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The dynamics of magnetization relaxation in ferrofluids are studied with statistical-mechanical theory and
Brownian dynamics simulations. The particle dipole moments are initially perfectly aligned, and the magneti-
zation is equal to its saturation value. The magnetization is then allowed to decay under zero-field conditions
toward its equilibrium value of zero. The time dependence is predicted by solving the Fokker-Planck equation
for the one-particle orientational distribution function. Interactions between particles are included by introducing
an effective magnetic field acting on a given particle and arising from all of the other particles. Two different
approximations are proposed and tested against simulations: a first-order modified mean-field theory and a
modified Weiss model. The theory predicts that the short-time decay is characterized by the Brownian rotation
time τB, independent of the interaction strength. At times much longer than τB, the asymptotic decay time is
predicted to grow with increasing interaction strength. These predictions are borne out by the simulations. The
modified Weiss model gives the best agreement with simulation, and its range of validity is limited to moderate,
but realistic, values of the dipolar coupling constant.
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I. INTRODUCTION

Magnetic fluids are useful and inherently interesting types
of colloidal suspension. They are composed of small super-
paramagnetic or large ferromagnetic particles suspended in
a simple, nonmagnetic carrier liquid [1]. A key property of
such fluids is that the structural and dynamical properties can
be switched with the application of magnetic fields. Homo-
geneous fields align the particle magnetic dipole moments
through the Zeeman interaction, and strong fields can lead to
extensive chain formation in the field direction. The resulting
structural anisotropy has concomitant effects on the magnetic,
optical, and viscometric properties of the fluid.

The influence of interparticle interactions on the static
magnetic properties of magnetic fluids is well understood. The
key properties here are the magnetization curve M(H ) and
the initial susceptibility χ = (dM/dH )H=0, and these were
being studied as long ago as the early 1900s in the context
of mean-field theory [2,3]. Modern statistical-mechanical
theories of the magnetization curve are much more
sophisticated [4–19] and are free of artifacts, such as the
prediction of a spontaneous transition to a long-range-ordered
ferromagnetic liquid state at low temperature and/or with
strong interparticle interactions.

The dynamic magnetic response has also received a lot of
attention, and in particular, the initial susceptibility χ (ω) of
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a magnetic fluid to a weak ac magnetic field with angular
frequency ω. Part of the interest in χ (ω) is that its imaginary
(or out-of-phase) part controls the dissipation of heat [20],
and this mechanism can be used in medicine for hyperthermia
treatments [21,22]. There are two fundamental mechanisms
for the reorientation of a particle in a magnetic fluid [1,23–27]:
Néel relaxation in a superparamagnetic particle involves the
rotation of the dipole moment within the particle-fixed frame,
usually defined by the crystal axes of the constituent mag-
netic grain, and Brownian rotation of a superparamagnetic or
ferromagnetic particle involves the reorientation of the parti-
cle as a whole. The latter is strongly influenced by the vis-
cosity of the carrier liquid and the interactions between the
particles. The dynamics of magnetic relaxation have been
the subject of several experimental [28–37] and simulation
[38–46] studies. Theoretically, the influence of the inter-
actions on the so-called dynamic (or frequency-dependent)
initial magnetic susceptibility has been evaluated within var-
ious approaches [41,42,47–54]. Predictions from modified
mean-field approaches (described below) have been tested
critically against experimental [35,36] and simulation results
[40–42].

The fluctuation-dissipation theorem links the decay of
equilibrium thermal fluctuations in the magnetization with
the linear response of the magnetization to small changes
in the magnetic field. Specifically, the frequency spectrum of
the magnetization autocorrelation function 〈δM(t ) · δM(0)〉,
where δM(t ) = M(t ) − 〈M〉, is linked to the dynamic mag-
netic susceptibility, and this relation has been exploited in
equilibrium dynamical simulations [40–42].
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The subject of this work is the nonequilibrium relaxation
of the magnetization under zero-field conditions and, in par-
ticular, the effects of interparticle interactions on the decay.
The system is prepared in a fully aligned state in some way,
and then the relaxation of its magnetization toward M = 0 un-
der zero-field conditions is determined. In experiments, such
relaxation dynamics have been used to characterize superpara-
magnetic nanoparticles [28–34]. It has also been studied using
Langevin-dynamics simulations, either with Néel and Brow-
nian relaxation [38] or with Brownian relaxation only [39]. It
was shown that interactions increase the relaxation time. The
corresponding case of multicore magnetic particles has also
been studied with simulations, and it was shown that there is
a two-step relaxation process, with fast and slow relaxation
times [43]. The effects of viscoelasticity of the suspending
medium on the relaxation of isolated magnetic particles have
also been investigated using the Fokker-Planck equation for
the time-dependent, one-particle distribution function [44,55]
and Brownian-dynamics (BD) simulations [44]. Interestingly,
as will be shown in Sec. II B, the effects are reminiscent of
those arising from interactions, although the physical situa-
tions are very different.

The relevance of magnetization relaxation to technological
applications is obvious, as the relaxation time depends on the
environment, as well as the particle parameters. For example,
magnetorelaxometry has been exploited in designing biologi-
cal immunoassays and medical theranostics with a variety of
protocols [56–62]. In general, experimental results from such
assays, and in characterization methods [28–34], are analyzed
by ignoring the effects of interparticle interactions. The aim of
the current work is to determine how interactions can modify
the magnetic relaxation and to propose a theoretical basis for
describing such effects.

Herein theory and simulation are applied to the case of
monodisperse ferromagnetic particles undergoing Brownian
relaxation. Néel relaxation is not included for two reasons.
First, it increases the number of parameters and diminishes
the effects of interactions, which are really the main focus
of this study. Second, simulating Brownian and Néel relax-
ation simultaneously in a bulk system is computationally
laborious due to the presence of very different characteristic
timescales. Efforts have been made to simulate efficiently both
types of relaxation in single particles and clusters of particles
[45]. Brownian-dynamics simulations are therefore used here
as idealized “experiments,” in which the nonmagnetic inter-
actions between particles are prescribed, and complicating
factors arising from polydispersity and Néel relaxation are
eliminated. The simulation results are used to test the theoreti-
cal predictions derived by solving the Fokker-Planck equation
for the time-dependent, one-particle orientational distribution
function [23–27]. As with all such problems, a Fokker-Planck
equation can be derived that governs the time evolution of a
probability distribution function under the influence of ran-
dom (Brownian) and drag (Stokes-Einstein) forces [63], and
that includes rotational diffusion, too [23–27]. The effects of
interactions between the particles are determined by introduc-
ing an effective field acting on a given particle and arising
from all of the other particles. Two different approaches are
taken—a first-order modified mean-field theory and a mod-
ified Weiss theory. Theory and simulation are used to show

that the effects of interactions are significant. The limits of
each theory are determined by comparison to simulation, and
targets for future work are identified.

The rest of this article is organized as follows. The theory is
derived in Sec. II, and the BD simulation methods are detailed
in Sec. III. The results are presented in Sec. IV and Sec. V
concludes the article.

II. THEORY

The ferrofluid consists of N spherical particles in a volume
V at temperature T . Each particle has a hard-core diameter
equal to σ and carries a magnetic dipole moment μ. The
potential energy of the system is U = ∑N

i< j (us
i j + ud

i j ), where
us

i j is a short-range, isotropic, repulsive interaction between
particles i and j and ud

i j is the dipole-dipole interaction
given by

ud
i j = μ0

4π

[
(μi · μ j )

r3
i j

− 3(μi · ri j )(μ j · ri j )

r5
i j

]
, (1)

where μ0 is the vacuum permeability, μi and ri are the dipole
moment and position vector of particle i, and ri j = r j − ri

is the separation vector between particles i and j. The
dipolar coupling constant is λ = μ0μ

2/4πσ 3kBT , where kB

is Boltzmann’s constant. The volume fraction is ϕ = ρv0,
where ρ = N/V is the particle concentration and v0 = πσ 3/6
is the particle volume.

The fractional magnetization is m(t ) = M(t )/M∞, where
M(t ) is the real magnetization along the laboratory z axis,
M∞ = Nμ/V is the saturation magnetization of the ferrofluid
which would be achieved in an infinitely strong applied mag-
netic field, and t is the time. The initial, t = 0 state of the
ferrofluid is one of perfect alignment, and hence m(0) =
1. The fractional magnetization can be calculated from the
one-particle orientational distribution function (ODF) W (z, t ),
where z = cos θ , and θ is the polar angle between the dipole
moment on a particle and the z axis,

m(t ) = 1

2

∫ 1

−1
W (z, t )z dz. (2)

The initial, t = 0 state of the ODF is a δ function at the
point z = 1, since the angle θ = 0 for each particle’s dipole
moment. This initial ODF can be expressed as an expansion
in terms of Legendre polynomials Pk (z),

W (z, 0) =
∞∑

k=0

(2k + 1)Pk (z). (3)

From t = 0 the magnetization is allowed to relax. In the fol-
lowing sections, three different levels of theory are detailed:
the theory for noninteracting particles (Sec. II A), a modified
mean-field theory for interacting particles (Sec. II B), and a
modified Weiss theory for interacting particles (Sec. II C).

A. Noninteracting particles

The time dependence of the ODF is governed by the
Fokker-Planck (FP) equation, simplified in the present case
because only the z component of the magnetization is of
interest, and hence the relevant ODF depends only on the polar
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angle θ [Eq. (2)]. For ideal, noninteracting particles, the FP
equation is [23–27]

2τB
∂Wid

∂t
= ∇2Wid

= 1

sin θ

∂

∂θ

(
sin θ

∂Wid

∂θ

)

= ∂

∂z

[
(1 − z2)

∂Wid

∂z

]
, (4)

where τB is the Brownian rotation time. For spherical
particles, the Stokes-Einstein-Debye relationship is τB =
πησ 3/2kBT , where η is the viscosity of the suspending liquid.
The solution of Eq. (4) is evidently

Wid(z, t ) =
∞∑

k=0

(2k + 1)Pk (z) exp

[
−k(k + 1)t

2τB

]
, (5)

and it gives a simple exponential relaxation law for the
magnetization, with the k = 1 term being the only one that
contributes to m:

mid (t ) = exp

(
− t

τB

)
. (6)

In Secs. II B and II C, interactions will be included in the FP
equation. In earlier work, two related approaches have been
proposed and tested for static and dynamic properties at or
near to equilibrium: the so-called modified mean-field theory
and modified Weiss theory.

B. Modified mean-field theory for interacting particles

For interacting particles, the FP equation can be written
[23–27]

2τB
∂W

∂t
= ∂

∂z

[
(1 − z2)

(
∂W

∂z
+ W

kBT

∂Ueff

∂z

)]
, (7)

where Ueff is the effective interaction energy between a parti-
cle and all of the other particles in the system. The stationary,
equilibrium distribution is W (z) = exp [−Ueff (z)/kBT ]. In the
first-order dynamic modified mean-field (MMF) model [48],
Ueff is approximated by an expression which is linear in the
particle concentration ρ. Each randomly chosen particle in-
teracts with the total dipolar magnetic field HMMF produced
by all of the other particles in the system [see Eq. (1)], but
no spatial or orientational correlations between particles are
taken into account. Ueff is given by

Ueff

kBT
= −μ0(μ · HMMF)

kBT
, (8)

with an effective field given by

HMMF = ρ

4π

∫
r12�σ

dr12

∫
dμ2Wid(z2, t )

×
[

μ2

r3
12

− 3r12(μ2 · r12)

r5
12

]
. (9)

In this term, the integration over all possible positions and
orientations of particle 2 is weighted by the ODF for non-
interacting particles, i.e., Wid from Eq. (5). Carrying out the
integration gives

Ueff

kBT
= −χL exp

(
− t

τB

)
z, (10)

where χL = ρμ0μ
2/3kBT = 8ϕλ is the Langevin magnetic

susceptibility of an ideal paramagnetic gas. The solution of
Eqs. (7) and (10) is expressed as a sum of Legendre polyno-
mials by

WMMF(z, t ) =
∞∑

k=0

(2k + 1)Ak (t )Pk (z), (11)

where A0(t ) = 1, Ak (0) = 1, and from Eq. (2), the fractional
magnetization is mMMF(t ) = A1(t ). Matching terms with the
same Pk (z) gives a set of equations for the coefficients Ak (t ),

2τB

k(k + 1)

dAk

dt
= −

[
Ak + χL

2k + 1
e−t/τB (Ak+1 − Ak−1)

]
.

(12)

Since the interaction term Ueff is linear in the particle con-
centration ρ, it is appropriate to solve the set of equations for
A1 to the same accuracy, meaning linear in χL. Therefore, the
time dependence of A2 is approximated by

τB
dA2

dt
= −3A2 + O(χL ), (13)

and hence A2(t ) = exp (−3t/τB). At this level of approxima-
tion, the time dependence of A1 becomes

τB
dA1

dt
= −A1 − χL

3
e−t/τB (e−3t/τB − 1). (14)

Thus, the MMF solution for the fractional magnetization is

mMMF(t ) = exp

(
− t

τB

)

×
{

1 + χL

3

[
t

τB
+ 1

3

(
e−3t/τB − 1

)]}
. (15)

So the main exponential decay remains the same, but it is
attenuated by a term arising from the interparticle interaction.
The initial relaxation of the MMF solution coincides with that
for noninteracting particles [Eq. (6)].

At this point, the apparent similarity between Eq. (15) and
a result from Ref. [44] is highlighted. In Ref. [44], the Brow-
nian motion of noninteracting nanoparticles in a viscoelastic,
Maxwell material was derived from the appropriate Fokker-
Planck equation. The Maxwell material is characterized by a
retarded friction coefficient, ζ (t ), which gives the drag arising
from the relative motion of the particle and the surrounding
medium, and is given by ζ (t ) = (ζ0/τM ) exp (−t/τM ), where
τM is the Maxwell relaxation time. Denoting the Brownian
friction coefficient as ξ = 2kBT τB, the parameter q = ζ0/ξ

controls the ratio of elastic to viscous friction. Obviously,
the current situation corresponds to the limit q → 0, as was
pointed out in Ref. [44]. Nonetheless, using a similar ap-
proximation to that employed here, the magnetic relaxation
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in the viscoelastic case gives a function identical to Eq. (15)
except that χL/3 is replaced by q, and in the second term in
square brackets, the prefactor of 1/3 becomes τM/τB, and τB

in the exponent becomes 3τM . But it must be understood that
although the final equations are of similar form, the physical
origin is completely different: in Ref. [44], the form of m(t )
arises from the viscoelasticity of the Maxwell medium on the
relaxation of a single particle; in Eq. (15), it arises from the
magnetic interactions between all of the particles suspended
in a Newtonian fluid.

The first-order MMF approach—embodied by Eq. (10)—
has been tested many times using experimental data and
computer simulations both for static and dynamic magnetic
properties. The main conclusion is that this simple approach
gives a very good description of the effects of interactions,
but the range of validity is limited to χL < 3 for static proper-
ties such as the magnetization curve and initial susceptibility
[10–12], and χL < 1 for the dynamic initial magnetic suscep-
tibility [40–42].

C. Modified Weiss theory for interacting particles

An improved method which expands the range of validity
of the MMF approach was suggested recently [41] and is sim-
ilar to the Weiss mean-field theory [2]. In this approach, the
total magnetic field HMMF acting on a randomly chosen par-
ticle, and arising from all of the other particles, is determined
as in Eq. (9) but with W (z2, t ) determined self-consistently,

Ueff

kBT
= −μ0(μ · HW)

kBT
(16)

HW = ρ

4π

∫
r12�σ

dr12

∫
dμ2W (z2, t )

×
[

μ2

r3
12

− 3r12(μ2 · r12)

r5
12

]
. (17)

Now W (z2, t ) is the unknown ODF of the second particle.
Expanding the ODF as a sum of Legendre polynomials gives

W (z, t ) =
∞∑

k=0

(2k + 1)Bk (t )Pk (z), (18)

where B0(t ) = 1, Bk (0) = 1, and from Eq. (2), the fractional
magnetization is m(t ) = B1(t ). Combining Eqs. (16)–(18)
gives

Ueff

kBT
= −χLB1z. (19)

Substitution of this expression into Eq. (7), and matching
terms with the same Pk (z), leads to the following set of equa-
tions for the coefficients Bk:

dBk

dt
= −k(k + 1)

2τB

[
Bk + χL

2k + 1
B1(Bk+1 − Bk−1)

]
. (20)

It is important to note that all of the coefficients depend on
the first one, B1, this being equal to the fractional magneti-
zation m. The time dependence of the magnetization in the
self-consistent Weiss approach (16) is therefore given by

τB
dmW

dt
= −

(
1 − χL

3
+ χL

3
B2

)
mW. (21)

To keep this equation at linear order in χL, the time depen-
dence of B2 can be approximated by

τB
dB2

dt
= −3B2 + O(χL ), (22)

and hence B2(t ) = exp (−3t/τB). For χL � 3, Eq. (21) pre-
dicts an instantaneous rate d ln mW/dt > 0 at long times,
which is clearly nonphysical. This is related to the well-known
artifact of the Weiss mean-field theory, which is a transition to
a long-range-ordered state at χL = 3. An approximate equa-
tion for m which is close to the Weiss mean-field theory, but
which does not exhibit a pathological transition, is

τB
dmMW

dt
= −

(
1 + χL

3
− χL

3
e−3t/τB

)−1
mMW. (23)

This expression preserves higher-order terms in χL represent-
ing interactions, but at all times, d ln mMW/dt � 0. We call
the result of changing Eq. (21) to Eq. (23) the “modified
Weiss” (MW) model, and this model was thoroughly tested
in Ref. [41] against computer simulations of the dynamic
magnetic susceptibility, χ (ω). Integrating Eq. (23) gives

mMW(t ) = exp

{
−3t/τB + ln [1 + χL(1 − e−3t/τB )/3]

3 + χL

}
.

(24)

It is clear from Eq. (23) that the initial decay is independent
of interactions, with d ln mMW/dt ≈ −1/τB, and hence

mMW(t ) ≈ exp
(
− t

τB

)
(t → 0). (25)

For long times, when t � τB/3, the relaxation becomes inter-
action dependent, with an asymptotic exponential decay time
equal to (1 + χL/3)τB,

mMW(t ) ≈ exp

{
−3t/τB + ln [1 + χL/3]

3 + χL

} (
t � τB

3

)
.

(26)

The asymptotic behavior of the MW model (24) with weak
interactions (meaning χL 	 3) coincides with the MMF pre-
diction (15).

III. SIMULATIONS

Brownian-dynamics simulations were carried out using
LAMMPS [64,65]. Spherical particles (N = 1728) with cen-
tral point dipoles were simulated in a cubic simulation box
with periodic boundary conditions applied. The long-range
dipolar interactions were computed with the particle-particle,
particle-mesh method [66], and the short-range interactions
us

i j were given by the purely repulsive Weeks-Chandler-
Andersen potential [67]. In Lennard-Jones (LJ) units, the
reduced temperature was T ∗ = kBT/ε = 1, where ε is the LJ
well depth, the dipolar coupling constant was λ = (μ∗)2/T ∗,
where μ∗ is the reduced dipole moment, and the particle
volume fraction was ϕ. BD were generated by integrat-
ing the Langevin equation with a large-enough friction
coefficient ξ so that the short-time inertial dynamics are sup-
pressed. In LAMMPS, this is controlled with the damping time
t∗
damp ∝ 1/ξ and the corresponding Brownian rotation time
τ ∗

B = 1/6T ∗t∗
damp, both in LJ units [40]. In earlier work on
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equilibrium magnetization fluctuations and the dynamic mag-
netic susceptibility, t∗

damp = 1/20 (τ ∗
B = 10/3) was sufficiently

small to ensure that the correlation function 〈M(t ) · M(0)〉
for noninteracting particles was equal to 〈M2〉 exp (−t/τB)
at all times, as expected for Brownian motion [40]. In the
current work, t∗

damp = 1/60 (τ ∗
B = 10), which is more than

adequate to ensure that m(t ) for noninteracting particles is
equal to the exact result given by Eq. (6); this will be shown
explicitly in Sec. IV. This simulation approach was taken to
exploit the functionality of LAMMPS, which does not have
a dedicated BD routine. In LJ units, the integration time step
was δt∗ = 0.005. Simulations were carried out according to
three different protocols.

(i) In method A the system was equilibrated in zero applied
field. Then all dipole moments were set equal to (0, 0, μ∗),
and the relaxation dynamics were simulated. Some structures
such as chains or rings can form in the fluid prior to the
alignment and relaxation of the dipoles, particularly with large
values of λ.

(ii) In method B the system was equilibrated with the
dipolar interactions switched off, so that there were no spa-
tial or orientational correlations between particles. Then all
dipole moments were set equal to (0, 0, μ∗), the interactions
were turned on, and the relaxation dynamics were simulated.
This protocol was studied to see if it agreed better with the
no-correlation approximation made in Eqs. (9) and (17) is
justified.

(iii) In method C the system was equilibrated with all of
the dipole moments constrained to (0, 0, μ∗), corresponding
to a strong aligning field. With large values of λ, and at low
concentrations, the particles formed distinct chains aligned
along the z direction. Then the orientational constraint was
removed, and the relaxation dynamics were simulated.

Method C corresponds to the most common type of mag-
netorelaxometry experiments [28–34]. Method A could be
realized in a pulsed-field experiment, as long as the pulse
width is short compared to the typical structural and orien-
tational relaxation times and the field intensity is high enough
to overcome the interactions between particles and orient them
all in the same direction. Method B is the most artificial, but
as already mentioned, it is of theoretical interest. Simulations
with ϕ = 0.125 and λ = 1, 2, 3, and 4 were carried out using
methods A, B, and C. Simulations with λ = 1 and ϕ = 0.125,
0.250, 0.375, and 0.500 were carried out using methods A and
B. Simulations with ϕ = 0.010 and λ = 1, 2, 3, 4, and 8 were
carried out using methods A and C. The rationale for these
choices of method will be given as the results are presented
in Sec. IV. Simulations were also carried out without any
interactions between particles, just to test the simulation pro-
tocol. For each method and set of parameters, 20 independent
simulations were carried out using different disordered initial
configurations and different random number generator seeds.

IV. RESULTS

Figure 1 shows m(t ) from simulations using methods A,
B, and C for systems with volume fraction ϕ = 0.125 and
λ = 1–4, along with the theoretical predictions of Eqs. (15)
and (24). For reference, simulation and theoretical results for
systems without interparticle interactions are also shown; in
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FIG. 1. The fractional magnetization as a function of time in
systems with ϕ = 0.125: (a) χL = 1 and λ = 1; (b) χL = 2 and
λ = 2; (c) χL = 3 and λ = 3; and (d) χL = 4 and λ = 4. The points
are from simulations: black circles are for noninteracting particles;
red squares are from method A; green diamonds are from method B;
and blue up-triangles are from method C. The lines are from theory:
the dashed lines are for noninteracting particles [Eq. (6)], and they
lie perfectly on top of the simulation points; the dotted lines are from
MMF theory for interacting particles [Eq. (15)]; and the solid lines
are from MW theory for interacting particles [Eq. (24)].

this case, Eq. (6) holds true, and the agreement between theory
and simulation is perfect (the dashed lines from theory lie
exactly on top of the simulation points). Note the different
time ranges for λ � 2 and λ � 3. The simulation results from
methods A and B are practically identical for each value of
λ, meaning that the no-correlation approximation made in
Eqs. (9) and (17) is justified in calculating the magnetization
decay. Of course, there are significant, short-range spatial
and orientational correlations with such parameters, as was
shown in detail in Ref. [68], and correlations can build up dur-
ing the magnetization-relaxation process. But in the present
calculations, the long-range nature of the dipolar interaction
suggests that the contributions of the short-range correlations
to the effective field are not essential. Method C only gives
significantly different results from methods A and B when
λ = 4, and shows a higher magnetization and, at intermediate
times t ∼ τB, a slower decay. In method C, the initial config-
uration is equilibrated with perfect alignment of the particle
dipoles, which favors chainlike correlations with large values
of λ. Hence, the slower decay of the magnetization is due to
long-lived chains of particles. With smaller values of λ, the
particle interactions are not strong enough to stabilize chain-
like correlations, and hence the results from methods A, B,
and C are all very similar. In general, the decay rate decreases
with increasing λ due to sustained orientational correlations
between the particle dipoles; with λ = 1, m(t ) decays to 1/e in
a time t  τB, while with λ = 4, this time is approximately an
order of magnitude larger. The decay time will be considered
in more detail below.

The MW theory is accurate with λ = 1, but the deviation
from simulation grows with increasing λ. With λ = 1, there
is a significant difference between the predictions for systems
with and without interactions, and the effects of interactions
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FIG. 2. The fractional magnetization as a function of time in
systems with λ = 1: (a) χL = 1 and ϕ = 0.125; (b) χL = 2 and ϕ =
0.250; (c) χL = 3 and ϕ = 0.375; and (d) χL = 4 and ϕ = 0.500.
The points are from simulations: red squares are from method A and
green diamonds are from method B. The lines are from theory: the
dashed lines are for noninteracting particles [Eq. (6)]; the dotted lines
are from MMF theory for interacting particles [Eq. (15)]; and the
solid lines are from MW theory for interacting particles [Eq. (24)].

are clearly captured well, as shown by the agreement with
simulations. The MW theory predicts that the asymptotic de-
cay time increases with increasing λ, given by (1 + χL/3)τB,
but this is not as rapid an increase as that seen in simulations.
The MMF theory coincides with the MW theory when χL =
1, but there are large deviations with stronger interactions.
Moreover, the MMF curve incorrectly predicts nonmonotonic
behavior at times t � τB.

Because λ = 1 is within the range of validity of the theory,
a comparison between simulation and theory is next made
with increasing ϕ. The simulations were carried out with
methods A and B, as chain formation is not expected to be
significant at high concentrations. Figure 2 shows the results.
Methods A and B give essentially identical results, showing
that even at high concentration where short-range correlations
are more pronounced [68], the effects on the magnetization
decay are insignificant. Of course, in method B, correlations
can build up during the magnetization-relaxation process.

The agreement between simulation and MW theory is very
good, even at the highest volume fraction ϕ = 0.500. So the
MW theory is accurate up to χL = 4, as long as λ is not
too large. This highlights the role of chainlike correlations in
the magnetization-relaxation process: with small ϕ and large
λ, chainlike correlations will be enhanced, and the theory is
inaccurate; with large ϕ and small λ, the theory is accurate.
As in the ϕ = 0.125 case, the MMF theory is valid for χL = 1,
but it is incorrect for higher values.

To highlight the effect of chain formation, systems with
ϕ = 0.010 are now considered. With small values of λ, the
decay should be almost ideal. With large values of λ � 4
[69–71], chain formation should lead to very slow decay of
the magnetization. Snapshots of systems with ϕ = 0.010 and
λ = 2, 4, and 8 are shown in Fig. 3, comparing the initial
configurations from methods A and C. These show the extent
of chain formation and alignment with large values of λ. With

FIG. 3. Snapshots of the initial configurations of systems with
ϕ = 0.010 from method A [(a), (c), and (e)] and method C [(b),
(d), and (f)]: (a) λ = 2, method A; (b) λ = 2, method C; (c) λ = 4,
method A; (d) λ = 4, method C; (e) λ = 8, method A; and (f) λ = 8,
method C. In each case, the particle dipole moments relax from
perfect alignment in the vertical direction.

λ � 2, there is no discernible structure arising from either
method. With λ = 4, there are small clusters in method A,
and short, parallel chains in method C. With λ = 8, method
A gives long chains and some rings, and method C gives
thick ropes aligned in the same direction of the particle dipole
moments (and a field).

To put this on a quantitative basis, Fig. 4 shows the equi-
librium cluster-size distribution pn before relaxation, with
clusters of size n identified with a simple distance-based cut-
off with rc = 1.4σ . This distance corresponds to the local
minimum between the first and second peaks in the radial
distribution function. In both methods A and C, pn looks to
be approximately exponential at large n, which is the predic-
tion of many simple clustering models [72]. The distribution
extends to larger n with increasing λ, and the mean value 〈n〉
grows accordingly, as shown in the figure legend. In addition,
method C (corresponding to a strong aligning field) gives rise
to larger clusters than method A. With λ = 8, some clusters
are system spanning, the number of clusters is too small to
give a meaningful estimate of pn, and hence the results are not
shown; nonetheless, rough estimates of the mean cluster size
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FIG. 4. Equilibrium cluster-size distributions before relaxation
in the systems with ϕ = 0.010 from method A (a) and method C
(b). The mean values 〈n〉 are shown for λ = 1, 2, 3, and 4. Results
for λ = 8 are omitted, because the clusters become too large, but the
mean cluster sizes are 〈n〉  90 (method A) and 〈n〉  110 (method
C).

are 〈n〉  90 (method A) and 〈n〉  110 (method C). The ex-
tent of clustering is anyway obvious from Figs. 3(e) and 3(f).

Relaxation results for systems with λ = 1, 2, 4, and 8 are
shown in Fig. 5. Note the logarithmic scale on the abscissa.
With λ = 1 (χL = 0.08) and λ = 2 (χL = 0.16), the decay
is essentially ideal, simulations with methods A and C give
the same results, and the agreement between simulation and
all theories is excellent. Because χL is so small, the ideal,
MMF, and MW theories are all quite similar, and the MMF
and MW theories are virtually indistinguishable. With λ = 4,
method C gives a much slower decay than with method A,
due to the formation of chains by perfectly aligned particles.
Both methods give a much slower decay than that predicted by
theory; even though the Langevin susceptibility is small, the
strong interactions between particles are outwith the regime of
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FIG. 5. The fractional magnetization as a function of time in
systems with ϕ = 0.010: (a) χL = 0.08 and λ = 1; (b) χL = 0.16
and λ = 2; (c) χL = 0.32 and λ = 4; and (d) χL = 0.64 and λ = 8.
The points are from simulations: red squares are from method A and
blue up-triangles are from method C. The lines are from theory: the
dashed lines are for noninteracting particles [Eq. (6)]; the dotted lines
are from MMF theory for interacting particles [Eq. (15)]; and the
solid lines are from MW theory for interacting particles [Eq. (24)].
The dotted and solid lines (MMF and MW theories, respectively) are
indistinguishable on the scale of the plot.
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FIG. 6. Instantaneous decays times, as defined in Eq. (27), for
systems with λ = 1 and ϕ = 0.125, 0.250, 0.375, and 0.500. The
points are from simulations with method A. The dashed lines are
obtained from fits to the simulation data for t � τB. The solid lines
are from Eqs. (24) and (27).

validity of the theories. The same behavior is seen with λ = 8,
although the simulated decay is orders of magnitude slower
than with λ = 4, and this was not simulated to completion.
Method A gives a much more rapid initial decay than method
C. This is because, initially, the particles are all strongly clus-
tered into chains and rings. On aligning the dipole moments,
there will be repulsions between particles in those chains
or ring segments that are not oriented in the z direction. In
method C, the particles are strongly aligned into ropes, and
at the start of the magnetization-relaxation process, there are
strong attractive interactions between particles, leading to a
much slower initial decay.

Overall, the MW gives the best agreement with simulation.
Equations (25) and (26) give predictions for the short-time and
long-time exponential behavior of m(t ), and there should be a
crossover at intermediate times. To characterize this crossover,
an instantaneous decay time can be defined by

τ (t ) = −
(d ln m

dt

)−1

. (27)

To evaluate this quantity from simulation data, a two-part
process was followed. For short times, meaning t < τB, the
magnetization is still sufficiently high that it is possible to
calculate τ (t ) by finite differences. For longer times, the
finite-difference method gives very noisy results. Therefore,
to estimate the asymptotic decay time, Eq. (24) was fitted to
m(t ) in the range t � τB, but with adjustable parameters in
place of τB and χL. τ (t ) was then obtained from Eq. (27). To
summarize, the simulations were run for times much longer
than τB, but a fit to the data in this regime gives a more reliable
estimate of the instantaneous decay time τ (t ) than using finite
differences.

Figure 6 shows the results for systems with λ = 1. The
simulation results are from method A only. In all cases, the
instantaneous decay time at short times is equal to τB, as
predicted by Eq. (25). The MW theory is reasonably good at
all times, even with ϕ = 0.500.
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FIG. 7. Instantaneous decays times, as defined in Eq. (27): [(a)
and (b)] systems with ϕ = 0.125 and λ = 1, 2, 3, and 4; [(c) and
(d)] systems with ϕ = 0.010 and λ = 1, 2, 3, 4, and 8. In (a) and
(c) the points are from simulations with method A. In (b) and (d) the
points are from simulations method C. The dashed lines are obtained
from fits to the simulation data for t � τB. The solid lines are from
Eqs. (24) and (27).

Figure 7 shows the results for systems with ϕ = 0.125 and
0.010. For both volume fractions, the asymptotic decay times
from simulations with method C are larger than those with
method A, due to the extent of chain formation before the
magnetization-relaxation process. With ϕ = 0.125 [Figs. 7(a)
and 7(b)] the MW theory is only accurate with λ = 1. With
ϕ = 0.010 [Figs. 7(c) and 7(d)], the MW theory is accurate for
λ = 1 and 2, where the decay is essentially ideal, while in the
chain-formation regime (λ � 4), the asymptotic decay time is
orders of magnitude larger than predicted. For λ = 8, the
decay is so slow that it was not possible to fit or extrapolate the
asymptotic decay. Nonetheless, in all cases, the initial decay
is “ideal,” with τ ≈ τB.

V. CONCLUSIONS

The dynamics of magnetization relaxation in ferrofluids
has been studied using theory and Brownian dynamics sim-
ulations. The theory was based on solving the Fokker-Planck
equation for the one-particle orientational distribution func-
tion. Interactions were included with an effective magnetic

field acting on a given particle due to all of the other particles.
Two different approximations were proposed—a first-order
modified mean-field theory and a modified Weiss theory.
The simulations were carried out according to various pro-
tocols with different initial conditions: ideal, noncorrelated
configurations; configurations in zero-field conditions; and
configurations with an infinitely strong field. In all cases, the
magnetization was instantaneously set to its saturation value,
and then its relaxation was simulated.

With moderate values of the dipolar coupling constant
(λ = 1), the modified Weiss theory gives an excellent de-
scription of the magnetization relaxation. With stronger
interactions, and dipolar coupling constants up to λ = 8, there
are increasing deviations between theory and simulation. This
is due to the presence of growing chainlike spatial and orien-
tational correlations between particles.

The theory predicts a crossover in instantaneous relaxation
times: at short times (t � 0.1τB), the initial decay is charac-
terized by the Brownian relaxation time and is unaffected by
interactions; at long times, the asymptotic decay depends on
the interaction strength; and in between, there is a smooth
crossover. Compared to simulations, the theoretical predic-
tions are accurate with λ = 1, but with stronger interactions,
the asymptotic decay time is significantly underestimated.
Nonetheless, the prediction that the initial decay is always
“ideal,” with a decay time τB, is supported by the simulation
data.

Overall, the theory should be reliable for real ferrofluids
with dipolar coupling constants λ ∼ 1. The theory breaks
down when the interactions between particles are strong
enough for chain formation. The extension of the theory to
the chaining regime is a topic for future study, but the main
challenge will be to incorporate the time evolution of the
cluster distribution, and the effective fields felt by particles
within clusters of various sizes and structures. Another in-
teresting topic is the role of polydispersity, which introduces
complexity in the cluster distribution [73], and the spread of
relaxation times and interaction strengths [41].
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