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Electrokinetics is the science of the physical phenomena appearing at the solid-liquid interface of dispersed
particles subjected to external fields. Techniques based on electrokinetic phenomena constitute an important
set of tools for the electrical characterization of colloids because of their sensitivity to the properties of
particle-solution interfaces. Their rigorous description may require inclusion of the effects of finite size of
chemical species in the theoretical models, and, particularly in the case of salt-free (no external salt added)
aqueous colloids, also consideration of water dissociation and possible carbon dioxide contamination in
the aqueous solution. A new ac electrokinetic model is presented for concentrated salt-free spherical colloids for
arbitrary characteristics of the particles and aqueous solution, including finite-size effects of chemical species by
appropriate modifications of the chemical reaction equations to include such non-ideal aspects. The numerical
solution of the electrokinetic equations in an alternating electric field has also been carried out by using a realistic
non-equilibrium scenario accounting for association-dissociation processes in the chemical reactions. The results
demonstrate the importance of including finite-size effects in the electrokinetic response of the colloid, mainly at
high frequencies of the electric field, and for highly charged colloids. Findings of previous models for pointlike
ions or for ideal salt-free colloids including finite ion size effects are recovered with the present model, for the
appropriate limiting conditions.
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I. INTRODUCTION

For more than a century, a great effort has been devoted
to the control and understanding of the response of systems
composed of small charged particles dispersed in aqueous or
nonaqueous solutions subjected to electric fields [1–4]. This
is the realm of the electrophoresis of colloids (particles from
micro- to nanoscale in size) and innumerable experimental
and theoretical studies have been developed to characterize
and predict their behavior. In particular, recent advances in
nanomedicine with the use of functionalized nanoparticles
as transport vehicles for controlled drug delivery and release
[5–9], or the attempts of modeling the electrokinetic behavior
and physicochemical properties of viruses, bacteria, living
cells, proteins, DNA, and RNA, etc., have stimulated a re-
newed interest in these systems [10,11]. It is well known
that electrophoretic techniques constitute valuable tools for
the characterization of such systems. Specially, the frequency
response of the colloids to an alternating electric field provides
a great deal of information on the dynamics of the electric
double layers (EDLs) surrounding the particles in the solution,
due to its sensitivity to the electrical particle-solution interface
characteristics. These electric double layers govern most of
the electrokinetic properties of charged complex fluids, and

improving its knowledge is essential for the development of
new applications.

However, there is a special kind of colloids which has
attracted the interest of scientists in recent years. They are
known as salt-free colloids [3,12,13]. These systems are
composed of charged particles and the exact countercharge
released by the particles to the solution (the so-called “added
counterions”), thus preserving electroneutrality. Salt-free col-
loids can form crystals or glasses at relatively low particle
volume fractions, as the repulsive electrical particle-particle
interactions are less screened in comparison with the situation
in electrolyte solutions at typical ionic strengths [14–16].

Likewise, most of the industrial applications are related to
concentrated rather than dilute colloids. For that reason, in the
past decades a huge effort has been focused on the develop-
ment of theoretical models to account for the electrokinetic
and general transport properties of these concentrated systems
[17–20]. Unfortunately, the theoretical problems increase with
particle concentration due to the enhancement of electrohy-
drodynamic particle-particle interactions which hamper the
mathematical treatment to a large extent, commonly prevent-
ing rigorous approaches. In this sense, the use of mean-field
models based on average considerations of fields and inter-
actions is a common tool to address this problem. Apart
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from different attempts concerning microscopic descriptions
of these systems, which consider particle-particle correla-
tions explicitly [21,22], the above-mentioned use of average
approaches is still highly demanded. Thus, mean-field approx-
imations, like the cell model [23–27], based on the classical
Poisson-Boltzmann (PB) equation, hence on the assumption
of pointlike ions, have been profusely used for the theoretical
equilibrium description of the ionic populations in the colloid,
even for the concentrated particle range, prior to address its
response to external electric fields.

In this work a particular aspect beyond the standard PB
approach for pointlike species will be taken into account. A
nonideality linked to the finite size of species in the aqueous
solution will be considered in the theoretical analysis. Ex-
cluded volume effects have been widely dealt with in recent
literature, and have shown that accounting for the ion size
is essential for a proper description of the concentration of
species around the nanoparticles, and therefore, for the un-
derstanding of their rheological and electrokinetic behavior,
mainly for highly charged nanoparticles [28–32]. For exam-
ple, when ion size effects are considered, a huge magnification
has recently been predicted of the high frequency dielectric
relaxation process of the condensate layer of counterions that
develops in a region close to the particle surface in highly
charged colloids [27,33].

Turning back to the salt-free concentrated colloids, the
majority of studies refer to dispersed particles in aqueous
solutions, and most of them correspond to dispersions open to
the atmosphere. These two facts have been considered in pre-
vious works, as ions stemming from water dissociation, and
additional species originated from the contamination by at-
mospheric carbon dioxide dissolved in the solution, make the
salt-free colloid to behave as a low-salt colloid, or a “realistic
salt-free colloid,” hereafter. These aspects have been shown to
be crucial for the electrokinetic response in dc and ac elec-
tric fields [20]; for instance, a remarkable decrease has been
found of the dc electrophoretic mobility as a consequence
of the larger screening effect of particle charge in realistic
conditions. Also, it has been shown that the low-frequency
dependence of the ac electrophoretic mobility or the electric
permittivity of the colloid can be quite different for realistic
and pure salt-free systems [33].

In this contribution we describe the ac electrokinetics of
a salt-free colloid with arbitrary particle concentration and
surface charge in a realistic aqueous solution. This will be
addressed by using a mean-field approach based on the cell
model concept, with the inclusion of finite-size effects of the
species, either neutral or charged, in the solution, with the
exception of water molecules (water will be considered as a
continuous pure solvent). The basic assumption of the cell
concept is that the properties of the full colloid can be derived
by proper averages in the ambit of a unit cell that represents
a portion of the colloid that includes one particle and its
surroundings. The outer radius of the cell is typically chosen
by matching the particle volume fraction of the cell with that
of the full colloid. The electrohydrodynamic particle-particle
interactions are described by appropriate boundary conditions
at the outer surface of the cell. The cell model approach has
been shown to have limitations in situations where electrical
ion-ion correlations are important (mainly in conditions of

multivalent ions in solution or high particle concentrations),
but it may be a reasonable approach for monovalent ions in the
solution at moderate particle concentration and surface charge
[21,34–36].

Unlike the more rigorous microscopic descriptions, mostly
developed for equilibrium conditions, phenomenological or
macroscopic models like those based on the cell concept are
suited to making predictions for equilibrium and nonequilib-
rium situations at the cost of overlooking some details that
of course might be important, as the above-described indi-
vidual ion-ion correlations that are neglected in the average
approach. These correlations have shown to be crucial in some
simulations predicting the charge reversal phenomenon in the
presence of multivalent ions, classically out of the scope of
cell models. But quite recently, it has been shown that mean
field descriptions including finite ion size effects can account
for the charge reversal phenomena under appropriate condi-
tions, as high electrolyte concentrations, low particles charge
and high counterion valences [37]. This reinforces the use of
the cell models as valuable predictors for many electrokinetic
and transport phenomena with concentrated colloids, covering
electrophoresis in static or alternating electric fields, complex
electrical conductivity and dielectric response, sedimentation
velocity and potential, electroacoustic response, porous or soft
particle electrodynamics, effective viscosity or electroviscous
effects, etc.

In this work, highly charged spherical colloids in salt-free
environments have been chosen, in order to explore in larger
detail the phenomenon of counterion condensation, of special
relevance in the salt-free limit. The condensation of counte-
rions onto the particle surface plays an outstanding role in
general soft-matter, controlling not only its stability but also
the self-assembly of bionanomaterials or the compaction of
genetic material [38]. The condensation layer is the result of
the competition between favorable changes in electrostatic en-
ergy as counterions are electrostatically attracted to the highly
charged particle and an unfavorable loss of entropy as they are
accumulated in a layer close to the particle surface [31,39–42].

The main objective of the present work is the theoretical
analysis of the ac electrokinetics of salt-free concentrated
colloids in realistic aqueous solutions, with inclusion of finite-
size effects of chemical species. Consideration of chemical
reactions of species in such realistic solutions unavoidably
needs of a nonequilibrium kinetic formalism, since chemi-
cal equilibrium is not guaranteed under the influence of an
ac electric field of arbitrarily high frequency. Additionally,
we will include finite-size effects in the kinetic equations
governing the nonequilibrium scenario for chemical reactions
accounting for the association-dissociation processes in aque-
ous environments. The results will be compared to previous
ones assuming pointlike species.

In summary, the present model is intended to be valid for
realistic aqueous salt-free colloids of arbitrary particle radius
(nanosubmicron range) and particle surface charge, and from
dilute to high particle concentrations. Of course, the higher the
particle charge density in salt-free solutions, the smaller the
particle volume fraction experimentally attainable because of
the enhancement of repulsive electrical particle-particle inter-
actions. For the largest surface charge densities available with
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typical polymer colloids in laboratories, particle volume frac-
tions of 20% can be reasonably attained. For smaller surface
charge densities, larger volume fractions than the latter are
easily achieved. In addition, the model is valid for ac electric
fields of frequency below the GHz range (dielectric relaxation
of water molecules is not taken into account) including the
zero frequency limit (dc). However, the effects of finite size of
chemical species on electrokinetic properties should be more
noticeable the smaller the particle radius and the larger the
particle volume fraction, as the volume available for the ions
in solution is greatly reduced.

Careful experiments have to be developed to check the
theory. Available electrophoretic techniques in ac fields and
concentrated colloids are restricted to frequencies below
100 MHz, and are based on electroacoustic effects. For dilute
systems, electrophoretic techniques based on laser Doppler
velocimetry are developed for dc low-strength electric fields.
Recent super-heterodyne dynamic light scattering methods
are used to measure the dc electrophoretic mobility in con-
centrated systems as well [43]. In the future, appropriate
experiments with realistic salt-free colloids have to be care-
fully designed to test the models. Also, the model might
be adequate for aqueous colloids in microfluidic applica-
tions, where size effects of chemical species can be a priori
important, without using molecular or dynamic simulation
techniques, more rigorous than our mean field approach but
requiring a huge computational cost, and mainly for equilib-
rium conditions.

II. FINITE-SIZE EFFECTS AT EQUILIBRIUM

ln this section we will explore a scheme for equilibrium
mass-action equations before addressing the study of the
electrokinetic response of our system in the presence of an
alternating electric field. As it was already mentioned in the
previous section, use will be made of a spherical cell model
(the Kuwabara cell model [44]) to account, in an average
sense, for the particle-particle electrohydrodynamic interac-
tions in the colloid. According to this model, the outer radius
of the cell, b, will be chosen by equating the particle volume
fraction φ of the whole colloid with that obtained with a single
cell, which is composed of one particle of radius a at its center
and a surrounding region of solution of radius b such that
φ = (a/b)3.

We assume for the moment that our system consists of a
collection of spherical nanoparticles, with radius a, and sur-
face charge density σ in an aqueous solution with relative per-
mittivity εrs and viscosity ηs, containing n ionic species (i =
1, 2, ..., n) as well as m neutral species (i = n + 1, ..., n +
m), with number concentration and activity coefficients
n0

i , γ 0
i (i = 1, ..., N ) [N = n(ions) + m(neutral molecules)],

respectively. In the present work equal Bikerman-like equilib-
rium activity coefficients, γ 0, for all ionic and neutral species
(water molecules excluded) have been chosen and can be
expressed as [45]

γ 0(r) = 1

1 − ∑N
j=1

n0
j (r)

nmax
j

, (1)

with nmax
j ( j = 1, ..., N = n + m) as the maximum concentra-

tion of jth species due to the excluded volume effect. It must
be noted that the Bikerman’s approach is the simplest one
when dealing with finite-size ions, and that the contribution
of Carnahan and Starling [46] provided a much more exact
evaluation (the CS model), not suffering of the limitations
of Bikerman’s. In addition, the method was generalized to
solutions containing different types of ions by Boublik [47]
and Mansoori et al. [48], in what is now known as BM-
CSL (Boublik-Mansoori-Carnahan-Starling-Leland) model.
The CS model was soon applied to the improvement of
Poisson-Boltzmann equation for the description of the EDL
(see, e.g., Ref. [49]), and a careful comparison between
Bikerman and CS results for the description of the equi-
librium double layer, reported by López-García et al. [50],
demonstrated that the CS model introduces more significant
modifications of Poisson-Boltzmann equation for pointlike
species than Bikerman model does. The latter only differs
from the former when the surface charge density of the par-
ticles and/or the ions concentrations in solutions are high.
This has been confirmed by Jiménez et al. [51] when dealing
with highly charged electrodes for use in capacitive energy
production. For our purposes, it is more interesting to con-
sider the implications of using one or the other when dealing
with the electrokinetic properties of colloids. The calculations
carried out by López-García et al. [50,52] indicated that the
predictions of dc electrophoretic mobility according to Bik-
erman and CS models differ moderately only for electrolyte
concentrations above 1 mM (which will be hardly achieved
for salt-free systems as it is our case). Furthermore, no data
exist regarding the frequency dependence of the dynamic
electrophoretic mobility, but it is very significant that the
predictions of the dielectric relaxation of the suspensions are
almost identical in both models. Considering the computa-
tional difficulties involved in the calculation of all frequency
dependencies in the case of concentrated, realistic, salt-free
systems out of equilibrium, this is a fortunate result, that
points to the validity of our conclusions based on the Bik-
erman model. In the case of pure salt-free systems, only
Ohshima [31] has considered the application of CS conditions
to the dc electrophoretic mobility of such systems.

The equilibrium electrochemical potential for all ions,
μ0

k (r) (k = 1, ..., n), can be expressed as

μ0
k (r) = μ∞

k + zke�0(r) + kBT ln

⎡
⎣ n0

k (r)

1 − ∑N
j=1

n0
j (r)

nmax
j

⎤
⎦ (2)

and the chemical potential for neutral molecules μ0
l (r) (l =

n + 1, ..., n + m) as

μ0
l (r) = μ∞

l + kBT ln

⎡
⎣ n0

l (r)

1 − ∑N
j=1

n0
j (r)

nmax
j

⎤
⎦, (3)

where μ∞
i and zi (i = 1, ..., N = n + m) are the electrochem-

ical potential of the ith species at a standard state and its
valence (zero for neutral species), respectively. Also, �0(r) is
the equilibrium electric potential at a radial distance r from the
center of the particle, e is the elementary electric charge, kB is
the Boltzmann constant and T is the absolute temperature.
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In the absence of an external electric field, the Nernst-
Planck equations can be solved for the equilibrium con-
centration of species, as the gradient of their corresponding
(electro)chemical potentials must be zero:

∇μ0
i (r) = ∇{

μ∞
i + zie�

0(r) + kBT ln
[
γ 0(r)n0

i (r)
]} = 0

(i = 1, ..., n + m = N ). (4)

Contrary to the case of low particle volume fraction, the
bulk values of the concentrations of ions and neutral species
are not well defined when the particle volume fraction is high,
due to possible overlapping of electric double layers of adja-
cent particles. A reasonable approximation to the equilibrium
bulk concentration of chemical species might be its value on
the outer surface of the cell r = b, where the equilibrium
electric potential �0(b) is set to zero.

Thus, we obtain for ionic species,

n0
i (r) =

⎡
⎣1 − ∑N

j=1
n0

j (r)
nmax

j

1 − ∑N
j=1

b j

nmax
j

⎤
⎦bie

− zi e
kBT �0(r) (i = 1, ..., n), (5)

and for neutral molecules,

n0
i (r) =

⎡
⎣1 − ∑N

j=1
n0

j (r)
nmax

j

1 − ∑N
j=1

b j

nmax
j

⎤
⎦bi (i = n + 1, ..., n + m), (6)

where the bi (i = 1, ..., n + m = N ) coefficients are the cor-
responding ion or neutral molecule concentrations at the outer
surface of the cell, r = b. By summing over all species, the
term between brackets in Eqs. (5) and (6) can be obtained.
Therefore, for ions we have

n0
i (r) = bie

− zi e
kBT �0(r)

1 + ∑n
j=1

b j

nmax
j

[e− z j e

kBT �0(r) − 1]
(i = 1, ..., n), (7)

and for neutral species,

n0
i (r) = bi

1 + ∑n
j=1

b j

nmax
j

[e− z j e

kBT �0(r) − 1]

(i = n + 1, ..., n + m). (8)

The modified Poisson-Boltzmann equation (MPB) ac-
counting for the finite size of the ions is then

∇2�0(r) = − e

ε0εrs

∑n
i=1zibie

− zie
kBT �0(r)

1 + ∑n
j=1

b j

nmax
j

[e− z j e

kBT �0(r) − 1]
. (9)

Borukhov et al. [53] obtained a similar modified Poisson-
Boltzmann equation (MPB) accounting for the excluded
volume effect of ions in solution around a spherical particle by
the functional derivatives of the total free energy with respect
to the equilibrium electric potential and the ionic concentra-
tions. Following Borukhov’s method, an alternative derivation
of the latter equations for the simple case where all ions and
neutral molecules different than those of the solvent have
the same size (or equivalently, equal maximum concentration
nmax due to the excluded volume effect) is shown in Sec. S1
of the Supplementary Information File (SIF) [54]. The same
free-energy procedure was already used for the analysis of the

equilibrium double layer of a realistic salt-free colloid with
a classical equilibrium formalism for chemical reactions in
solution [55].

The Nernst-Planck equations for ions and neutral
molecules different than water lead to the following results:[

γ 0(b)

γ 0(r)

]
= 1

1 + ∑n
j=1

b j

nmax
j

[e− z j e

kBT �0(r) − 1]
, (10)

n0
i (r)γ 0(r) = γ 0(b) bi e− zie

kBT �0(r) (i = 1, ..., n), (11)

n0
i (r)γ 0(r) = γ 0(b) bi (i = n + 1, ..., n + m), (12)

where, as it was already described, a common activity coeffi-
cient γ 0(r) has been assumed for all the species.

A common situation for aqueous colloids is that of having
hydronium or hydroxil ions as added counterions in solution.
This is so because the use of ion-exchange resins in labo-
ratories typically substitutes the original added counterions
released by the particles by one of the latter two, depending
on the sign of the counterion. In the present case, the ionic
species acting finally as the added one will be H+, and may
have different contributions: one part equivalent to the re
leased countercharge and another one stemming from the
water dissociation coupled to the chemical reactions of the
carbonic acid generation and dissociation in solution.

The reactions are

H2O
K1−−⇀↽−−

K−1

H+ + OH− (s = 1), (13)

H2CO3
K2−−⇀↽−−

K−2

HCO−
3 + H+ (s = 2), (14)

H2CO3
K3−−⇀↽−−

K−3

H2O + CO2 (s = 3), (15)

where Ks, K−s are the forward and reverse rate con-
stants [56,57]. For these equations, K−1 = 1.11 × 1011

L/(mol.s), K−2 = 5.0 × 1010 L/(mol.s) and K−3 = 7.03 ×
10−4 L/(mol.s). The other kinetic constants can be
found from the equilibrium constants for each reac-
tion: (K1/K−1) c0

H2O = 10−14 mol2/L2, K2/K−2 = 2.5 ×
10−14 mol/L, (K−3/K3) c0

H2O = 1.7 × 10−3, with c0
H2O =

55.5 mol/L as the molar concentration of water. As we are
assuming that free water acts as an ideal solvent, its activity
coefficient is assumed to be γH2O = 1, and will not appear in
any of the corresponding mass-action equations of the latter
opposite elementary chemical reactions [58]. As mentioned,
the equilibrium mass-action equations are assumed to be ful-
filled locally everywhere in the solution, and not just in the
bulk. By using Eqs. (11) and (12), we can write

K1

K−1
= n0

H+ (r) γ 0
H+ (r) n0

OH− (r) γ 0
OH− (r)

n0
H2O

= n0
H+ (r) n0

OH− (r) [γ 0(r)]2

n0
H2O

= bH+ bOH−

bH2O
[γ 0(b)]2,

(16)

K2

K−2
=

n0
HCO−

3
(r) γ 0

HCO−
3

(r) n0
H+ (r) γ 0

H+ (r)

n0
H2CO3

(r) γ 0
H2CO3

(r)
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=
n0

HCO−
3

(r) n0
H+ (r) [γ 0(r)]

n0
H2CO3

(r)
= bHCO−

3
bH+

bH2CO3

[γ 0(b)],

(17)

K3

K−3
= n0

CO2
(r) γ 0

CO2
(r) n0

H2O

n0
H2CO3

(r) γ 0
H2CO3

(r)

= n0
CO2

(r) n0
H2O

n0
H2CO3

(r)
= bCO2 bH2O

bH2CO3

, (18)

where bH2O = n0
H2O = 103NAc0

H2O and NA is Avogadro’s num-
ber. In the situation considered, we will have three ionic
species in solution, namely, H+, OH−, and HCO−

3 , and
two neutral species, dissolved CO2 in equilibrium with the
standard atmosphere, and H2CO3. The modified Poisson-
Boltzmann equation (MPB) [Eq. (9)] in conjunction with
Eqs. (16)–(18), can be solved by the iterative procedure de-
scribed in Sec. 2 of the SIF.

III. ELECTROKINETIC EQUATIONS AND BOUNDARY
CONDITIONS IN ac FIELDS

A. Electrokinetic equations

Let us now consider a spherical particle of radius a, surface
charge density σ , mass density ρp and relative permittivity εr p

surrounded by a shell of the above described realistic aqueous
solution of outer radius b = a φ−1/3. An alternating electric
field �E exp (−iωt ) of angular frequency ω is applied to the
system. In the stationary state, the particle will move with
a velocity �Vp exp (−iωt ) where �Vp = μ �E , with μ as the dy-
namic electrophoretic mobility. A spherical coordinate system
(r, θ, ϕ) is fixed at the center of the particle, and the polar axis
(θ = 0) is chosen to be parallel to the applied electric field.

The fundamental equations connecting the electrical poten-
tial �(�r, t ), the number density of each species ni(�r, t ) and
their drift velocity �vi(�r, t ) (i = 1, ..., n + m), the fluid velocity
�v(�r, t ) and the pressure P(�r, t ) at every point �r in the system
and time t are

∇2�(�r, t ) = −ρel (�r, t )

εrsε0
, (19)

ρel (�r, t ) =
n∑

i=1

zieni(�r, t ), (20)

ηs∇2�v(�r, t ) − ∇P(�r, t ) − ρel (�r, t )∇�(�r, t ) = ρs
∂

∂t
[�v(�r, t ) + �Vp exp (−iωt )], (21)

∇ · �v(�r, t ) = 0, (22)

�vi(�r, t ) = �v(�r, t ) − 1

λi
∇μi(�r, t ) (i = 1, ..., n + m), (23)

μi(�r, t ) = μ∞
i + zie�(�r, t ) + kBT ln[γi(�r, t )ni(�r, t )] (i = 1, ..., n + m), (24)

∇ · [ni(�r, t )�vi(�r, t )] = �i(�r, t ) − ∂ni(�r, t )

∂t
(i = 1, ..., n + m). (25)

Equation (19) is Poisson’s equation, where ρel (�r, t ) is the electric charge density [Eq. (20)] and ε0 the vacuum permittivity.
Equations (21) and (22) are the Navier-Stokes equations for an incompressible fluid flow of viscosity ηs and mass density ρs at
low Reynolds number in the presence of an electrical body force. Equation (23) derives from the Nernst-Planck equation for the
flow of the ith species, including the gradient of its (electro)chemical potential μi(�r, t ) defined in Eq. (24), where again μ∞

i is its
standard value and λi its drag coefficient. Equation (25) is the continuity equation for the conservation of each species including
the possibility of generation and annihilation of species by chemical reactions where �i(�r, t ) are generation-recombination
functions for the ions and neutral molecules.

In the case we are concerned, n = 3 and m = 2, that, as mentioned, correspond to: ions H+ (i = 1) from dissociation of
ionizable particle surface groups, water dissociation and dissociation of carbonic acid generated by atmospheric CO2 dissolved
in the solution, OH− (i = 2) from water dissociation, and bicarbonate ion HCO−

3 (i = 3) and the neutral species H2CO3 (i =
4, z4 = 0) and CO2 (i = 5, z5 = 0) from the atmospheric contamination.

For the ions, the functions �i(�r, t ) (i = 1, ..., 3) are expressed as

�1(�r, t ) = �H+ (�r, t ) = [
K1 n0

H2O − K−1 nH+ (�r, t ) nOH− (�r, t ) γH+ (�r, t ) γOH− (�r, t )
] + [

K2 nH2CO3 (�r, t ) γH2CO3 (�r, t )

− K−2 nHCO−
3

(�r, t ) nH+ (�r, t ) γHCO−
3

(�r, t ) γH+ (�r, t )
]
, (26)

�2(�r, t ) = �OH− (�r, t ) = [
K1 n0

H2O − K−1 nH+ (�r, t ) nOH− (�r, t ) γH+ (�r, t ) γOH− (�r, t )
]
, (27)

�3(�r, t ) = �HCO−
3

(�r, t ) = [
K2 nH2CO3 (�r, t ) γH2CO3 (�r, t ) − K−2 nHCO−

3
(�r, t ) nH+ (�r, t ) γHCO−

3
(�r, t ) γH+ (�r, t )

]
. (28)
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In addition, for the neutral species (i = 4, 5) we have

�4(�r, t ) = �H2CO3 (�r, t ) = −[K2 nH2CO3 (�r, t ) γH2CO3 (�r, t ) − K−2 nHCO−
3

(�r, t ) nH+ (�r, t ) γHCO−
3

(�r, t ) γH+ (�r, t )]

− [
K3 nH2CO3 (�r, t ) γH2CO3 (�r, t ) − K−3 n0

H2O nCO2 (�r, t ) γCO2 (�r, t )
]
, (29)

�5(�r, t ) = �CO2 (�r, t ) = [
K3 nH2CO3 (�r, t ) γH2CO3 (�r, t ) − K−3 n0

H2O nCO2 (�r, t ) γCO2 (�r, t )
]
, (30)

according to the procedure developed by Baygents and Saville
for weak electrolytes [59]. In Sec. 3 of the SIF the linear
perturbation scheme, that has been applied to solve the latter
set of electrokinetic differential equations in the presence of
low-strength alternating electric fields, is studied in detail.
Also, the symmetry of the problem has facilitated the mathe-
matical tasks concerning the field-induced linear perturbations
in our spherical colloid.

B. Boundary conditions

The appropriate boundary conditions are [60]

�p(�r) = �(�r) at r = a, (31)

εrs∇�(�r, t ) · r̂ − εr p∇�p(�r, t ) · r̂ = −σ/ε0 at r = a, (32)

�v(�r) = 0 at r = a, (33)

�v j (�r) · r̂ = 0 ( j = 1, ..., 5) at r = a, (34)

< ρm�u ′
>= 1

Vcell

∫
Vcell

ρm�u ′ dV = 0, (35)

�ω(�r) = ∇ × �v(�r) = 0 at r = b, (36)

δn j (�r) = 0 ( j = 1, ..., 5) at r = b, (37)

δ�(�r) = − �E · �r at r = b, (38)

where ρm is the local mass density, and �u ′ is the local velocity
with respect to a laboratory reference system.

At the particle surface, some boundary conditions have
to be imposed: the continuity of the electric potential, as
expressed by Eq. (31); Eq. (32) represents the discontinuity
of the normal component of the displacement vector (r̂ is the
radial unit vector of the spherical coordinate system); Eq. (33)
indicates that the fluid is at rest at the particle surface in the
reference system fixed to the particle; Eq. (34) stands for the
impossibility of ions to penetrate the solid particle; according
to O’Brien [61] the condition of zero macroscopic momentum
per unit volume of the colloid [see Eq. (35)] must be fulfilled,
allowing us to obtain the dynamic electrophoretic mobility.
At the outer surface of the cell we have Eq. (36), which
stands for the Kuwabara boundary condition of null vorticity
for the fluid velocity, and Eqs. (37) and (38), which are the
Shilov-Zharkikh-Borkovskaya boundary conditions [17] for
the perturbed concentration of species and perturbed electric
potential in such surface. Finally, the equation of motion of
the unit cell with the net force acting on it (see Sec. S6 of SIF)
will permit us to close the problem.

In Sec. 3 of the SIF the linearized version of the lat-
ter boundary conditions can be found, according to the

above-mentioned linear perturbation scheme for low-strength
alternating electric fields we are concerned in this work. In ad-
dition, in Sec. S4 of the SIF the condition of zero macroscopic
momentum per unit volume of the colloid shown in Eq. (35) is
studied in detail. Furthermore, the perturbation pressure func-
tion is derived by integration of the Navier-Stokes equation in
Sec. S5 of the SIF, and the net force acting on the unit cell is
addressed in Sec. S6 of the SIF.

As the complex relative permittivity ε∗
r of the system does

help in properly understanding the frequency dependence of
the particle dynamic mobility μ, its determination becomes
very convenient. Usually, ε∗

r is directly obtained from the
complex conductivity K∗ of the suspension, which is eval-
uated by the linear relation connecting macroscopic electric
current density, < �i(�r, t ) >, and macroscopic electric field in
the cell, < −∇�(�r, t ) >. The macroscopic quantities stand
for volume averages of the corresponding local quantities
in the volume of a cell. Thus, in Sec. S7 of the SIF the
complex relative permittivity of the colloid will be derived
from its complex electrical conductivity. Finally, in Sec. S8
of the SIF, and for convenience for the numerical resolution
of the electrokinetic equations set, the dimensionless form of
linearized electrokinetic equations and boundary conditions
can be found.

IV. RESULTS AND DISCUSSION

A. Finite-size effects: Overall behavior

Figure 1 gives us information about the concentration pro-
files predicted by the model for two sizes of chemical species.
If a simple cubic packing (52.35% occupancy) is considered,
and an equal value nmax is chosen for the maximum concen-
tration of neutral and charged species, then we have nmax =
(2R)−3, with 2R as the diameter of the chemical species,
nmax = 103NAcmax, with cmax the maximum molar concentra-
tion of species. When cmax = 4.0 mol/L, we have an effective
diameter 2R = 0.75 nm, and when cmax = 2.5 mol/L, the
effective diameter is 0.87 nm, both in the typical range of
hydrated ions [62]. In all the cases analyzed, the “added coun-
terions” have been H+.

The equilibrium molar concentration of H+ is displayed in
Fig. 1(a), according to the present model [RS model (realistic
with finite-size effects) hereafter] in a region very close to the
particle surface. The two sizes mentioned for chemical species
are included for comparison as well as the realistic pointlike
prediction (RP model hereafter), which is attained from the
full model when the maximum concentration of species nmax

tends to infinity (the pointlike limit). Analogously, in Fig. 1(b)
we show similar predictions of the equilibrium concentrations
of neutral molecules and coions in the solution for the same
cases studied. As it has been reported in the literature [63,64],
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(a)

(b)

FIG. 1. (a) Equilibrium molar concentration of added counteri-
ons H+ as a function of the dimensionless radial distance x = r/a
from the particle center inside the cell. (b) Equilibrium molar concen-
trations of neutral molecules and coions as a function of x. From top
to bottom: CO2, H2CO3, HCO−

3 , OH−. Solid lines: realistic salt-free
pointlike predictions (model RP); dashed (cmax = 4.0 mol/L) and
dotted (cmax = 2.5 mol/L) lines: realistic, salt-free, finite-size (RS)
predictions. Data: φ = 0.0001, a = 25 nm, σ = −30.0 μC/cm2,
x = b/a = 21.54.

when the species are allowed to have finite size, the maximum
concentration of counterions can give rise to a concentration
plateau very close to the particle surface for sufficiently high
particle charges, like the one displayed in Fig. 1(a). Instead,
for the PB approach the pointlike counterion concentration
monotonously increases as we get closer to the particle sur-
face from the solution, reaching unrealistic values in many
situations with highly charged particles. Also, as ion size
increases, the maximum concentration of species diminishes
close to the particle surface and the width of the concentration
plateau increases. It is also remarkable that the equilibrium
concentrations of coions and neutral molecules in Fig. 1(b) are
lower than the RP predictions, the more so the larger the size
of the species, although the pointlike results are practically
recovered just a few nanometers from the particle surface
(x = 1.0 means r = a = 25 nm, x = 1.1 means r = 27.5 nm,
and x = b/a = 21.54 corresponds to r = b = 538.5 nm, the
outer radius of the cell).

FIG. 2. Dimensionless equilibrium electric potential as a func-
tion of dimensionless radial distance x = r/a from the particle center
inside the cell, for the models and conditions indicated in Fig. 1.
Data: φ = 0.0001, a = 25 nm, σ = −30.0 μC/cm2, x = b/a =
21.54.

In Fig. 2, the dimensionless equilibrium electrical potential
�̃0 = e�0/kBT is displayed as a function of the dimension-
less radial distance r/a close to the particle surface, for the
same realistic pointlike and full finite-size conditions studied
in Fig. 1. The most important feature than can be drawn
from Fig. 2 is the increase of the electrical potential at every
distance from the particle surface when the chemical species
are allowed to have finite size. In other words, the larger size
of species leads to a decrease of the population of counterions
close to the charged surface, and therefore, to a decrease of
the screening of particle charge. As it will be shown later, this
fact will have important consequences on the high frequency
electrophoretic mobility.

Figure 3 illustrates the real (a) and imaginary (b) parts
of the dimensionless dynamic electrophoretic mobility μ̃ =
3ηse/(2εrsε0kBT )μ, as a function of the frequency of the
alternating electric field for realistic pointlike and realistic
finite-size (full model) predictions, and for the two finite
sizes of species studied in previous figures. The first feature
worth to consider in the frequency dependence of Re(μ̃) is
its increase around 106 Hz: this is a manifestation of the
Maxwell-Wagner-O’Konski (MWO) relaxation [65,66]. This
is the phenomenon by which the induced dipole associated
to ionic rearrangements in the EDL due to the electric field,
cannot be built up because the frequency of the field is too
high for such rearrangements to occur: the induced dipole
associated to the ionic rearrangements in the EDL produces
a braking of the particle motion that relaxes for the frequency
range mentioned. This relaxation corresponds to the lowest-
frequency minimum of the imaginary part of the mobility in
Fig. 3(b). The subsequent diminution of μ̃ in Fig. 3(a) as fre-
quency increases after the first mobility maximum is related to
the inertia of particle and fluid, but there is another relaxation
process at larger frequencies (around 109 Hz). This can be
interpreted as an additional Maxwell-Wagner process, similar
to the MWO above discussed, but associated in this case to the
rearrangement of the thin layer of counterions (condensate),
that develops close to the particle surface in highly charged
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(a)

(b)

FIG. 3. Real (a) and imaginary (b) parts of the dimensionless
dynamic electrophoretic mobility μ̃ as a function of the frequency
of the alternating electric field. Solid lines: realistic salt-free point-
like predictions (model RP); dashed (cmax = 4.0 mol/L) and dotted
(cmax = 2.5 mol/L) lines (full model or model RS): realistic salt-free
finite-size predictions, for the indicated maximum concentrations.
Data: φ = 0.0001, a = 25 nm, σ = −30.0 μC/cm2.

colloids [31]. Similarly to the freezing of the MWO relaxation
above mentioned, the reordering of the condensate also ceases
above a characteristic frequency, which is above the MWO re-
laxation because of the small thickness of the condensate. The
imaginary part of the dynamic mobility in Fig. 3(b) helps us
again to better identify the relaxation frequency of this second
MW-process, as it coincides with that of the highest-frequency
minimum (around 6 × 108 Hz in this representation). As it
is clearly shown in Fig. 3, in the low frequency region, both
realistic pointlike and full model finite-size predictions show
essentially no differences whatever the finite size chosen. This
situation is basically due to the fact that it is the diffuse layer
response which mainly governs the mobility in such frequency
region. The low-frequency induced electric dipole moment
and related relaxation mechanisms hardly change regardless
of whether the species are allowed to have finite size or not,
due to the typically huge dimensions of double layers in salt-
free colloids and the low particle concentration of the colloids
chosen in Fig. 3.

Figure 3 also indicates that the RS model predicts an im-
portant enhancement of the mobility at the high side of the
frequency range, where the MW relaxation of the condensate
takes place [31]. The large value of the full dynamic mobility
as compared to the pointlike approximation is linked to the
larger thickness of the condensate for finite ions. This leads to
an important reduction of the screening of the particle surface
charge (see also the remarkable increase of the equilibrium
electric potential in Fig. 2 as the size of species increases),
and to a corresponding enhanced contribution to the electric
dipole moment of the condensate region. Its disappearance by
MW relaxation gives rise to a huge mobility increase, clearly
overcoming the inertial fall. That increase is, as expected,
larger the bigger the counterions size.

B. Dynamic electrophoretic mobility and limits of the model

In this section, a more detailed study is proposed with the
addition of two limiting predictions which are simplifications
of the full model when the realistic chemistry of the aqueous
solution is neglected but the species are still allowed to have
finite size (NRS model: nonrealistic and finite-size effects,
hereafter) and when the species are pointlike and no realistic
chemistry is allowed (NRP model: nonrealistic and pointlike,
hereafter). The latter two model variations are essentially pure
salt-free theoretical limits and differ just in the consideration
of whether the added counterions (the only species present)
have finite size or not. In summary, the model variations (the
reference is the full model developed in this work, or RS
model) that will help us with the discussion are:

—RP model. Chemical reactions are taken into account
and all the species are pointlike.

—NRS model. Chemical reactions are neglected, and the
only source of counterions is that linked to the ionization of
chemical surface groups on the particles surface. The coun-
terion species is allowed to have finite size. This prediction
should tend to that for pure salt-free colloids with finite coun-
terion size [28]. We attain this limit when chemical reactions
in the full model are eliminated, and the electroneutrality pre-
served with just charged particles and their added counterions
as the only countercharge.

—NRP model. Same as NRS model but neglecting the size
of counterions. This prediction should tend to that for a pure
salt-free colloid with pointlike added counterions [23]. It is
attained from the NRS model when the parameter nmax tends
to infinity.

To accomplish a first comparison between predictions ac-
cording to the new model and those of the latter model
variations, a representative case will be studied on which
general conclusions will be drawn. In Fig. 4 we show for
simplicity the analysis of just the real part of the dimension-
less dynamic electrophoretic mobility versus the frequency of
the alternating electric field. It is interesting to note that the
low frequency limit of our calculations for the simplest NRP
case, is very close to the derivation carried out by Ohshima
[67] for the case of highly charged particles and low volume
fractions. This can be taken as an indication of the validity
of our general model. A comparison with experimental data
obtained in salt-free conditions for the dc electrophoretic mo-
bility of latex particles by Medebach and Palberg [68] was
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FIG. 4. Real part of the dimensionless dynamic electrophoretic
mobility μ̃ as a function of frequency of the electric field, for the
models described (see text). Data: φ = 0.00001, a = 25 nm, cmax =
2.5 mol/L, σ = −30.0 μC/cm2. The dc limits of our model and of
Ohshima’s high surface charge approximation [67] are indicated for
comparison.

carried out by the authors [20], and it was found a reasonable
agreement between data and predictions using the RP version
of the general model. Additionally, it should be mentioned that
Lobaskin et al. [69] used molecular dynamics for the simu-
lation of the electrophoretic mobility of the same particles,
and found a good agreement with experiments, similarly to
the accordance of our model and that set of data.

One of the most remarkable features that can be imme-
diately drawn from Fig. 4 is the huge difference between
the low-frequency predictions of pure salt-free and realis-
tic salt-free mobility models. This enormous discrepancy is
maintained when finite-size effects are included. In the re-
cent literature, similar differences between realistic and pure
salt-free pointlike predictions have been reported [20]. In this
work, it is also confirmed that finite size effects have no sig-
nificant influence on the mobility for both pure (compare NRP
and NRS curves) and realistic (compare RP and RS curves)
approaches at low to intermediate frequencies for low particle
concentrations.

Another striking characteristic observed in Fig. 4 is that at
high frequencies, where the MW-process of the condensate re-
gion relaxes, the prediction of the NRS model tends to match
that of the full realistic model, RS, whereas the pointlike
approach, RP, reproduces the full RS results at low or medium
frequencies in the dilute particle concentration limit. The
overall mobility response [see also Fig. 3(a)] was analyzed
above in terms of EDL polarization and MW relaxations,
but the coincidence between NRS and RS models at high
frequencies suggests that the key factor in determining the
frequency response of the mobility is not the realistic consid-
eration of chemical reactions but rather the proper inclusion
of size effects. Note that the change of the mobility with
frequency in the high-frequency range is mostly related to the
MW relaxation of the condensate, populated by counterions,
no matter the kind of description of the ionic composition

FIG. 5. Real part of the dimensionless dynamic electrophoretic
mobility μ̃ as a function of the frequency of the alternating electric
field for the indicated volume fractions and RS model (solid lines) or
RP model (dashed lines) predictions. Other data: cmax = 2.5 mol/L,
a = 25 nm, σ = −30.0 μC/cm2.

of the EDL. Similar results have been reported for the ideal
salt-free description [28].

All these features point to the conclusion that for low
concentrated colloids the realistic conditions are crucial at
low frequencies, but at very high ones it is the counterion
species that plays the most important role, as realistic and
pure salt-free results tend to converge regardless of whether
the counterions are considered with finite size or pointlike.
For this reason, it should be very convenient to study the
cases where the role of the counterions increases in impor-
tance. This situation is principally attained as particle volume
fraction increases, due to the associated enhancement of the
population of counterions, and even more if in addition the
particles are highly charged. We will address these cases in
the following sections.

C. Finite-size effects and particle volume fraction

In Fig. 5 we explore the effect of volume fraction on the
real part of the dynamic electrophoretic mobility for a highly
charged colloid with the other conditions as in Fig. 4. Note,
first of all, that as particle concentration increases, the amount
of counterions in solution increases as well. This brings about
a shortening of the average interparticle distance and an en-
hancement of the crowding of counterions in a region close
to the particle surface. To this we must add the enhanced
particle-particle hydrodynamic interactions, also contributing
to an overall reduction of the mobility. However, the high-
frequency real part of the dimensionless dynamic mobility
increases from roughly 6.5 to 11.5 when the ion size is ac-
counted for at low-moderate volume fractions. Note as well
that for moderate to high volume fractions, the low frequency
mobility is significantly larger when size effects are taken into
account. This is a consequence of the reduced screening of
the particle charge due to the limited volume accessible to
the finite counterions as compared to pointlike ones in the
latter conditions. It is also observed that the diffuse layer
MWO process is shifted to the high-frequency side due to the
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FIG. 6. Same as Fig. 5, but for varying particle radius (indicated
in nm), for φ = 10−4 and the rest of parameters unchanged.

increase of the electrical conductivity of the medium by the
enhancement of released counterions upon increasing particle
volume fraction. As a result, a single, merged MW relaxation
band is observed at high volume fractions.

D. The role of particle radius

In Fig. 6 we explore the relative influence of realistic finite-
size effects on the real part of the electrophoretic mobility as a
function of the frequency of the alternating electric field upon
changing particle radius at a given particle volume fraction
φ = 0.0001, surface charge density σ = −30.0 μC/cm2, and
maximum concentration of species cmax = 2.5 mol/L (effec-
tive diameter 2R = 0.87 nm). The particle radii chosen are
15, 25, 50, and 75 nm. The data presented show that the
main aspects of the μ̃-frequency plots are consistently repro-
duced for all the tested radii, namely, increased importance of
the condensate for finite-size ions, and negligible difference
in dilute conditions between the RP and RS models at low
frequencies. It is worthwhile to mention that as the particle
radius increases, the low frequency mobility decreases. This
is a well-known classical result [70] for the mobility-κa (κ−1,
the Debye length, is representative of the EDL thickness)
relationship at the low κa range (<5), as in the case of data
in Fig. 6. For the present study, we have estimated κa in terms
of the values of the ion concentrations at the outer surface of
the cell: bH+ , bOH− and bHCO−

3
, as

κa =
[

e2a2

εrsε0kBT

(
bH+ z2

H+ + bOH− z2
OH−

+ bHCO−
3

z2
HCO−

3

)]1/2

. (39)

The κa values estimated are: 0.08, 0.12, 0.25, 0.37, for 15,
25, 50, and 75 nm, respectively. This means that we are in
the κa range for which increasing κa leads to a decreasing
mobility. This is because the viscous friction increases with
size, whereas the effective particle charge is little affected by
particle size as most added counterions are located in the con-
densate, practically compensating for the increase of charge

(a)

(b)

FIG. 7. Real part of the dimensionless dynamic electrophoretic
mobility μ̃ (a), and imaginary part of the relative permittivity ε′′

r (b),
as a function of the field frequency. Particle radii in nm as indicated.
Data: φ = 0.01, cmax = 4.0 mol/L, σ = −30 μC/cm2. Solid lines:
RS model; dashed lines: RP model.

with radius. In addition, the MWO relaxations are shifted to
lower frequencies the larger the size, and the same happens to
the inertial relaxation.

In addition, in Fig. 7 we present a different study: the real
part of the dimensionless electrophoretic mobility [Fig. 7(a)]
and the imaginary part of the relative permittivity of the
colloid [Fig. 7(b)] are plotted as a function of the frequency
of the alternating electric field for two particle radii: 25 and
250 nm, maximum concentration of species cmax = 4.0 mol/L
(effective diameter 2R = 0.75 nm), particle volume fraction
φ = 0.01, and surface charge density σ = −30.0 μC/cm2.
This representation is intended to stress the low-frequency
processes occurring in the EDL, to which the permittivity
is known to be extremely sensitive, while dynamic mobil-
ity responds rather to high-frequency fields, producing MW
relaxations, and eventually inertial decay [see, for example,
Fig. 3(a)] [71,72].

One of the most important features that can be observed
in Fig. 7(a) is that as particle radius increases, the relative
influence of finite-size effects on the mobility decreases as
one could expect, although there is an important contribution
at high frequencies that corresponds to the relaxation of the
MW-process associated to the counterion condensation region
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[compare between solid lines (full model RS) and dashed lines
(RP model)], at each particle radius. However, the imaginary
part of the permittivity of the colloid in Fig. 7(b), is rather
insensitive to the consideration of finite-size effects, as we ob-
tain practically the same results with RS and RP approaches.

What is really different as particle radius increases is
the presence of the α-relaxation process (lowest frequency
peak of ε′′

r ), only observable in colloids in salt solutions or
even in realistic salt-free colloids, mainly for large particles.
For frequencies below the one characteristic of this process,
concentration polarization clouds of neutral electrolyte are
produced on each side of the particle in the presence of the
electric field. For negative particles, with EDL enriched in
cations, these will be accumulated by the field (assumed point-
ing from left to right) on the right hand side of the particle,
and will add to the anions transported from the bulk, and
accumulated in the same region. As a result, the concentration
of both cations and anions will be increased on the right
side, and by a similar mechanism, they will be depleted on
the left. This opposes the MWO polarization and hence in-
creases the particle speed. When the α-relaxation frequency is
reached, this phenomenon cannot take place and the mobility
decreases. Strictly, the α relaxation process is impeded in pure
salt-free colloids, as there is no way for the concentration
polarization phenomenon to be built because of the absence
of the above described gradient of neutral salt, an essential
requirement for the α process to be developed [2]. In contrast,
it has been shown that the α-relaxation process may be present
in realistic salt-free colloids. The reason lays on the fact that
a realistic salt-free colloid behaves like a colloid in a low
salt solution [60], with not only counterions but also coions
in the solution, which are essential for the generation of the
concentration polarization phenomenon of the α-process. For
the mobility representation in Fig. 7(a), and for the largest
radius, the α-process provokes the above mentioned decrease
of the mobility at low frequencies when it is relaxed. Recall
that in many situations of large particle radius, the lowest
frequency MW-process (the MWO process; second peak of
ε′′

r for the case a = 250 nm as frequency increases in Fig. 7(b)
normally brakes the particle motion. As mentioned before,
the decrease of the mobility as frequency is further increased
after the MWO relaxation process, is due to the inertia. At
higher frequencies, the second MW-relaxation process (high-
est frequency peak of ε′′

r in Fig. 7(b), that corresponds to the
counterions condensate, relaxes raising the mobility again. At
even larger frequencies, the inertia finally leads the mobility
toward zero.

E. Finite-size effects and particle surface charge

The particle surface charge is a crucial parameter for the
present study, as, to begin with, for sufficiently high charge
values the ionic condensation phenomenon takes place [38].
Furthermore, as the particle charge increases, so does the
mobility, until the condensation phenomenon starts to control
the dynamic response. For larger particle charges, the conden-
sate region is simply fed with additional counterions whereas
the double layer hardly changes. An effective particle charge
seems to control the mobility, that remains nearly constant for

FIG. 8. Real part of the dimensionless dynamic electrophoretic
mobility μ̃ (a), and imaginary part of the relative permittivity ε′′

r (b),
as a function of the field frequency. Particle surface charge density
in μC/cm2 as indicated. Data: φ = 0.001, cmax = 2.5 mol/L, a =
50 nm. Solid lines: RS model; dashed lines: RP model.

even larger particle charges beyond the onset for the counte-
rion condensation. The description of this condensation region
populated with counterions is very sensitive to the considera-
tion of whether the counterions in it have finite size or not, as
discussed above.

To explore this hypothesis, in the present section different
particle surface charges will be studied, always comparing, for
brevity, RS and RP models only. The ion size in the former
(2R = 0.87 nm) corresponds to a maximum concentration of
species in the condensate of cmax = 2.5 mol/L. Thus, in Fig. 8
the real part of the dimensionless electrophoretic mobility
[Fig. 8(a)] and the imaginary part of the relative permittivity
[Fig. 8(b)] are shown for different particle surface charge den-
sities σ up to the values where the counterion condensation
is expected to occur. For such reason we explore σ values of
−0.5, −2.5, −10.0, and −25.0 μC/cm2 in Fig. 8. In all cases,
the particle volume fraction is φ = 0.001, and the particle
radius a = 50 nm.

For the lowest surface charge in Fig. 8, dashed lines (RP
model) are almost indistinguishable from the solid lines used
to represent the full realistic predictions (RS model). As sur-
face charge increases, the MWO and the condensate MW
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relaxation processes start to separate. Note that for the con-
ditions chosen in Fig. 8, the α-relaxation process is absent. If
the particle charge is further increased, then two relevant facts
are clearly displayed. The first one deals with the saturation
of the low frequency mobility and the practical invariance
of the lowest frequency relaxation process [the MWO one,
first global peak of ε′′

r in Fig. 8(b)] once the particle charge
reaches the onset for the condensation. Raising the charge has
the only consequence of accumulating more counterions in
the condensate, whereas the double layer remains essentially
unaffected. The second aspect has to do with the fact that
finite-size effects confine their importance to the condensate
region once its population of counterions is high enough. Note
that a second maximum in mobility starts to grow with the
increase in particle charge while shifting to larger frequen-
cies. This is confirmed by the dielectric dispersion predictions
[Fig. 8(b)], where one can observe that the MW-relaxation
of the condensate (second peak in ε′′

r ) is separated from that
of the diffuse layer, and moves toward larger frequencies the
larger the particle charge. In the literature of ideal salt-free
colloids, such shift has been correlated with the increase in
the conductivity of the condensate layer as it gets more popu-
lated in counterions due to the rise of surface charge density.
The same explanation can be applied in the present realis-
tic salt-free case, because the key factor is the counterion
condensation layer. In summary, realistic size effects have
an outstanding influence on the high frequency mobility of
highly charged particles.

V. CONCLUSIONS

With the intention of progressively approaching the re-
alistic conditions of colloids in aqueous solutions, several
theoretical aspects have been dealt with in this work, al-
ways related to the so-called salt-free systems. Although such
systems have been previously explored theoretically, those
studies have been limited to specific situations, namely, di-
lute, pure, or ideal salt-free colloids (pointlike counterions
as the only ionic species) [73–75]; concentrated systems in
the same conditions [3,23,76]; inclusion of ion size effects in
pure salt-free systems [28,77]; realistic chemistry of the solu-
tion (water dissociation, CO2 contamination [20,33,78]). The
present work means an advance over all previous approaches,
by including in a single general model all the features men-
tioned, which are particular cases of the theoretical treatment
proposed.

Specifically, we present a complete theoretical electroki-
netic model which allows to predict the complex dynamic
electrophoretic mobility and complex relative permittivity of a
realistic aqueous nanocolloid in the presence of an alternating
electric field. We have considered for the first time colloids
of arbitrary concentration, finite-size effects for chemical
species, and a realistic chemistry for the solution where the
colloidal particles are immersed. This has been done by
jointly applying a mean-field cell model for particle concen-
tration effects, and a nonequilibrium scenario accounting for
association-dissociation processes in the chemical reactions,
including nonidealities linked to the finiteness of the size of
the species in solution.

It has been found that, depending on the frequency of the
applied electric field, finite-size effects in realistic salt-free
colloids cannot be dismissed. At low frequencies and for low
to moderate particle volume fractions, the realistic pointlike
approach can be considered as a good approximation to the
full model developed in this work for most of the cases ana-
lyzed upon varying particle surface charge density or particle
radius. In contrast, finite-size considerations are essential to
get a proper description of the high frequency mobility re-
sponse, provided that the particle surface charge is high.

Also, the counterion condensation phenomenon that devel-
ops in a region very close to the particles surface is clearly
better described when the finite size of species is accounted
for, which might have important implications in the under-
standing of the self-assembly of bionanomaterials or in the
compaction of genetic material [38,79,80].

In the future, appropriate electrokinetic experiments with
realistic colloids have to be carefully designed to check and
quantify the role of a potentially essential feature such as the
finite size of chemical species for the development of nanoflu-
idic devices [81]. In addition, a generalization of the model for
realistic electrolyte solutions of arbitrary ionic strength would
be desirable.
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