ≈ L3

⊥/L3
‖ . The blue curve corresponds to

N = 4 and the orange N = 12.

The elastic modulus has a minimum of zero when γ =
N/4. This means that when the ratio of leg lengths, x =
L⊥/L‖, satisfies the transcendental equation,

4x3ln(a/x) = N lna, (14)

the suspension is purely viscous. The aspect ratio a is defined
as L⊥/b. This recovers the expected result; a dilute suspension
of symmetric cross shapes with N = 4 and L⊥ = L‖ (equiva-
lent to an octahedron or a cube) has a purely viscous linear
stress response.

A plot of the solutions to this equation for 3 � N � 12
and a = 10 is shown in Fig. 3(a) (triangles); we also show
the solutions in the limit a → ∞ (circles), which allows γ to
be approximated as x3.

It is intriguing that we can engineer the elasticity to vanish
for any N by choosing the right ratio, x. For instance, when
N = 3 the particle has the symmetry of a trigonal bipyramid of
variable height. The symmetry group for such an object does
not satisfy the conditions given previously, yet when the ratio
of lengths is chosen appropriately the elasticity still vanishes,
in the small κ regime.

This phenomenon, while not explained by a simple sym-
metry argument, can be physically understood by considering
the stresslet produced by the rotation of the particle. When a
rod rotates about an axis perpendicular to its length, the sur-
rounding fluid flows towards the ends, but away from the
broad side of the rod [3]. The resulting flow is typical of the
stresslet singularity, whose magnitude depends on the length
of the rod.

When a planar cross rotates, the stresslet flows cancel
each other in the plane of the shape because the two equal
length rods perpendicularly bisect each other. This construc-
tion may be applied to the N = 4, γ = 1 wire frame. Shapes
where N �= 4 can be engineered to produce no stresslet by
tuning the rod lengths such that the out of plane rod pro-
duces a stresslet which cancels that produced by those in
plane.
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V. CONCLUSIONS

We have discussed the origins of non-Newtonian rheology
for dilute suspensions of rigid particles and determined suffi-
cient conditions the shape must satisfy for a dilute suspension
to be Newtonian. To have a purely Newtonian response for all
strain sizes the symmetry group of the shape must have irre-
ducible representations of degree 3 and degree 5, whereas in
the regime of small strains the symmetry group only needs an
irreducible representation of degree 3 for Newtonian behavior.
This allows for simple classification of suspensions without
the need for detailed calculation.

We also developed a framework for studying the rheology
of wire-frame particles constructed from thin, rigidly con-
nected rods using Onsager’s variational principle. This was
used to demonstrate the vanishing elasticity for octahedral
and cubic shapes in the linear regime, as well as find a set of
bipyramidal shapes which, despite their symmetry group not

satisfying the appropriate condition, have Newtonian dilute
suspensions for small strains. This is physically explained
in terms of the stresslets produced by the rotation of each
constituent rod.

The study of wire-frame shapes has relevance for the
design of DNA nanostar suspensions, where understanding
which particle shapes lead to a particular rheological response
is very important.
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