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Tagged-particle dynamics in confined colloidal liquids
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We present numerical results for the tagged-particle dynamics by solving the mode-coupling theory in
confined geometry for colloidal liquids (cMCT). We show that neither the microscopic dynamics nor the type of
intermediate scattering function qualitatively changes the asymptotic dynamics in vicinity of the glass transition.
In particular, we find similar characteristics of confinement in the low-frequency susceptibility spectrum which
we interpret as footprints of parallel relaxation. We derive predictions for the localization length and the scaling
of the diffusion coefficient in the supercooled regime and discover a pronounced nonmonotonic dependence
on the confinement length. For dilute liquids in the hydrodynamic limit we calculate an analytical expression
for the intermediate scattering functions, which is in perfect agreement with event-driven Brownian dynamics
simulations. From this, we derive an expression for persistent anticorrelations in the velocity autocorrelation
function (VACF) for confined motion. Using numerical results of the cMCT equations for the VACF we also
identify a crossover between different scalings corresponding to a transition from unconfined to confined
behavior.
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I. INTRODUCTION

Nanoscopic confinement has a strong impact on the struc-
tural and dynamical properties of liquids. Most pronounced
are inhomogeneities in the density profile (known as “lay-
ering”) emerging from the confining boundaries [1–3]. This
leads among others to anisotropic structure factors [4] and
position-dependent diffusion coefficients [3,5]. Moreover, the
interplay of layering and confinement qualitatively changes
processes like transport [6], crystallization [7–9], and glass
formation [5].

Colloidal liquids under spatial confinement exhibit a sim-
ilar rich phenomenology [10]. Different from molecular
liquids, colloids additionally display diffusive short-time be-
havior and long-range hydrodynamic interactions between
different colloids and of colloids with the confining walls
[11]. A huge advantage of colloidal compared to molecular
liquids is the increase in length scale, enabling the exper-
imental observation of the single-particle motion [12]. The
above-discussed phenomena can thus be investigated in de-
tail using theory, simulations, and experiments. Additionally,
the dynamics of confined mesoscopic particles is in itself an
important problem in biophysics, including drug delivery in
the human body [13], the flow of red blood cells through
capillaries [14], or the motion of organelles in the cytoplasm
of the cells [15].

In this manuscript, we study the arguably simplest model
for confined colloidal liquids, namely hard spheres without
hydrodynamic interactions, confined between parallel and
planar hard walls. This system was already extensively stud-
ied in experiments [12,16–25] and simulations [1,3,4,26–41],
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giving valuable insight in the effect of confinement on inho-
mogeneous density profiles and diffusivities [34], anisotropic
structure factors [10,20], and glass formation [5,12].

Most noteworthy for the context of this manuscript is the
emergence of an oscillatory behavior of the parallel diffusivity
and the critical packing fraction with wall separation, lead-
ing to a multiple-reentrant glass transition [5]. This behavior
is qualitatively explained with the concepts of “commensu-
rate” and “incommensurate” packing. Commensurate packing
denotes wall separations, H ≈ nσ , with integer n and par-
ticle diameter σ . In these systems, the particles create n
layers, consistent with the inhomogeneous density profiles
from the individual walls. In the case of incommensurate
packing for wall separations H ≈ (n + 0.5)σ particles have to
be squeezed in between the pronounced layers which signif-
icantly reduces diffusion and also lowers the critical packing
fraction. This effect highlights the complicated interplay of
structural relaxation on the one hand and confinement on the
other hand. Investigating this connection in detail, however, is
a promising approach for a better understanding of structural
relaxation in general [12,17,27].

To systematically investigate colloidal liquids, several
first-principle theories have been developed, including mode-
coupling theory (MCT) [42–44], self-consistent generalized
Langevin dynamics [45], and dynamical mean-field theory
[46,47]. For supercooled bulk liquids these theories suc-
cessfully predict several important features like the slowing
down of transport, stretching of the intermediate scattering
function, as well as a two-step power-law relaxation behav-
ior [48–50]. Mode-coupling theory was recently extended
to describe hard spheres in slit geometry (cMCT) [51–54].
The microscopic picture of MCT is the trapping of particles
in transient “cages” formed by their respective neighbors,
which has been investigated systematically in terms of the
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mean-square displacement close to the glass transition [55].
It is expected that cMCT can similarly describe the influ-
ence of confinement on the formation of these cages. Indeed,
the theory successfully describes the effect of commensu-
rate and incommensurate packing and thus, among others,
the multiple-reentrant glass transition [5,52]. Furthermore, it
has been shown that all quantities connected to the glass
transition such as the power-law exponents for the critical
and structural relaxation display a similar oscillatory depen-
dence [56]. Interestingly, the reentrant scenario also applies to
confinement without layering which was shown by studying
cylindrical, quasiconfined systems with both simulations and
mode-coupling theory [57,58]. From these studies one can
conclude that although layering is the most important as-
pect for confined liquids, also the confinement itself plays an
important role.

In this manuscript, we apply and extend the theory for
the tagged-particle dynamics [53] in colloidal liquids. We nu-
merically evaluate cMCT predictions for the self-intermediate
scattering function, the mean-square displacement, and the
velocity autocorrelation function close to the glass transi-
tion. Since these quantities are usually easier accessible (and
also less noisy) than collective variables, this work creates a
basis for more systematic comparisons of (mode-coupling)
theory with simulations and experiments. In addition to this
analysis of structural relaxation in dense liquids, we also
study the long-wavelength dynamics in dilute systems. This
serves two purposes: First, we can directly compare theo-
retical results obtained from the Zwanzig-Mori projection
formalism (which is the foundation of mode-coupling theory)
with Brownian event-driven computer simulations [59] (with-
out hydrodynamic interactions) and thus confirm the validity
of the underlying theoretical formalism for confined liquids.
Second, we can derive and also numerically evaluate predic-
tions for long-time anomalies in confined systems, showing
a crossover from an exponent connected to three-dimensional
motion [60] to two-dimensional diffusion.

The manuscript is organized as follows: In Sec. II, we
recapitulate the mode-coupling theory for colloidal liquids in
slit geometry for the collective and tagged-particle motion. We
then investigate the equations of motion in the hydrodynamic
limit and derive expressions for the intermediate scattering
functions as well as the long-time anomalies in the velocity
autocorrelation function. Afterward, we study in Sec. III the
structural relaxation in dense liquids and present the numeri-
cal solution of the cMCT equations for the self-intermediate
scattering function, the mean-square displacement, and the ve-
locity autocorrelation function. The effect of confinement on
the above presented results is extensively discussed in Sec. IV.
In Sec. V, we then numerically evaluate and analyze the long-
time dynamics in the hydrodynamic limit. We summarize and
conclude in Sec. VI.

II. MODE-COUPLING THEORY FOR COLLOIDAL
LIQUIDS IN SLIT GEOMETRY

To introduce the underlying equations of motion for the
dynamics of colloidal liquids confined between two paral-
lel, flat, and hard walls, we will mainly follow the lines of
Refs. [52–54].

A. Summary of the cMCT equations

The density modes of N particles confined in a channel of
accessible width L can be introduced as

ρ (c)
μ (q, t ) =

N∑
n=1

exp [iQμzn(t )]eiq·rn(t ), (1)

with particle positions xn = (rn, zn), confined to the positions
−L/2 � zn � L/2, wave vectors q = (qx, qy), and wave num-
bers Qμ = 2πμ/L. In the following, we refer to the indices
μ ∈ Z as mode indices. The packing fraction is defined as
ϕ = Nπσ 3/6V , with particle diameter σ (unit of length),
volume V = HA, physical wall distance H = L + σ , and wall
surface area A. The density modes can be interpreted as
Fourier transform of the fluctuating density, ρ (c)(r, z, t ) =∑N

n=1 δ[r − rn(t )]δ[z − zn(t )],

ρ (c)
μ (q, t ) =

∫ L/2

−L/2
dz

∫
A

dr exp[iQμz]eiq·rρ (c)(r, z, t ). (2)

We also introduce the density Fourier amplitudes,

nμ =
∫ L/2

−L/2
n(z) exp [iQμz]dz, (3)

and the inverse Fourier amplitudes, vμ, as the Fourier
transformation of the inhomogeneous density profile n(z) =
〈ρ (c)(r, z, t )〉 and the inverse density profile, v(z) = 1/n(z),
respectively. In this paper, we investigate the time evolution
of a tagged particle, s, with density modes,

ρ (s)
μ (q, t ) = exp [iQμzs(t )]eiq·rs (t ). (4)

The tracer has the same diameter σ as the bath particles.
Therefore, it also has the same accessible width L and density
profile n(z). The superscripts (c), for collective, and (s), for
self, will be used throughout this manuscript.

To characterize the time evolution of the density fluctua-
tions we introduce the coherent,

S(c)
μν (q, t ) = 1

N

〈
δρ (c)

μ (q, t )∗δρ (c)
ν (q, 0)

〉
, (5)

and incoherent,

S(s)
μν (q, t ) = 〈

δρ (s)
μ (q, t )∗δρ (s)

ν (q, 0)
〉
, (6)

intermediate scattering functions (ISF) as the Fourier trans-
form of the usual Van Hove correlation function [52,61]. Due
to translational symmetry in the directions parallel to the walls
and rotational invariance around a wall normal, the ISF only
depends on the wave number defined as the magnitude of
the wave vector q = |q|. The fluctuating density modes are
defined as

δρ (c,s)
μ (q, t ) = ρ (c,s)

μ (q, t ) − 〈
ρ (c,s)

μ (q, t )
〉
, (7)

〈
ρ (c)

μ (q, t )
〉 = δq,0Nnμ/n0, (8)

〈
ρ (s)

μ (q, t )
〉 = δq,0nμ/n0. (9)

The initial value S(c)
μν (q) = S(c)

μν (q, t = 0) is the anisotropic
structure factor, generalized to the slit geometry [52]. We
also find S(s)

μν = S(s)
μν (q, t = 0) = n∗

μ−ν/n0 [53]. The following
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derivation is practically identical for the coherent and the in-
coherent dynamics. We will thus only use the explicit notation
with the superscripts (c) and (s) whenever the distinction has
to be made.

We focus on overdamped, colloidal particles without
hydrodynamic interactions. Therefore, the underlying micro-
scopic equations of motion are given by the Smoluchowski
equation [54,62]. To derive the equations of motion for the
coherent and incoherent ISF, we chose the density modes
{ρ (c,s)

μ (q, t )} as set of distinguished variables and apply the
Zwanzig-Mori formalism [44,61,63]. We find,

Ṡ(t ) + DS−1S(t ) +
∫ t

0
δK(t − t ′)S−1S(t ′)dt ′ = 0, (10)

with the diffusion matrix [D]μν = D0n∗
μ−ν/n0(q2 + QμQν ).

The short-time diffusion coefficient D0 defines the unit of time
as τ = σ 2D−1

0 . Here and in the following, we will occasion-
ally suppress the explicit dependence on the wave number q
in the notation.

The contracted force kernels δK(c)(t ) and δK(s)(t ) describe
the non-Markovian dynamics of the ISF and are formally de-
fined as the time correlation function of the “fluctuating force”
albeit with projected dynamics. Due to the decomposition
of the density modes in the directions parallel and orthog-
onal to the walls, the memory kernels split naturally into
multiple relaxation channels [54]. We therefore introduce the
contraction,

Aμν (q, t ) = C
{
Aαβ

μν (q, t )
}

:=
∑

α,β=‖,⊥
bα (q, Qμ)Aαβ

μν (q, t )bβ (q, Qν ), (11)

with the selector bα (x, z) = xδα,‖ + zδα,⊥. In this way, we
define the force kernels δK as δKμν (q, t ) = C{δKαβ

μν (q, t )}.
We refer to the indices α, β as channel indices. The matrix
notation with calligraphic symbols δK has to be read with
respect to the superindex (α,μ).

The (exact) equations of motion for the force kernels can
now be formally written in terms of an irreducible memory
kernel (for details see Ref. [54]),

δK(t ) = −DM(t )D −
∫ t

0
DM(t − t ′)δK(t ′)dt ′, (12)

with the channel diffusion matrices [D]αβ
μν = D0δαβn∗

μ−ν/n0.
For the irreducible memory kernel M(t ) we now derive an
approximate mode-coupling functional [54],

Mαβ,(c)
μν (q, t ) = Fαβ,(c)

μν [S(c)(t ); q], (13)

with

Fαβ,(c)
μν [S(t ); q] = 1

2N

∑
q1,

q2 = q − q1

∑
μ1, μ2
ν1, ν2

Yα,(c)
μμ1μ2

(q, q1, q2)

× S(c)
μ1ν1

(q1, t )S(c)
μ2ν2

(q2, t )Yβ,(c)
νν1ν2

(q, q1, q2)∗,
(14)

where the vertices Yα,(c)
μμ1μ2

(q, q1, q2) are smooth functions of
the control parameters,

Yα,(c)
μμ1μ2

(q, q1, q2)

= n2
0

L4

∑
κ

v∗
μ−κ [bα (q1 · q/q, Qκ−μ2 )cμ1,κ−μ2 (q1) + (1 ↔ 2)].

(15)

Here we have introduced the direct correlation function
cμν (q), which is defined via the generalized Ornstein-Zernike
equation [51,52,61,64],

[(S(c) )−1]μν = n0

L2
(vμ−ν − cμν ). (16)

Similarly, we find for the memory kernel M(s)(t ) related to
the self-dynamics,

Mαβ,(s)
μν (q, t ) = Fαβ,(s)

μν [S(c)(t ); S(s)(t ); q], (17)

with the mode-coupling functional,

Fαβ,(s)
μν [S(t ); q] = 1

N

∑
q1,

q2 = q − q1

∑
μ1, μ2
ν1, ν2

Yα,(s)
μμ1μ2

(q, q1, q2)

× S(c)
μ1ν1

(q1, t )S(s)
μ2ν2

(q2, t )Yβ,(s)
νν1ν2

(q, q1, q2)∗,
(18)

and the vertices,

Yα,(s)
μμ1μ2

(q, q1, q2) = n0

LLs

∑
σ

[(S(s) )−1]μσ

× bα (q1 · q/q, Qσ−μ2 )cμ1,σ−μ2 (q1).
(19)

Most of the following analytical work will be performed in
the Laplace domain using the convention

Â(q, z) = i
∫ ∞

0
eizt A(q, t )dt, z ∈ C, Im[z] � 0. (20)

For convenience, we introduce a modified memory kernel
K̂(q, z) = δK̂(q, z) + iD, which includes explicitly the high-
frequency limit K̂(q, z) → iD as z → ∞. This implies a δ

function at the time origin. Using the contraction we find
similarly, K̂(q, z) = δK̂(q, z) + iD(q).

To summarize, we have derived the equations of motion for
the coherent and incoherent intermediate scattering functions,
which are given in the Laplace domain by

Ŝ(q, z) = −[zS(q)−1 + S(q)−1K̂(q, z)S(q)−1]−1, (21)

K̂(q, z) = −[iD(q)−1 + M̂(q, z)]−1. (22)

Here we omitted the explicit notation of the superscript (c,s).
The equations are closed by the contraction defined in Eq. (11)
and the approximate mode-coupling functionals.

B. Velocity autocorrelation function
and mean-square displacement

In addition to the intermediate scattering functions, we also
study the tagged-particle dynamics in the long-wavelength
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limit. In this limit, we can then derive explicit equations of
motion for the velocity autocorrelation function (VACF),

Z‖(t ) = 1
2 〈v(t )v(0)〉, t > 0, (23)

parallel to the wall, with the in-plane “velocity” v(t ) = ṙ(t ),
and the mean-square displacement,

δr2
‖ (t ) = 〈|r(t ) − r(0)|2〉, (24)

of the particle. Although this information is, in principle, in-
cluded in the self-intermediate scattering function, in practical
implementations it is very hard to extract it a posteriori from
the numerical solution of the MCT equations.

The velocity autocorrelation function can be extracted im-
mediately from the long-wavelength limit of δK‖‖,(s)

00 (q, t ) as
has been shown for Newtonian dynamics [53]. The same ar-
gument, based on the single-particle conservation law, applies
in the present case of Brownian dynamics. We thus obtain

lim
q→0

δK‖‖,(s)
00 (q, t ) = Z‖(t ), t > 0. (25)

In the long-wavelength limit, we also find that the decay
channels decouple, limq→0 Kαβ,(c,s)

μν (q, t ) = Kα,(c,s)
μν (t )δαβ and

limq→0 Mαβ,(c,s)
μν (q, t ) = Mα,(c,s)

μν (t )δαβ . The equation of mo-
tion for the force kernel in the long-wavelength limit can be
directly extracted from Eq. (12) specialized to the case q = 0
[53],

δKα,(c,s)
μν (t ) = −Dα,(c,s)

μα Mα,(c,s)
αβ (t )Dα,(c,s)

βν

−
∫ t

0
Dα,(c,s)

μα Mα,(c,s)
αβ (t − t ′)δKα,(c,s)

βν (t ′)dt ′,

(26)

with the memory kernels,

Mα,(c)
μν (t ) = n0

∫ ∞

0
dkk

∑
μ1, μ2
ν1, ν2

Yα,(c)
μμ1μ2

(k)

× S(c)
μ1ν1

(k, t )S(c)
μ2ν2

(k, t )Yα,(c)
νν1ν2

(k)∗, (27)

Mα,(s)
μν (t ) = n0

∫ ∞

0
dkk

∑
μ1, μ2
ν1, ν2

Yα,(s)
μμ1μ2

(k)

× S(c)
μ1ν1

(k, t )S(s)
μ2ν2

(k, t )Yα,(s)
νν1ν2

(k)∗, (28)

and the vertices,

Yα,(c)
μμ1μ2

(k) = n0√
2πL4

∑
κ

v∗
μ−κ

× [
bα

(
k/

√
2, Q(c)

κ−μ2

)
c(c)
μ1,κ−μ2

(k) + (1 ↔ 2)
]
,

(29)

Yα,(s)
νν1ν2

(k) = 1√
2πLLs

∑
κ

[(S(s) )−1]μκ

× bα
(
k/

√
2, Q(s)

κ−μ2

)
c(s)
κ−μ2,μ1

(k). (30)

From the memory kernel M‖,(s)
μν (t ) we can also calculate the

long-time self-diffusion coefficient D‖ = D0 + ∫ ∞
0 Z‖(t )dt

and the localization length 4l2
‖ = limt→∞ δr2

‖ (t ), as

D‖ =
([∫ ∞

0
M‖,(s)(t )dt

]−1)
00

, (31)

and

l‖ =
√(

[ lim
t→∞M‖,(s)(t )]−1

)
00. (32)

These equations can be evaluated using the numerical so-
lution of the cMCT equations for the coherent and incoherent
intermediate scattering function. Results will be presented in
Sec. III.

C. Long-time anomalies of the cMCT equations

Before solving the equations numerically we analyze their
behavior in the hydrodynamic limit. Since the derivations are
rather technical we will show the details in Appendix B and
in this section only present the important results. We define
the hydrodynamic limit as the simultaneous limit q → 0 and
z → 0 while z/q2 = const. In this limit, we find for the in-
plane coherent dynamics,

Ŝ(c)
00 (q, z) � −S(c)

00 (q)

z + iq2D0
[
S(c)

00 (q)
]−1 . (33)

This result highlights that the long-time diffusion coefficient
of the collective dynamics is indeed equivalent to the short-
time diffusion constant D0. For the incoherent dynamics we
obtain

Ŝ(s)
00 (q, z) � −1

z + iq2D‖
. (34)

Using these results, we finally find in the hydrodynamic limit

S(c)
00 (q, t ) � S(c)

00 exp
[−D0q2t/S(c)

00

]
, (35)

S(s)
00 (q, t ) � exp(−D‖q2t ), (36)

with S(c)
00 = S(c)

00 (q → 0). The derivation of the higher modes
involves careful application of the Zwanzig-Mori projection
formalism. Details are presented in Appendix B 2. As a final
result we find

S(c,s)
μν (q, t ) � S(c,s)

μ0 S(c,s)
ν0

S(c,s)
00 S(c,s)

00

S(c,s)
00 (q, t ) = S̃(c,s)

μν S(c,s)
00 (q, t ). (37)

This result for the long-wavelengths dynamics of the co-
herent and incoherent scattering functions is also physically
intuitive. At short times t � L2/D0, only the diffusion in the
direction perpendicular to the wall can lead to a significant
change in the scattering functions. This leads to a fast initial
decay in the modes μ �= 0 and ν �= 0, since only these modes
depend on the instantaneous positions in the z direction. For
long times L2/D0 � t � 1/q2D0 the system has lost all in-
formation on the position in perpendicular direction and only
diffusion in lateral direction is relevant, which is given by
the hydrodynamic pole in the 00-mode. Therefore, on this
timescale, all other modes only decay via their coupling to the
mode S00(t ), given by the coupling strength S̃μν . Interestingly,
this coupling depends inherently on the modes for which
μ = 0 or ν = 0 and not on the diagonal modes, which indeed
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questions the quality of the “diagonal approximation” in the
hydrodynamic limit (see Sec. III A).

Using the behavior of S(c,s)(q, t ) in the hydrodynamic
limit, Eqs. (35) and (36), we find for the memory kernel in
Eq. (28),

M‖,(s)
μν (t ) � n0

∑
μ1, μ2
ν1, ν2

S̃(s)
μ1μ2

S̃(c)
ν1ν2

∫ ∞

0
dkkY‖,(s)

μμ1μ2
(k)

× exp
[−D0k2t/S(c)

00 (0)
]

× exp(−D‖k2t )Y‖,(s)
νν1ν2

(k)∗, (38)

where we assumed that the integrals are dominated by the
intermediate scattering functions in the hydrodynamic limit.
These Gaussian integrals can then approximated (for details
we refer to Appendix B 3),

M‖,(s)
μν (t ) � B‖,(s)

μν t−2. (39)

From two-times partial integration and application of Tauber’s
theorem we can finally conclude that

δK‖‖
μν (t ) � −[

D‖,(s)
L

]
μα

B‖,(s)
αβ

[
D‖,(s)

L

]
βν

t−2. (40)

For the velocity autocorrelation function Z‖(t ) we thus find a
tail −t−2. This tail is similar to the persistent anticorrelations,
Zbulk

‖ (t ) = −Bt−2.5, recently discussed in Ref. [60] for Brow-
nian particles in bulk. Here, due to the confined motion, we
find for long times the two-dimensional analog.

III. ASYMPTOTIC DYNAMICS CLOSE
TO THE GLASS TRANSITION

In this section, we first discuss the introduction of the ef-
fective memory kernel and the diagonal approximation, which
are necessary to obtain a stable numerical solution for the full
time dependence of the intermediate scattering functions. Af-
terward, we present numerical results of the cMCT equations
of motion for the tagged-particle dynamics in colloidal liquids
asymptotically close to the (ideal) glass transition. The results
are compared to the coherent dynamics in Newtonian liquids
as discussed in Ref. [56] and to bulk liquids [55].

A. Effective memory kernel and diagonal approximation

Based on the above equations of motion, we can define an
effective memory kernel M̂(z) implicitly via

K̂(z) = −[iD−1 + M̂(z)]−1. (41)

Using the effective memory kernel the equations of motion
reduce in the time domain to the standard MCT equation for
Brownian dynamics,

D−1Ṡ(t ) + S−1S(t ) +
∫ t

0
M(t − t ′)Ṡ(t ′)dt ′ = 0. (42)

To solve this equation numerically and determine the full time
dependence of the relaxation process, we apply the “diago-
nal approximation” discussed in the previous literature (see
Ref. [56], Sec. II B). The diagonal approximation is a tech-
nical approximation which becomes exact in the planar and
bulk limits [65]. It has been applied to determine the critical

packing fraction and the nonergodicity parameters of con-
fined glasses and for these quantities successfully compared
to computer simulations [4,5] and the full model [51] with
good agreement. A similar approximation has been success-
fully applied to molecular liquids [66]. Within the diagonal
approximation, we assume that the matrix-valued quantities
discussed before are diagonal, and the coupling between
different modes is thus purely based on the mode-coupling
functional. For better readability, we introduce the notation,
Aμ = Aμμ. In light of the diagonal approximation, we can
derive an explicit expression for the effective memory kernel,

Mμ(q, t ) + D2
0

∫
αμ(q, t − t ′)Mμ(q, t ′)dt ′

= D2
0βμ(q, t )+D2

0Dμ(q)−1
∫ t

0
M‖

μ(q, t − t ′)M⊥
μ (q, t ′)dt ′,

(43)

with

αμ(q, t ) = Dμ(q)−1
[
Q2

μM‖
μ(t ) + q2M⊥

μ (t )
]
, (44)

βμ(q, t ) = Dμ(q)−2
[
q2M‖

μ(t ) + Q2
μM⊥

μ (t )
]
. (45)

With the above equations the incoherent and coher-
ent scattering functions can be determined using the static
input functions, n(z) (density profiles), S(c)(q) (static struc-
ture factor), and c(q) (direct correlation functions). These
(anisotropic) static input functions are connected via the
Ornstein-Zernike equation [51–53]. For details on the numer-
ical evaluation of the static input functions and the numerical
solution of the cMCT equations we refer the reader to
Appendix A.

B. Incoherent scattering function and dynamic susceptibility

For packing fractions smaller than the critical packing
fraction, the incoherent scattering function shows the usual
two-step relaxation scenario known for supercooled colloidal
liquids, i.e., an initial exponential and then algebraic decay
to an extended plateau, followed by the primary α relaxation
[55] (see Fig. 1). In MCT the relaxation times diverge as the
glass transition ϕc is approached [44], such that above the
critical packing fraction no α relaxation occurs and the system
becomes nonergodic.

It has been elaborated via MCT and computer simulations
that the long-time relaxation close to the glass transition is
not affected by the microscopic dynamics [43,67]. Therefore,
we expect that the only visible difference between the ISF
for Brownian dynamics and Newtonian dynamics is the early
exponential decay for short times t � 10−2σ 2D−1

0 . Similarly,
since the incoherent and coherent ISF describe the same relax-
ation scenario, we expect that both functions display similar
critical behavior. The above statements can be confirmed by
comparing the asymptotic colloidal tagged-particle dynamics
presented here with the coherent dynamics of Newtonian liq-
uids discussed in Ref. [56] (see Fig. 2). Indeed, except for
the short-time behavior the dynamics are in perfect agree-
ment, which holds in particular for the power-law exponents
a (critical exponent) and b (von Schweidler exponent). The
numerical values are summarized in Table I.
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FIG. 1. Normalized incoherent intermediate scattering function
S(s)

0 (qm, t )/S(s)
0 (qm, 0) for accessible width L = 2.0σ for wave num-

ber qmσ = 6.52 corresponding to the first sharp diffraction peak
in the structure factor. The control parameter ε = (ϕ − ϕc )/ϕc =
±10−n/3, n ∈ N, increases from left to right for ε < 0 and from
bottom to top for ε > 0. The critical correlator for ϕ = ϕc (or ε = 0)
is displayed as thick line and labeled as “c.”

Analogously to the calculation of the dynamic sus-
ceptibility, we can define the susceptibility of the self-
dynamics as χ ′′(s)

μ (q, ω) = ωS(s)
μ (q, ω), where S(s)

μ (ω) =∫ ∞
0 cos(ωt )S(s)

μ (q, t )dt is the Fourier cosine transform. This
allows for a more direct observation of the different relax-
ation processes in the system. For moderate confinement (L =
2.0σ ) the incoherent dynamic susceptibility is visualized in
Fig. 3. The high-frequency peak (ω ≈ 102D0σ

−2) stems from
the short-time relaxation and is thus qualitatively different
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FIG. 2. Comparison of Brownian and Newtonian dynamics
in the normalized incoherent intermediate scattering function
S(s)

0 (qm, t )/S(s)
0 (qm, 0) for accessible width L = 2.0σ , control pa-

rameter ε = −10−5, and wave number qmσ = 6.52. The result for
Newtonian dynamics corresponds to ε = −10−5 shown in Fig. 1 in
Ref. [56].

TABLE I. Critical packing fractions ϕc and asymptotic co-
efficients for the confinements lengths considered in this work.
The critical exponents are related via Götze’s exponent re-
lation �(1 + b)2/�(1 + 2b) = λ = �(1 − a)2/�(1 − 2a) and γ =
1/(2a) + 1/(2b). The localization length l‖ was extracted using
Eq. (32). See Ref. [56] Appendix B for the determination of the
critical packing fraction ϕc and the asymptotic analysis.

L/σ ϕc λ a b γ l‖/σ

1.0 0.4497 0.795 0.282 0.484 2.81 0.0537
1.25 0.4029 0.629 0.354 0.761 2.07 0.0784
1.5 0.3817 0.629 0.354 0.761 2.07 0.0963
1.75 0.4352 0.672 0.338 0.688 2.21 0.0723
2.0 0.4495 0.668 0.340 0.694 2.19 0.0688

from the high-frequency spectrum in Newtonian liquids (see
Fig. 2 in Ref. [56]). For frequencies much smaller than the
microscopic ones, a power law in the dynamic susceptibility,
χ ′′

0 ∝ ωa, can be oberserved, which corresponds to the critical
decay displayed in the intermediate scattering function. In the
case of supercooled liquids a second peak emerges for very
small frequencies describing the structural relaxation. The
right flank of this peak is the von Schweidler law, χ ′′

0 ∝ ω−b,
while the left flank corresponds to a Debye peak resulting
from the exponential decay of the ISF at long times.

As anticipated, apart from the high-frequency spectrum,
the dynamic susceptibility does not depend on the micro-
scopic dynamics (Newtonian or Brownian) and the type of ISF
(coherent or incoherent) [56]. This holds in particular for the
“kink” visible in the low-frequency susceptibility spectrum
for strong confinement L = 1.0σ (see Fig. 4) which emerges
because the right flank of the low-frequency peak is much bet-
ter described by a Debye relaxation than the usual Kohlrausch
function. We rationalize this with the existence of multiple and
very different parallel-relaxation channels, as is the case for
strong confinement with accessible width L � 1.0σ . In such

10−3
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100

10−10 10−8 10−6 10−4 10−2 100 102

χ
′′(

s
)

0
(q

m
,ω

)

ω/(D0σ
−2)

c n=6n=9

n=6n=9ε < 0

ε > 0

L/σ = 2.0, qmσ = 6.52

FIG. 3. Frequency-dependent susceptibility of the self-dynamics
χ

′′(s)
0 (qm, ω) for the same parameters as in Fig. 1. The dashed black

line shows a Debye peak, χ ′′
D(ω) = 2χmaxωτD/[1 + (ωτD )2] (χmax =

0.37, τD = 1.56 × 108σ 2D−1
0 ) for comparison.
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FIG. 4. Frequency-dependent susceptibility of the self-dynamics
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Debye peak (dashed black line) are χmax = 0.41, τD = 1.45 ×
1011σ 2D−1

0 .

small channels, the relaxation parallel and perpendicular to
the walls differ significantly, which is described in cMCT by
distinct couplings to the different modes. Since these modes
have distinct relaxation times it can occur that the peaks con-
nected to the different relaxation channels do not coincide. In
extreme cases this can lead to multiple low-frequency peaks
[68], while for realistic scenarios a kink in the low-frequency
spectrum emerges (see Refs. [56] for detailed discussions).
For larger wall separations as shown in Fig. 3, the effect disap-
pears because the difference between the relaxation channels
becomes negligible.

C. Mean-square displacement (MSD)

As described in Sec. II B, we can calculate the tagged-
particle dynamics in the long-wavelength limit using the
numerical results for the incoherent and coherent scatter-
ing functions as input for the long-wavelength limit of the
force kernels M‖,(s)

00 (t ). The mean-square displacement can
be obtained by solving numerically the equations of motion
presented in Appendix A 3. The results for the mean-square
displacement close to the glass transition are presented in
Fig. 5. The two-step relaxation scenario manifests itself in a
short-time diffusive regime [δr2

‖ (t ) = 4D0t] followed by an
algebraic approach to a plateau [δr2

‖ (t ) = 4l2
‖ − hMSDt−a +

O(t−2a)]. At long times, below the (ideal) glass transition
(ε < 0), the dynamics become eventually diffusive again. The
power-law exponent a is the same critical exponent as ob-
served in the coherent and incoherent scattering functions.
The localization length l‖ corresponds to the size of the cages
in which the particles are trapped. When approaching the
glass transition from above, the localization length increases
to reach a finite value at the critical point (see Fig. 6). The
dependence of l‖ on the control parameter above the critical
packing fraction, ε > 0, can be well described by a square-
root function. This corresponds to the usual Whitney fold
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ε > 0

L/σ = 2.0

FIG. 5. Mean-square displacement δr2
‖ (t ) for accessible width

L = 2.0σ asymptotically close to the glass transition. The color code
is the same as used in Fig. 1.

bifurcation scenario known from the asymptotic behavior of
the nonergodicity parameters [68,69].

The long-time diffusion coefficient D‖ as defined in
Eq. (31) below the glass transition shows a clear power-
law dependence on the separation parameter ε = (ϕ − ϕc)/ϕc

with exponent γ (see Fig. 7). This exponent is consistent
with γ = 1/(2a) + 1/(2b) describing the increase of the α-
relaxation time τα ∝ |ε|−γ (see Table I for numerical values
for γ ) [55]. One can thus conclude that D‖τα = const, consis-
tent with the Stokes-Einstein relation.

Importantly, both the localization length at the critical
packing fraction as well as the asymptotic behavior of the
long-time diffusion coefficient depend strongly on confine-
ment. We will discuss this in more detail in Sec. IV.
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FIG. 6. Localization length l‖ close to the glass transition with
ε = (ϕ − ϕc )/ϕc. The data were extracted using Eq. (32). The lines
correspond to fits l‖(ε) = lc

‖ − hl
√
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FIG. 7. Inverse diffusion constant close to the glass transi-
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γ (L = 1.0σ ) = 2.81 (full), γ (L = 2.0σ ) = 2.19 (long-dashed), and
γ (bulk) = 2.52 (short-dashed). The data were extracted using
Eq. (31).

D. Velocity autocorrelation function

The velocity autocorrelation function (determined here as
the second time derivative of the mean-square displacement,
see Appendix A 3) shows several subtleties that are hidden in
the MSD due to the dominating linear growth of diffusion (see
Fig. 8).

Also in the VACF a two-step relaxation can be observed.
For times much larger than the microscopic times, the decay
follows a power law, −Z‖(t ) ∝ t−(a+2) with exponent a + 2
(=2.34 for L = 2.0σ ). If ε > 0, then a finite plateau will
be reached in the MSD and the decay of the VACF even-
tually becomes exponential. In the supercooled regime, the
decay of the VACF flattens at the α-relaxation time to follow
another power law, −Z‖(t ) ∝ t−(2−b), with exponent 2.0 − b
(=1.31 for L = 2.0σ ). This corresponds to the decay from
the plateau. At long times, the VACF then eventually decays
exponentially.

It should be noted that the above analysis of the VACF is
mostly of theoretical interest, since the very slow creeping
motion of the particles visible here in the VACF is hardly
detectable in simulations and laboratory experiments. Never-
theless, we find it fascinating to see all the features of glassy
dynamics in the VACF—albeit they are characterized by very
small amplitudes.

IV. THE EFFECT OF CONFINEMENT
ON GLASSY DYNAMICS

We have already discussed several effects of confinement:
first, the low-frequency susceptibility spectrum featuring a
kink for very strong confinement; second, the different scal-
ing of the diffusion coefficient close to the glass transition;
and, third, the significantly decreased localization length for
very strong confinement. Here we discuss these features more
quantitatively.

FIG. 8. Velocity autocorrelation function close to the glass tran-
sition for ε < 0 (a) and ε > 0 (b) and accessible width L = 2.0σ .
The critical correlator is fitted by a power law with exponent a + 2 =
2.34, shown as a dashed black line. The dotted black line displays as
reference a power law with exponent 2 − b = 1.31. The color code
is the same as used in Fig. 1.

In Fig. 9 the dependence on the accessible width L for
two critical parameters are shown. The power-law exponent
γ = 1/(2a) + 1/(2b) is directly derived from the correspond-
ing critical exponent a and von Schweidler exponent b (see
Table I). It describes the divergence of the structural relaxation
time τα and, as discussed above, also the divergence of the
(inverse) long-time diffusion coefficient D−1

‖ . As discussed
in Ref. [56], both a and b display a clear nonmonotonic
dependence on L which is therefore similarly true for γ . Inter-
estingly, γ is very different between L = 1.0σ and L = 2.0σ ,
although the respective critical packing fractions ϕc are ba-
sically equivalent. When analyzing larger wall separations it
stands out that the convergence to the bulk limit is very slow,
as has already been discussed in Ref. [56].

Similarly, also the localization length features the same
nonmonotonic dependence, with a maximum for incommen-
surate packing. The difference between L = 1.0σ and L =
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1.5σ is actually severe, showing that at the glass transition,
the localization (in parallel direction) varies up to a factor
of 2. This effect can be partially explained by the fact that
for incommensurate packing (L = 1.5σ ), the critical packing
fraction is much smaller than for commensurate packing,
mostly because of geometric constraints in the direction per-
pendicular to the walls. Remarkably, the convergence to the
bulk limit features a completely different behavior than shown
for the power-law exponent γ . Indeed, for L � 3.5σ no sys-
tematic difference to the bulk solution can be observed. One
can thus conclude that cMCT predicts a significant impact of
confinement on the cage formation and that in particular in
strongly confined systems localization alone is not a sufficient
criterion for characterizing the glass transition. This highlights
the complicated interplay among geometry, structure, and dy-
namics in confined, glassy liquids.

In Fig. 10 the effect of confinement on the structural re-
laxation in colloidal liquids is shown for a broader range of
channel widths [71]. At small packing fraction, ϕ � 0.30,
only a minimal effect of confinement can be observed and
only for very small wall distances is diffusion slightly af-
fected by the confined geometry. Due to the low packing
fraction and the reduction of layering the difference between
commensurate and incommensurate packing also becomes
negligible. Therefore, the dependence of δr2

‖ (t ) on the acces-
sible width L is monotonic. This changes drastically when
increasing the packing fraction. Now, already at moderate
confinement (L ≈ 6σ ) a significant reduction of diffusion is
observed. Furthermore, a nonmonotonic dependence of the
mean-square displacement on channel width is identified for
strong confinement, which mirrors the nonmonotonic depen-
dence of the critical packing fraction ϕc on L. In fact, the
two smallest values for L = 1.5σ and ϕ � 0.4 already corre-
spond to arrested states. These theoretical results support the
experimental results in Ref. [12] by showing that the effect of
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FIG. 10. Mean-square displacement δr2
‖ (t ) at time

t∗ = 100σ 2D−1
0 for different accessible widths L and packing

fractions ϕ.

confinement is indeed stronger pronounced when increasing
the packing fraction. This effect could be accounted for by a
growing length scale at the glass transition. This conclusion,
however, has to be taken with a grain of salt since at least
one confinement-specific effect plays an important role: lay-
ering. The inhomogeneous density profiles close to the walls
strongly affect the glass transition which can be highlighted
by the described nonmonotonic dependence of basically all
glass-related dynamical properties on the channel width. The
observation that the effects of confinement are enhanced for
larger packing fraction could thus be connected to layering
and not (only) to an intrinsic property (like growing length
scales) of glass-forming liquids close to the glass transition.

V. LONG-TIME ANOMALIES IN DILUTE LIQUIDS

In Sec. II C, we have analyzed the cMCT equations in the
hydrodynamic limit. We found that the 00-mode of the in-
termediate scattering functions displays a hydrodynamic pole
and that higher modes couple to this pole with a coupling
strength that solely depends on the structure factor S(c,s).
Here we validate this prediction using event-driven Brownian
dynamics (EDBD) simulations [59] and show cMCT results
for the velocity autocorrelation function.

The Brownian event-driven simulations are performed
for monodisperse hard spheres at packing fraction ϕ = 0.1.
The wall separation is H = 2.0σ (and thus L = 1.0σ ). We
determine the mean-square displacement as well as the in-
coherent and coherent intermediate scattering functions. The
simulations are compared to the theoretical results presented
in Eqs. (35), (36), and (37) using the simulation results
for the structure factor S(c,s) and the long-time diffusion
coefficient D‖.

The results for the intermediate scattering functions are
presented in Figs. 11 and 12. One finds perfect agreement
between simulations and theory showing that the long-time
decay is indeed always defined by the 00-mode, as predicted
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FIG. 11. Coherent intermediate scattering function for small
qsσ = 0.272 at packing fraction ϕ = 0.1 and L = 1.0σ . Results are
shown for event-driven Brownian simulations and for the theoretical
prediction Eqs. (35) and (37).

by the theory. All (normalized) modes with either μ = 0
and/or ν = 0 do not exhibit a short-time decay but only the
long-time exponential decay connected to the hydrodynamic
pole in the 00-mode. All other modes exhibit a pronounced
short-time decay from diffusion in the confined direction and
then decay from a well-defined plateau with the same rate as
the 00-mode.

Having discussed the hydrodynamic limit for the interme-
diate scattering functions we can now focus on the analysis of
the long-time behavior of the VACF which (in mode-coupling
approximation) follows immediately from the scattering func-
tions (see Appendix B 3). For the numerical solution of the
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FIG. 12. Incoherent intermediate scattering function for small
qs′σ = 0.388 at packing fraction ϕ = 0.1 and L = 1.0. Results are
shown for event-driven Brownian simulations and for the theoretical
prediction Eqs. (36) and (37). The value for D‖ was determined
from the mean-square displacement of the colloids in the EDBD
simulations.
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FIG. 13. Velocity autocorrelation function determined with
cMCT for ϕ = 0.005. The figure shows results for confined and
bulk colloidal liquids. Black lines correspond to power laws with
exponents 2.0 (dashed) and 2.5 (dotted).

cMCT equations in the hydrodynamic limit we have used
N = 250 equally spaced grid points between q0σ = 0.0365
and qmaxσ = 30.0365, M = 10, and Nt = 256 (see Ref. [56],
Appendix A for a definition of the parameters). Different
from the data shown for the VACF in vicinity of the glass
transition, for this analysis in the hydrodynamic limit we used
the direct integration of Eq. (26) using an adapted version of
Algorithm (A2). It should be noted that due to the diagonal
approximation which is applied here to solve the cMCT equa-
tions, the numerical results are expected to deviate from the
solution of the full model, because the amplitudes S̃μν [see
Eq. (37)] explicitly depend on the off-diagonal terms. These
differences will, however, be quantitative and not affect the
qualitative behavior in the long-time dynamics. (In fact, one
could easily derive the prefactor for the long-time tail in the
diagonal approximation).

The numerical solutions of the cMCT and MCT equations
for the VACF in dilute colloidal liquids are shown in Fig. 13.
The figure perfectly highlights the different persistent anticor-
relations in bulk, Z‖ ∝ −t−5/2 [60], and slit geometry, Z‖ ∼
−t−2. Furthermore, one observes a crossover between these
two long-time anomalies in confined systems with large wall
separation. In strong confinement (L = 1.0σ ) the particles
“recognize” on very short timescales that they are confined to
two dimensional motion. For larger wall separation (L = 10σ )
the particle’s motion is indistinguishable from bulk motion
for short times, but for longer times it deviates from the
unconfined dynamics and exhibits the expected power law,
Z‖ ∝ −t−2.

VI. CONCLUSION

In this manuscript, we have investigated the tagged-particle
dynamics in confined colloidal liquids based on mode-
coupling theory. In the first part, we have studied the dynamics
in the vicinity of the glass transition. We have found that the

032611-10



TAGGED-PARTICLE DYNAMICS IN CONFINED … PHYSICAL REVIEW E 102, 032611 (2020)

incoherent and coherent scattering functions show the same
qualitative behavior, in particular both display for strong con-
finement a kink in the low-frequency susceptibility spectrum.

In the long-wavelength limit, we have also studied the
mean-square displacement (MSD) and the VACF. From the
MSD we extracted the scaling of the long-time diffusion
coefficient in the supercooled regime and the localization
length in the ideal glass. Similarly to all other dynamical
variables that characterize the glass transition, both quantities
display a pronounced nonmonotonic dependence on the wall
separation.

We have also studied the hydrodynamic limit in dilute
colloidal liquids. We have observed a perfect agreement be-
tween theory and simulations for the intermediate scattering
functions which confirms the validity of the general formalism
in the hydrodynamic limit for colloidal liquids. We have also
found an intriguing crossover from initially bulklike behavior
to confined motion in the VACF for large wall separation.

This manuscript represents a throughout theoretical analy-
sis of confined colloidal liquids in both the hydrodynamic and

the supercooled regimes. It predicts important features of the
MSD, the VACF, and the incoherent scattering function and
their dependence on the confinement length. We expect that
these features can also be observed in future investigations
using computer simulations and laboratory experiments. The
results of this paper on the tagged-particle dynamics will be
particularly important for these studies, since the incoherent
dynamics can be determined with much greater accuracy than
the (collective) coherent dynamics.

An interesting open question is the relative influence of
layering and confinement on the discussed quantities, most
importantly with regard to possible general insights into
the glass transition that could be drawn from investigations
of glasses in confined geometry. This can be studied us-
ing quasiconfinement [57,58] or using inhomogeneous wall
profiles [28].
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APPENDIX A: DISCRETIZATION AND NUMERICAL EVALUATION OF THE cMCT EQUATIONS

In this Appendix, we introduce the numerical methods used to obtain the solutions of the mode-coupling equations in slit
geometry. Since the methods are mostly adapted form previous work, the main goal of this Appendix is to refer the reader to the
respective references where the techniques were introduced.

1. Static input functions

To determine the static input functions, nμ, cμν , and S(c)
μν we first apply fundamental measure theory (FMT), which gives the

density profile n(z). In principle, one could also determine the direct correlation function from FMT, but it seems to be more
stable to use for this step an iterative procedure based on the Ornstein-Zernike equation with a Percus-Yerwick closure [72]. For
details on the algorithm see Refs. [57,73], for parameters, see Ref. [56] (Table II).

2. Discretization and numerical evaluation of the intermediate scattering functions

The introduction of the thermodynamic limit and the discretization of the mode-coupling equations is performed in the same
way as described in Ref. [56] (Appendix A). Since the equations of motion for the coherent and incoherent intermediate scattering
functions are formally identical, we apply the same discretization and integration techniques. The underlying dynamics are,
however, slightly different to Ref. [56] (Newtonian vs. Brownian dynamics). For Brownian dynamics, we arrive at the following,
discretized equations of motion (discarding the explicit dependence on q and μ):

ASSi = (4Si−1 − Si−2)/3 + 2�tD

3
( dM1Si−1 + MiS0 − 0.5Mi−īSī − 0.5MīSi−ī )

− 2�tD

3

ī∑
j=1

dS j (Mi− j+1 − Mi− j ) − 2�tD

3

ī∑
j=2

dMj (Si− j+1 − Si− j )

− �tD

3

{
dSi−ī(Mī+1 − Mī ) if ī �= i − ī

0 otherwise

− �tD

3

{
dMi−ī(Sī+1 − Sī ) if ī �= i − ī

0 otherwise

AS = 1 + 2�tD

3

(
S−1

0 + dM1
)
, (A1)

with Si = S(i�t ), dSi = �t−1
∫ i�t

(i−1)�t dt ′S(t ′), and, similarly, Mi, dMi. The half time ī is defined as ī = �i/2�. The brackets � j�
denote the largest integer less or equal j. Similarly to the discussion in Ref. [56] for Newtonian dynamics, we do not integrate
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the equation for the effective memory kernel (43) directly, but we integrate its first derivative,

AMMi = (4Mi−1 − Mi−2)/3 + �tD2
0

3
(2α[dM1]Mi−1 − α[Mi−ī]Mī − α[Mī]Mi−ī )

+ D2
0(β[Mi] − 4/3β[Mi−1] + 1/3β[Mi−2]) − 2�tD2

0

3

ī∑
j=1

dMj (α[Mi− j+1] − α[Mi− j])

− 2�tD2
0

3

ī∑
j=2

α[dM j](Mi− j+1 − Mi− j )

− �tD2
0

3

{dMi−ī(α[Mī+1] − α[Mī]) if ī �= i − ī
0 otherwise

− �tD2
0

3

{
α[dMi−ī](Mī+1 − Mī ) if ī �= i − ī
0 otherwise

+ 2�tD2
0D−1

3
(M‖

i−ī
M⊥̄

i + M⊥
i−īM

‖
ī
) + 2�tD2

0D−1

3

ī∑
j=1

dM‖
j (M⊥

i− j+1 − M⊥
i− j )

+ 2�tD2
0D−1

3

ī∑
j=1

dM⊥
j (M‖

i− j+1 − M‖
i− j )

+ �tD2
0D−1

3

{
dM‖

i−ī
(M⊥̄

i+1 − M⊥̄
i ) if ī �= i − ī

0 otherwise

+ �tD2
0D−1

3

{
dM⊥

i−ī(M
‖
ī+1

− M‖
ī
) if ī �= i − ī

0 otherwise

AM = 1 + 2�tD2
0

3
α[dM1], (A2)

where we defined α[B] = Dμ(q)−1[Q2
μB‖

μ(t ) + q2B⊥
μ (t )] and β[B] = Dμ(q)−2[q2B‖

μ(t ) + Q2
μB⊥

μ (t )]. The remaining decimation
and iteration procedure is identical to the one described in Refs. [56,74,75].

3. Mean-square displacement and velocity autocorrelation function

The equation of motion for the velocity autocorrelation function, Z‖(t ), is given by the μ = 0, ν = 0 element of Eq. (26). By
integration twice over time utilizing the relation,

δr̈2
‖ (t ) = 4Z‖(t ), (A3)

we find a similar equation for the mean-square displacement δr2
‖ (t ) (now in diagonal approximation) [55],

δr2
‖ (t ) + D0

∫ t

0
M(s),‖

00 (t − t ′)δr2
‖ (t ′)dt ′ = 4D0t . (A4)

The memory kernel in the long-wavelength limit M(s),‖
00 (t ) is defined in Eq. (29). Equation (A4) has exactly the same form as the

one for the effective memory kernel, Eq. (43), enabling us to use the algorithm presented in Eq. (A2). The velocity autocorrelation
function was integrated both with algorithm Eq. (A2) and with the respective integration scheme without taking the first derivative
in time. The former methods displayed incorrect plateau values and the latter led to instabilities in the numerical integration.
We therefore determined the VACF by taking the second time derivative of the mean-square displacement which exhibits both
long-time stability and proper convergence to zero.

APPENDIX B: THE cMCT EQUATIONS
IN THE HYDRODYNAMIC LIMIT

In Sec. II C, we presented results for the dynamics of
the coherent and incoherent scattering function in the hy-
drodynamic limit, as well as long-time anomalies in the
velocity autocorrelation function. Here we perform the ana-
lytical derivations in detail.

1. The hydrodynamic pole in the intermediate
scattering function

In Ref. [53] is was shown that the in-plane density fluctua-
tions can be written as

Ŝ(c,s)
00 (q, z) = −S(c,s)

00 (q)

z + q2D̂(c,s)(q, z)
[
S(c,s)

00 (q)
]−1 , (B1)
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with

D̂(c,s)(q, z) = K̂ (c,s)
00 (q, z)/q2

+
∑

ν

K̂ (c,s)
0ν {[z1 + QK̂(c,s)(q, z)]−1

× QK̂(c,s)(q, z)}ν0/q2. (B2)

Here [P]μν = δμ0[1/S(c,s)
00 ]δν0 is a projection operator on

the 00-mode and Q = [S(c,s)]−1 − P the respective “pseudo”
orthogonal projector [76]. The above equations were de-
rived using the Gram-Schmidt orthogonalization procedure;
however, as can be seen the solution is independent of the pro-
cedure, in particular, and, most importantly, it does not depend
on the transformation matrix. Although derived for Newtonian
dynamics, the above results also hold for the present case of
Brownian dynamics due to the similarity of the equations of
motion for the intermediate scattering function. Here we have
K̂(q, z) = δK̂(q, z) + iD(q). In the hydrodynamic limit with
q → 0 and z → 0 for z/q2 = const we find immediately for
the coherent dynamics

Ŝ(c)
00 (q, z) � −S(c)

00 (q)

z + iq2D0
[
S(c)

00 (q)
]−1 , (B3)

due to the decoupling property limq→0 Kαβ,(c,s)
μν (q, t ) =

Kα,(c,s)
μν (t )δαβ and since M‖,(c)

μσ (t ) = O(q2). Consequently, all
other terms in the denominator scale as O(q4). The incoherent
dynamics are given by

Ŝ(s)
00 (q, z) � −1

z + q2
[
iD0 + δK̂‖,(s)

00 (z)
] , (B4)

with the finite force kernel δK̂‖,(s)
00 (z) in the hydrodynamic

limit q → 0 and z → 0 with z/q2 = const Since the memory
kernel contains the “fast” variables (connected to a “fluctu-
ating force” in Brownian dynamics) we assume that in this
limit it reduces to the long-time diffusion coefficient D‖ =
limz→0(−i)δK̂‖,(s)

00 (z) + D0 and thus we find

Ŝ(s)
00 (q, z) � −1

z + iq2D‖
. (B5)

2. Derivation of the higher modes of the intermediate
scattering function

In this part we want to show that

Sμν (t ) = Sμ0Sν0

S2
00

S00(t ). (B6)

Our derivation is based on Eq. (C7) in Ref. [53],

[z1 + K̃]P0S̃ + [z1 + K̃]Q0S̃ = −1, (B7)

where Ã = L†AL, P0 is the projector onto the distinguished
subspace |�0(q)〉 = ∑

μ |ρμ(q)〉Lκ0, Q0 = 1 − P0 is the or-
thogonal projector, and [L]μν = Lμν is the Gram-Schmidt
triangular transformation matrix. Note that the derivation is
completely independent of the coherent and incoherent dy-
namics, and we will therefore not use the explicit notation
(c,s). In the following, all quantities with the symbol ˆ denote

the Laplace-transformed quantities and thus carry an explicit
z dependence.

First we sandwich Eq. (B7) with LQ0(...)P0L† to find

QŜP = −[z1 + QK̂]−1QK̂PŜP, (B8)

corresponding to Eq. (C9) in Ref. [53]. Here PŜP is the
projection on the 00-mode and thus corresponds to a hydro-
dynamic pole (see Sec. II C). The projection K̂P = O(q) is
of higher order, because the off-diagonal terms vanish in the
hydrodynamic limit limq→0 Kαβ,(c,s)

μν (q, t ) = Kα,(c,s)
μν (t )δαβ , as

discussed in the main text and, thus, [K̂]μ0 = q2K̂‖‖
μν + O(q).

We therefore conclude that

QK̂P = Õ(q). (B9)

The Õ is a notation to indicate that the order of approx-
imation has to be read relative to the hydrodynamic pole.
From Eq. (B9), using the explicit expressions for [P]μν =
δμ0[1/S00]δν0 and Q = [S]−1 − P , we immediately find

Ŝμ0(z) = Sμ0

S00
Ŝ00(z) + Õ(q), (B10)

which in the hydrodynamic limit means that the Ŝμ0(t ) only
decay due to a coupling to the hydrodynamic pole in Ŝ00(t ).

Similarly, we can sandwich Eq. (B7) with LQ0(...)Q0L†,
to find

QK̂PŜQ + [z1 + QK̂]QŜQ = −Q, (B11)

which we can reorganize to obtain

QŜQ = −[z1 + QK̂]−1(Q + QK̂PŜQ) = Õ(q). (B12)

As already indicated we can use the argument from before to
show that QŜQ = Õ(q) and thus conclude

Ŝμν (z) = Sμ0Sν0

S2
00

Ŝ00(z) + Õ(q), (B13)

which is what we wanted to show in the hydrodynamic
limit. It should be noted that the amplitude Tμν = Sμ0Sν0 is
positive-definite which can be readily concluded from the
positive-definiteness of S(t ) for all times t .

3. Long-time anomalies in the velocity autocorrelation function

We start with Eq. (38) in the hydrodynamic limit,

M‖,(s)
μν (t ) � n0

∑
μ1, μ2
ν1, ν2

S̃(s)
μ1μ2

S̃(c)
ν1ν2

∫ ∞

0
dkkY‖,(s)

μμ1μ2
(k)

× exp
[−D(c)

0 k2t/S(c)
00 (0)

]
× exp(−D‖k2t )Y‖,(s)

νν1ν2
(k)∗, (B14)

and the knowledge that the vertices Y‖,(s)
νν1ν2

(k) are smooth func-
tions of the control parameters, which themselves converge in
the hydrodynamic limit to a finite value. Equation (B15) can
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therefore be rewritten as

M‖,(s)
μν (t ) � n0

∑
μ1, μ2
ν1, ν2

S̃(s)
μ1μ2

S̃(c)
ν1ν2

Ỹ‖,(s)
μμ1μ2

Ỹ‖,(s)∗
νν1ν2

×
∫ ∞

0
dkk2 exp

[−D(c)
0 k2t/S(c)

00 (0)
]

× exp(−D‖k2t ), (B15)

with

Ỹ‖,(s)
μμ1μ2

= 1

2
√

πLLs

∑
σ

[(S(s) )−1]μσ c(s)
σ−μ2,μ1

(0). (B16)

The above expression for the memory kernel corresponds to
a Gaussian integral which can be trivially integrated to find
M‖,(s)

μν (t ) � B‖,(s)
μν t−2, with

B‖,(s)
μν = n0S(c)

00 (0)

2
[
D‖ + D0/S(c)

00 (0)
]2

×
∑

μ1, μ2
ν1, ν2

S̃(s)
μ1μ2

S̃(s)
ν1ν2

Ỹ‖,(s)
μμ1μ2

Ỹ‖,(s)∗
νν1ν2

. (B17)

From the long-time tail in the memory kernel M‖,(s)
μν (t ) we

can now conclude using Taubers theorem that we have in
Laplace space a leading singularity scaling as (−iz) ln(−iz)
(see Ref. [77], Eqs. (48)– (51), and Ref. [78], chap. 13.5)

M‖,(s)
μν = iA0,μν + iA1,μν (−iz) + iB‖,(s)

μν (−iz) ln(−iz)

+ O(z2 ln(z2)). (B18)

From Eq. (22) we find

A0 = [
D‖,(s)

L

]−1 − [D‖,(s)]−1 (B19)

where [
D‖,(s)

L

]
μν

= lim
z→0

(−i)δK̂‖,(s)
μν (z) + D‖‖,(s)

μν , (B20)

[D‖,(s)]μν = D‖‖,(s)
μν . (B21)

Similarly to Eq. (22) we can derive an equation for δK̂(s)
(z),

δK̂(s)
(q, z) = [iD(s)(q)−1 + M̂(s)

(q, z)]−1

× (−iD(s)(q)M̂(s)
(q, z)), (B22)

which we can expand using (A + B)−1 = A−1 + A−1BA−1

for small B,

δK̂‖‖
μν (z) = ... − [iD‖,(s)−1 + A0]−1

μαiB‖,(s)
αβ (−iz) ln(−iz)

× [iD‖,(s)−1 + A0]−1
βν + ... (B23)

= ... − [
D‖,(s)

L

]
μα

iB‖,(s)
αβ (−iz) ln(−iz)

[
D‖,(s)

L

]
βν

+ ....

(B24)

From the leading singularity in Laplace space we therefore
find

δK‖‖
μν (t ) � −[

D‖,(s)
L

]
μα

B‖,(s)
αβ

[
D‖,(s)

L

]
βν

t−2. (B25)
In particular, for the velocity autocorrelation function,

Z‖(t ) � −[
D‖,(s)

L

]
0α

B‖,(s)
αβ

[
D‖,(s)

L

]
β0t−2, (B26)

we thus find a power-law tail, Z‖(t ) ∝ −t−2.
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